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Abstract: The Taoudéni Basin, spanning 20% of Burkina Faso, holds vital aquifers for the Sahel’s
water security and development. However, limited understanding of these aquifers’ hydrodynamics,
including the flow patterns, mineralization processes, and renewal rates, hinders sustainable manage-
ment practices in this arid region. Therefore, this study aims to investigate the aquifer hydrodynamics,
mineralization processes and groundwater renewal in the transboundary Taoudéni Basin. Through a
combination of hydrogeochemical and isotopic analyses, alongside existing data, this study examines
347 physicochemical samples, 149 stable isotope samples, and 71 tritium samples collected from
2013 to 2022. The findings reveal mineralization and stable isotopes (δ18O, δ2H) spatially aligned
with the groundwater flow direction, validating this and indicating potentially multiple independent
aquifers. The predominant mineralization mechanisms involve silicate hydrolysis and carbonate
dissolution, supplemented by minor processes like evaporitic dissolution and cation exchange. The
anthropogenic influence suggests potential groundwater recharge with potential pollution in the
“SAC1”, “SAC2”, “GFR”, “GGQ”, and “GKS” geological formations. The stable isotopes (δ18O, δ2H)
indicate recharge occurred over 4.5 kyr B.P., while tritium (3H) analysis confirms the presence of old,
mixed waters, indicating slow renewal. Overall, this study highlights the minimal recent recharge
and limited renewal rates, questions tritium’s efficacy for old water detection, and emphasizes the
need for sustainable management.

Keywords: Burkina Faso; groundwater sustainable management; hydrogeochemistry; isotope
hydrology; transboundary basin; underground hydrodynamics; mineralization mechanism; multiple
independent aquifers

1. Introduction

The Taoudéni Basin, which is shared by eight West African countries, including
Burkina Faso, hosts vital groundwater resources for local communities [1–5]. The World
Bank’s work estimated reserves of around 201,888 billion cubic meters for the Burkin-
abe part of this basin, which represents less than 3% of its surface area [3]. This basin
therefore presents significant potential for economic development throughout the West
Africa region. However, a lack of crucial knowledge and technical expertise for sustainable
groundwater management, coupled with the inability to predict climate change variables,
significantly affects these vital resources. Consequently, these waters face growing threats
from rising demand due to population pressure, climatic variability, and pollution from
as-yet-undetermined sources [4–6]. To address these challenges, an integrated approach
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incorporating techniques like hydrogeochemistry, isotope hydrology, statistics, hydrology,
and hydrodynamics, coupled with hydrogeological modeling, is necessary. This study
specifically explores the contribution of hydrogeochemical and isotopic tools [7–9].

Several studies have demonstrated the significant contribution of hydrogeochemistry
and isotopy to the understanding of aquifer hydrodynamics [5,10–21]. These approaches
enable exploration of the chemical and isotopic properties of groundwater, providing
valuable information on the groundwater origins, mixing, flows, and residence times [22].

Concerning the study area, several previous hydrogeochemical and isotopic studies
have been carried out [1,5,23,24]. Hydrogeochemistry has been employed to shed light on
the processes governing the chemical composition of groundwater and to understand the
interactions between surface water and groundwater in the various compartments of the
study area, with a particular emphasis on the groundwater flow dynamics [1,23]. Through
the study of hydrochemical facies and a few binary diagrams, some of these studies, such
as Taupin (2017) and Kouanda (2019), have shown that mineralization is mainly governed
by four key processes: dissolution of carbonate minerals, evaporitic dissolution, cation
exchange with clay minerals (characterized by Na ion release and Ca ion fixation), and
anthropogenic pollution. The impact of anthropogenic activities on groundwater quality
has been highlighted by the accumulation of nitrates, and partially sodium, potassium,
and chlorides [5,24]. This conclusion was justified in particular by the abundance of
magnesian calcic bicarbonate facies [5]. However, some of these mechanisms appear to be
partially disconnected from the petrographic composition of the zone, largely dominated
by sandstone sedimentation, with local variations in the carbonate cement content [25].

Regarding resource renewal, various studies’ conclusions diverge [1,5,23,24]. Ref. [23],
based on data from [1] and using an isotopic approach based on tritium and carbon 13/14,
asserted that the area had low recent recharge, indicating a high level of ancient water.
Then, ref. [24] observed higher tritium concentrations in the northern part, supporting the
hypothesis of significant recharge in this region. However, ref. [5] used tritium spatialization
to map the recharge zones, demonstrating higher concentrations in the southern part
compared with the northern part, which would favor the idea of recharge preferentially in
this part. This spatialization also enabled [5] to suggest abundant recent recharge from the
tritium, contrary to the work of [1,23]. It is crucial to note that tritium, a radioactive element
released into the atmosphere between the years 1952 and 1962, is constantly decreasing and
currently reaches very low values (2–5 TU) [22,26]. Therefore, assessing its level, whether
higher or lower, is only valid when considering the sampling period relative to current
precipitation (post-early 2000s). It should also be pointed out that higher values may be
observed for older periods in areas where the current water supply is nil or insufficient to
dilute older water, making spatialization of the tritium content less suitable for mapping
recharge [22].

Given these divergent observations, the present study aims to improve understanding
of the hydrodynamics and groundwater renewal of the Taoudéni Basin. It adopts an
integrated approach combining hydrogeochemistry and isotopy, as well as hydrogeology
and petrology. The aim is to improve knowledge of the chemistry and water renewal
processes of the Taoudéni sedimentary aquifers. The methodological approach is based on
up-to-date sampling and comprises several stages. Firstly, groundwater mineralization is
analyzed using statistics, mapping, binary and ternary diagrams, and saturation indices.
Next, the question of the groundwater renewal time is addressed using statistical and
cartographic analysis of stable (2H and 18O) and radioactive (3H) isotopes. These analyses
integrate petrological and hydrogeological knowledge. In addition, the study of the tritium
levels considers current concentrations in the environment. This holistic methodological
approach will provide an in-depth understanding of the hydrogeological dynamics of the
study area.
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2. Study Area
2.1. Location

The study area is located in Burkina Faso between longitudes 6 and 2◦ W and latitudes
9 and 14◦ N (Figure 1a). Bordering Mali to the west, the area covers four regions of Burkina
Faso, namely the North (Yatenga provinces), the Boucle du Mouhoun (Kossi, Banwa,
Mouhoun, Sourou, Nayala, and Balés provinces), the Hauts-Bassins (Kénédougou, Tuy and
Houet provinces) and the Cascades (Comoé and Léraba provinces).

It consists of a sedimentary domain forming a plateau averaging 500 m asl in altitude.
The plateau is characterized by gently rolling hills. Lateritic cuirasses are abundant, cov-
ering almost half the plateau’s surface area. Isolated hills with altitudes sometimes more
than 700 m asl also emerge from the plateau. The Bérégadougou hill, for example, rises to
717 m asl and the Ténakourou, at 747 m asl, is the highest peak in Burkina Faso (Figure 1c).
At the edge of the basement, the sedimentary plateau forms a cliff of variable height, but
barely exceeding 200 m asl.

It is mainly drained by the Mouhoun (ex. Volta noire) river, which is 750 km long, a
perennial watercourse whose main tributaries are the Upper Mouhoun, Sourou, and Lower
Mouhoun. Alongside the Mouhoun are the Comoé and Banifing rivers (part of the Niger
Basin) [27]. The study area therefore comprises three watersheds (Figure 1b).

Burkina Faso has a Sudano-Sahelian climate, divided into three main zones (Figure 1a).
In the north is the Sahelian zone, characterized by annual rainfall of less than 600 mm, high
evapotranspiration, high temperatures (between 30 and 40 ◦C), and a short rainy season of
2 to 3 months. The Sudano-Sahelian zone is marked by rainfall of 600 to 900 mm over 4 to
5 months, with temperatures generally between 20 and 30 ◦C. In the southern Sudanian
zone, the rainy season lasts from 5 to 6 months, with rainfall that can exceed 1100 mm per
year. The thermal amplitudes are low, between 20 and 25 ◦C [5,6,28].
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Figure 1. Southeastern part of the Taoudéni Basin: (a) location map and climatic zones (data from [29]);
(b) hydrography and watersheds; (c) and the topography.

2.2. Geology and Hydrogeology

The study area belongs to the Taoudéni Basin, a sedimentary basin. Located on the
West African craton, this basin is the largest sedimentary syncline in northwest Africa. It
was formed in the second half of the Proterozoic [30,31]. Its active period of subsidence
continued until the middle of the Paleozoic when the Hercynian orogeny occurred and the
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basin was exposed. It is made up of 6000 m of Precambrian (Infracambrian) and Paleozoic
sediments (Figure 2) [30].
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Figure 2. Stratigraphy of the southeastern margin of the Taoudéni Basin. GI: lower sand-
stones, GKS: the Kawara Sindou sandstones, GFG: the fine-grained sandstones with glauconite,
GGQ: the quartz granulate sandstones, SAC1: the siltstones, argillites and carbonates of Guena-
Souroukoundinga, GFR: the pink fine-grained sandstones, SAC2: the siltstones, argilites and carbon-
ates of Samandeni-Kiebani, SQ: the siltstones and quartzite of the Fo Pass, GFB: the Fo-Badiangara
sandstone, CT: Continental Terminal (adapted from [23,29]).

It covers almost 1.5 million km2 in West and North Africa. It extends well into Mali,
Mauritania, and the two Guineas, and it overflows slightly into Algeria, Burkina Faso,
Senegal, and Sierra Leone.

The study area (Figure 3) corresponds to the south-eastern edge of this basin. It corre-
sponds to the western sedimentary zone of Burkina Faso. It covers an area of 42,000 km2

and is estimated to be 2000 m thick. Locally, the Infracambrian formations are subdivided
into nine different formations (Figures 2 and 3a). These are (i) the lower sandstones (GI),
(ii) the Kawara Sindou sandstones (GKS), (iii) the fine-grained sandstones with glauconite
(GFG), (iv) the quartz granulate sandstones (GGQ), (v) the siltstones, argillites and car-
bonates of Guena-Souroukoundinga (SAC1), (vi) the pink fine-grained sandstones (GFR),
(vii) the siltstones, argilites and carbonates of Samandeni-Kiebani (SAC2), (viii) the silt-
stones and quartzite of the Fo Pass (SQ), and (ix) the Fo-Badiangara sandstone (GFB). The
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Paleozoic formations correspond to the Tertiary Continental Terminal (CT). Doleritic and
gabbro-doleritic intrusions, probably Permian in age, are also found here and are frequently
encountered at SAC1 and SAC2 (Figure 3a) [25,32]. These formations are predominantly
sandstone with, locally, carbonate cement.

The sedimentary series is mainly made up of potential reservoir rocks over more than
3/4 of its thickness [25,32]. Thus, from the basement to the base of SAC1, a sandstone-on-
sandstone contact is systematically observed over a thickness of around 1000 m, except
for a discontinuous argillite bed that, at the base of the glauconitic fine sandstones, locally
captivates the Kawara-Sindou sandstones. These conclusions are based on surface outcrops
and borehole data, the deepness of which does not exceed 300 m over the entire zone [25,29].
Consequently, the association of each of the geological formations with an aquifer is based
more on petrographic than hydrogeological criteria.

The hydrodynamic parameters of the aquifer are mainly deduced from long-term
pumping tests (72 h) [33], with some data from short-term tests. The average transmis-
sivities range from 10−4 à 10−3m2/s, with individual values reaching 1 to 5 × 10−3 m2/s,
especially in the GGQ, SAC1 and SAC2 formations. The storage coefficient is poorly docu-
mented, but for the GGQ, SAC1 and GFG formations, it ranges from 3 × 10−5 and 3 × 10−3,
indicating free to semi-captive aquifers [1,2,29].
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Figure 3. (a) Detailed geology of the southeastern margin of the Taoudéni Basin (data from [34]) and
(b) sampling map. GFG: the fine-grained sandstones with glauconite, GGQ: the quartz granulate
sandstones, SAC1: the siltstones, argillites and carbonates of Guena-Souroukoundinga, GFR: the pink
fine-grained sandstones, SAC2: the siltstones, argilites and carbonates of Samandeni-Kiebani, SQ: the
siltstones and quartzite of the Fo Pass, GFB: the Fo-Badiangara sandstone, CT: Continental Terminal,
DOL: dolerite.

From a hydrodynamic point of view, the basic hypothesis so far considered is that
this series consists of a single water table hosted within a multi-layered aquifer system
with locally impermeable layers of limited horizontal extension [1]. According to [1,29],
the groundwater generally flows from southwest to northeast. There are also minor flow
directions, notably northwestward and eastward toward Mali [29].

3. Material and Methods
3.1. Data Collection and Analysis

The data used in this study include 406 physico-chemical analyses, 147 stable isotope
analyses, and 71 tritium analyses. These data come from several campaigns, including that
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conducted as part of the International Atomic Energy Agency’s (IAEA) RAF 7011 project
from 2013 to 2016, the Water Supply and Sanitation Program (PAEA) from 2019 to 2020,
and two sampling campaigns, during periods of high groundwater levels during the 2021
and 2022 rainy seasons. The purpose of the 2021 and 2022 field campaigns was to update
the data collection from previous campaigns, considering the following elements:

• Resampling of several points to verify potential geochemical and isotopic changes.
Emphasis was placed on points located in the aquifer’s supposed recharge zone
(corresponding to high piezometric heights) to verify hypotheses on recharge zones.

• The need to add new points not sampled in previous work, to extend surveys to
little-explored areas or aquifer levels. Particular attention was paid to the quartz
granulate sandstones (GGQ) level, which appears to be the most productive.

• The need to sample points whose lithological section is available in our borehole database.

The 2021 and 2022 field campaigns collected 73 water samples, with 44 of them ana-
lyzed for their isotopic composition (Figure 3b, Table 1). A planned third campaign to collect
samples for carbon-13/14 analysis was unfortunately cancelled due to ongoing security
concerns in the region (Burkina Faso). Therefore, we mainly focused on hydrogeochemical,
stable isotopes and tritium samples.

Table 1. Number of collected samples according to the geology and analyses carried out.

Lithology Hydrogeochemistry Stable Isotopes Tritium

CT 24 12 6
GFB 6 39 22
SQ 7 4 1

GFG 47 17 5
GFR 13 8 5
GGQ 74 11 9
GKS 15 2 1
SAC1 65 6 1
SAC2 86 15 7

Surface Water (SW) 18 17 7
Total 347 149 72

To guarantee the representativeness of each sample taken from the aquifer, the wells
were first purged until the electrical conductivity stabilized [35]. Field measurements,
with reference to the protocol described by [36,37], included the electrical conductivity,
temperature, and pH, using a handheld WTW 3210 pH meter (Germany, accuracy ±0.005)
and a WTW 3210 conductivity meter (accuracy ±0.01 m). Hardness (hydrotimetric titer,
TH) was assessed by volumetric titration using a 0.02 N EDTA solution, while alkalinity
(HCO−

3 ) was determined in the field by volumetric titration using a 0.02 N hydrochloric
acid (HCl) solution.

Samples were analyzed at the laboratory of Burkina Faso’s General Office of Water
Resources (Direction Générale des Ressources en Eau), mainly focusing on the major
elements. The analytical techniques used included volumetry (TH and calcic TH) for
calcium (Ca2+) and magnesium (Mg2+), ion chromatography (IC Metrohm) for chloride
(Cl−), sulfate (SO2−

4 ) and nitrate (NO−
3 ), and atomic absorption spectrometry (SAA Perkin

Elmer Pin AAcle 900T, USA) for sodium (Na+) and potassium (K+). Samples from the
PAEA were analyzed by several commercial laboratories based in Ouagadougou.

For all the physico-chemical analyses, the accuracy of the data, expected to be between
−5% and 5% in terms of the ionic balance [38], was verified for 347 of the samples collected,
representing 86% of all the samples (Figure 3b, Table 1).

Isotope analyses were conducted at two laboratories:

• Laboratoire d’Analyse Structurale et Isotopique (LASI) at Centre National de l’Energie
des Sciences et des Techniques Nucléaires (CNESTEN), Morocco.
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• Laboratoire de Radio-Analyses et Environnement at École Nationale d’Ingénieurs de
Sfax, Tunisia.

The stable isotope compositions of hydrogen (2H/1H) and oxygen (18O/16O) in water
samples were determined using a Laser LGR spectrometer. The isotopic ratios are expressed
relative to the Vienna Standard Mean Ocean Water (VSMOW) standard. The analytical
uncertainties for δ18O ranged from 0.14 to 0.2‰, and for δ2H from 1.6 to 4.72‰. The tritium
content was measured by liquid scintillation counting following electrolytic enrichment of
the water samples. The results are reported in tritium units (TU) with an uncertainty of
0.03 TU.

3.2. Hydrodynamics and Mineralization

The hydrogeochemical approach aims to understand the origin of mineralization
about the direction of water flow in the aquifers of the Taoudéni Basin. This approach
began with a statistical analysis and mapping of physico-chemical parameters such as
the temperature, pH, and electrical conductivity (EC) to assess the relationship between
groundwater chemistry and hydrodynamics. These parameters were also used to assess
the groundwater quality, based on World Health Organization (WHO) indicators applied
in Burkina Faso [39].

Next, an in-depth study of the water mineralization was undertaken to understand
the geochemical processes that can provide information on the origin of water. Firstly,
we proposed explanatory hypotheses for the presence of these various elements, drawing
particularly on the context in which the rocks were emplaced (petrology). Secondly, the
study of the mineralization involved the use of several tools, such as the analysis of
hydrochemical facies using the Piper diagram, binary diagrams between elements, and the
study of saturation indices [5,10,16,17,40,41]. These methods make it possible to classify the
types of water in the study area, to gain a better understanding of the interactions between
groundwater and lithology, and to verify the hypotheses previously formulated.

The notion of the saturation index (SI) was introduced by [42,43]. It is one of the most
common approaches to understanding the origin of mineralization and explaining the
presence of certain minerals in the aquifer [17]. The saturation index is calculated by:

IS = log(PAI/K) (1)

where PAI is the solubility product expressed in terms of the ionic activity and K is the
equilibrium constant for the mineral dissolution.

For an aqueous solution:

• If IS = 0, the water is in equilibrium (saturated) with the mineral.
• If IS < 0, the water is undersaturated with respect to the mineral, meaning that the

water will dissolve the mineral.
• If IS > 0, the water is supersaturated, meaning that the water will precipitate the mineral.

The use of DIAGRAMME software (v6.77) from the University of Avignon proved
particularly useful in this approach; in particular, the Piper diagram and the calculation
of the saturation indices were performed using the PHREEQC code incorporated into the
software [44,45]. All these results will be used in an attempt to differentiate aquifers [5,23].

3.3. Resource Renewal

The question of the groundwater renewal time is addressed through an isotopic study
using two types of isotopes: stable isotopes (2H and 18O) and radioactive isotopes (3H).

Stable water isotopes, such as deuterium (2H) and oxygen-18 (18O), have been used
as tracers to analyze aquifer evaporation and recharge processes [46–48]. Tritium (3H),
meanwhile, has been used as an indicator to estimate the relative age of groundwater,
especially for relatively young waters (post- or pre-1952), making it possible to assess the
residence times and the time elapsed since groundwater recharge.
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Isotopic analysis was carried out using elementary statistical methods on stable iso-
topes and tritium. The groundwater isotopic concentrations were compared with those
of the precipitation, thus acting as an input marker for the hydrological system. In addi-
tion, the groundwater samples were plotted on a binary deuterium/oxygen-18 diagram,
compared to the global meteoric line, providing a global perspective on the hydrological
processes [5,23,49]. In addition, the combination of these data with hydrogeochemical and
hydrodynamic parameters has been used to deepen understanding of the groundwater
flow and renewal.

4. Results
4.1. Hydrogeochemistry
4.1.1. Physico-Chemical Parameters

Figure 4 shows the various physico-chemical parameters measured in the field accord-
ing to the different geological formations encountered.
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The temperatures (Figure 4a) range between 28 and 33 ◦C. These values seem to
follow the climatic regime of the area, as they are close to the average atmospheric values
(30–31 ◦C) [1,23]. These values are close to those obtained by [23]. As for the pH (Figure 4b),
except for a few extreme values in the study area, it lies within 5 and 8. It is therefore in
line with drinking water standards, but with a slightly acidic trend (average 6.4). This
acidic trend can be attributed to the dominant silicate nature of the aquifers. The typical pH
values in natural waters range from 6 to 8.5 [35]. The total alkalinity (Figure 4c), ranging
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from around 10 to 800 mg/L, suggests an adequate capacity of the groundwater to react
with acids, which is important for maintaining the water’s chemical balance and protecting
against harmful pH variations [50,51].

The electrical conductivity (Figure 4d) provides information on the degree of miner-
alization of the water. In the study area, it ranges from 5 to 1018 µS/cm, with an average
of 283 µS/cm. However, nine samples showed outliers, detected by the Grubbs test up to
2000 µS/cm. The low average conductivity would indicate the generally low mineraliza-
tion of the water. A few outliers were recorded for SAC1 (2000, 1074, and 1066 µS/cm),
SAC2 (1708 and 1508 µS/cm), and GFR (1795 µS/cm), GGQ (1317 µS/cm) and GKS
(1109, 1168 and 1439 µS/cm), likely attributed to the elevated nitrate, sulfate, and chloride
levels observed in these samples [35]. These readings suggest localized pollution instances.
The low values observed, typical of rainwater, can be justified by their location at piezomet-
ric crest zones, which correspond to areas where aquifers are recharged from surface water.
The formations with the highest conductivity values are the most superficial. This could
be explained by the anthropogenic influence on groundwater mineralization, probably
linked to contamination. The deeper the water table, the more protected it would be from
anthropogenic pollution [52–54]. This hypothesis is corroborated by the work of [55,56]
carried out on sedimentary aquifers in Morocco, as well as by previous work in the study
area. Spatial analysis of the electrical conductivity reveals a general upward trend in the
direction of flow (Figure 5a,b and Figure 6), where the peaks observed on the profile are
due to outliers linked to cases of localized pollution.
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4.1.2. Major Elements

Descriptive statistics concerning the major ions (Figure 7, Table 2) reveal significant
trends, based on which attempts can be made to explain their presence in the groundwater.
The main findings can be summarized as follows.

Water 2024, 16, x FOR PEER REVIEW 12 of 30 
 

 

8. Potassium: Th potassium concentrations in the groundwater vary between 0.1 and 
41 mg/L, generally meeting WHO standards (≤50 mg/L) [39], but 9 out of 347 samples 
exceed them up to 297.83 mg/L. In addition to silicate hydrolysis (a natural process), 
the widespread use of potassium fertilizers, notably NPK in agriculture, can also be 
identified as a likely source of contamination, underlining the need to monitor agri-
cultural practices to ensure groundwater quality in the region. 

 
Figure 7. Descriptive statistics on the major elements’ concentration by lithology sampled: (a) cal-
cium, (b) magnesium, (c) sodium, (d) potassium, (e) bicarbonates, (f) chlorides, (g) sulfates, and (h) 
nitrates (outliers have been removed to improve the scale). 
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Table 2. Descriptive statistics for the major elements in water.

Statistics [Na+] [K+]
[
Ca2+] [

Mg2+] [
NO−

3
] [

HCO−
3
] [

SO−
4
] [

Cl−
]

No. of samples 347.00 347.00 347.00 347.00 347.00 347.00 347.00 347.00
Average 7.42 9.92 23.96 14.93 12.41 133.22 15.10 10.95
Standard deviation 13.64 21.92 29.65 21.81 56.87 132.45 55.90 37.62
Min 0.09 0.10 0.10 0.05 0.01 0.10 0.01 0.10
First quantile 1.675 2 3.89 1.615 0.44 25.56 0.3 0.42
Median 3.20 4.00 14.06 7.20 2.00 86.60 2.00 2.29
Third quantile 7.03 10.82 36 20.86 4.5 209.84 4.16 10.39
Max 167.92 297.83 239.20 210.60 859.70 819.80 606.07 640.63
Variation coeff. (%) 183.89 220.84 123.74 146.08 458.44 99.42 370.14 343.62

1. Bicarbonates: The high concentration of bicarbonates (12 to 850 mg/L) observed in
the study area likely originates from several sources. These include carbonate minerals
in the soil and underlying formations (SAC1 and SAC2), as well as the contribution of
CO2 from decomposing organic matter in the recharge zone, carried by infiltrating
rainwater. This is attributed to the presence of carbonate minerals in the soil and
geological formations (SAC1 and SAC2) [38].

2. Sulfates: Sulfates present concentrations ranging from 0.01 to 167 mg/L, with five
samples exceeding potability standards (250 mg/L) [39], mainly from the SAC2
and GFR formations. Potential sources include natural processes such as evaporite
dissolution and anthropogenic processes such as sewage infiltration, fertilizer use,
and industrial wastewater [35,57]. Although the SAC1 and SAC2 formations originate
from marine sedimentation [25,30] favorable to evaporitic dissolution, the low sulfate
concentrations suggest a limited contribution to water mineralization.

3. Chlorides: Chlorides in groundwater can be of natural origin (precipitation, dissolu-
tion of evaporites) or anthropogenic (fertilizers, industrial wastewater). The observed
concentrations (0.1 to 108.9 mg/L) show high values, mainly in the SAC1, SAC2,
GKS, GFG, and CT formations, indicating a probable marine origin with a likely
anthropogenic contribution, notably linked to fertilizer use.

4. Nitrates: The presence of nitrates in groundwater (0.01 to 48.8 mg/L) can be attributed
to agricultural activities and wastewater discharges. Some 14 samples show nitrate
levels over potability standards set at 50 mg/L [39]. The probable reasons also include
the low static level of some sampling points and the proximity of faults, facilitating
nitrate infiltration.

5. Calcium: Calcium is present in all the formations, with an average concentration of
23.96 mg/L, with a high concentration in the SAC1 and SAC2 geological formations.
The abundance of calcium can mainly be attributed to the hydrolysis of silicates, the
dissolution of carbonates, and, to a small degree, of evaporites.

6. Magnesium: The magnesium concentrations, due to silicate hydrolysis and dissolution
of carbonate minerals, exceed the limit (≤50 mg/L) in some samples, notably in the
SAC1 and SAC2 formations.

7. Sodium: Sodium is derived from silicate hydrolysis and evaporite dissolution, and
to a lesser extent, from cation exchange [35,40,58]. In terms of the water quality,
the water quality of the waterworks in the region meets drinking water standards
(≤200 mg/L) [39], suggesting the predominant influence of sandstone formations
rich in silicate minerals. In terms of the water quality for irrigation, the sodium levels
encountered remain within the required standard [59] except for a single sample, as
shown in the Wilcox diagram (Figure 8).
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Figure 8. Wilcox diagram: water quality for irrigation taking sodium into account.

8. Potassium: Th potassium concentrations in the groundwater vary between 0.1 and
41 mg/L, generally meeting WHO standards (≤50 mg/L) [39], but 9 out of 347 samples
exceed them up to 297.83 mg/L. In addition to silicate hydrolysis (a natural process),
the widespread use of potassium fertilizers, notably NPK in agriculture, can also
be identified as a likely source of contamination, underlining the need to monitor
agricultural practices to ensure groundwater quality in the region.

4.1.3. Hydrochemical Facies

Analysis of the hydrochemical facies using the Piper diagram (Figure 9) helps to better
understand the water mineralization.

Given the number of geological formations sampled, the sampled waters are grouped
into three reservoirs according to their lithology (Table 3) for further hydrogeochemical
study. This approach will also enable us to verify whether the waters constitute a single
water table [1] or can be differentiated into several distinct aquifers.

Table 3. Geological formations in reservoirs.

Reservoirs Geology

Sandstone IC GI, GKS, GFG, GGQ, GFR, SQ, GFB
Clayey-carbonate IC SAC1 and SAC2

CT CT+ Surface Water (SW)

In general, there are two dominant facies (Table 4), mainly the bicarbonate cal-
cic magnesian facies (HCO3 − Ca − Mg), followed by the bicarbonate sodi-potassic fa-
cies (HCO3 − Na − K), with a tendency toward the chlorinated sulfated, calcic magne-
sian facies (SO4 − Cl − Ca − Mg) on the one hand and the sodi-potassic on the other
(SO4 − Cl − K − Na). The bicarbonate calcic magnesian facies is not only typical of car-
bonate dissolution but also of silicate hydrolysis. It depends on the lithology of the rocks
in place.
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As with the dissolution of carbonates, the hydrolysis of a silicate, depending on its
composition, may release one or more cations and HCO3 (from CO2 in soils) in constant
proportions. This can be illustrated by the following reactions for albite, anorthite and
micas [35]:

Albite : 4Na(AlSi3)O8 + 4CO2 + 22H2O → 4Na+ + 8H4SiO4+

2Al2Si2O5(OH)4 + 4HCO−
3 ,

(2)
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Anorthite : 2Ca(Al2Si2)O8 + 4CO2 + 6H2O → 2Ca2+ + 2Al2Si2O5(OH)4 + 4HCO−
3 (3)

Biotite : 2K(Mg2Fe)(AlSi3)O10(OH)2 +
1
2 O2 + 10CO2 + 16H2O → 2K++

4Mg2+ + Al2Si2O5(OH)4 + 2Fe(OH)3 + 4H4SiO4 + 10HCO−
3

(4)

Table 4. Distribution of hydrochemical facies by reservoir.

Reservoirs Number of
Samples HCO3-Ca (%) HCO3-Ca-Mg (%) HCO3-Na-K (%) SO4-Cl-Na-K (%) SO4-Cl-Ca-Mg (%)

Sandstone IC 155 10.97 49.68 20.00 7.10 12.26
Clayey-carbonate IC 150 14.67 65.33 10.00 2.67 7.33
CT 24 8.33 62.50 4.17 0.00 25.00
SW 18 5.56 61.11 27.78 5.56 0.00
Total 347 12.10 57.93 14.99 4.61 10.37

Note: From bottom to top (from GKS to CT) and following the direction of flow, the predominance of bicarbonate-
calcium-magnesium facies decreases (except for SAC2, where the facies is essentially dictated by petrography).

In a non-carbonate lithological context, the presence of sulfate and chloride, in sig-
nificant quantities, could be an indication of pollution and therefore probably of recent
recharge. It mainly concerns the GKS, GGQ, SAC1, SAC2 and GFG formations. These
formations are located in the water table’s recharge zone.

There is also the calcic bicarbonate sub-facies, typical of meteoric waters, which corre-
sponds to waters with low electrical conductivity and located in piezometric recharge zones.

4.2. Isotopic Composition
4.2.1. Isotopic Composition of Precipitation

The rainfall data used to interpret and construct the local meteoric line come from the
IAEA’s GNIP (Global Network of Isotopes in Precipitation).

These are five stations (Barogo, Bobo, Houndé, Nasso and Ouagadougou) whose
measurements cover the period from 1988 to 2019 (Table 5).

Table 5. Precipitation isotope data.

GNIP Stations Follow-Up Period

Barogo 1988–1989
Bobo Dioulasso 1997–2016
Houndé 2004–2005
Nasso 2004–2005
Ouagadougou 2004–2019

These data were processed to produce the local weather line shown below:

δ2H‰ = 7.57δ18O‰ + 8.33 (5)

This line closely aligns with regional meteoric weather line (7), as established by [5],
and the local weather lines suggested by [23] at Bobo station (8), [60] at Bamako station in
Mali (9), and [61] at Barogo station (10), all in proximity to the global meteoric line (11) [62].

δ2H‰ = 7.9δ18O‰ + 10.21 (6)

δ2H‰ = 8.0δ18O‰ + 10.2 (7)

δ2H‰ = 8.1δ18O‰ + 11.9 (8)

δ2H‰ = 7.7δ18O‰ + 7.8 (9)
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δ2H‰ = 8.0δ18O‰ + 10 (10)

4.2.2. Isotopic Composition of Groundwater

Figure 10 shows the general statistics for the various isotopes analyzed and the deu-
terium excess (Figure 10c) calculated for the groundwater and surface water using the
formula below:

d = δ2H‰ − 8δ18O‰ (11)
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The deuterium excess—a marker of evaporation, among other things—is below 10 on
average for all the formations. The CT shows the lowest average excess deuterium value,
with a few high values in GGQ, GFG and SAC1 and the dolerites. This can be justified
a priori by the fact that these boreholes have low static level depths, which contribute to
evaporation (less than 20 m on average). The static level depths at the CT are very high
(over 30 m).

A study of the tritium content of the groundwater compared with that of the surface
water enabled us to verify our hypotheses regarding the residence time and to propose a
map of the recharge zones. The tritium levels in groundwater range from an average of
0.01 to 8.7 TU, with an average of 1.54 TU, covering the period from 2013 to 2022 (Figure 10d,
Table S1 of Supplementary Materials).

Figure 11 shows that the majority of the groundwater samples are above the meteoric
line, indicating that this water would have infiltrated without evaporation. Such waters
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may represent either waters from a large current recharge without evaporation [5] or
ancient waters from a paleorecharge under a wetter climate [46,63].
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5. Discussion
5.1. Hydrodynamics

The general upward trend of the electrical conductivity in the direction of flow in-
dicates that mineralization takes place as water passes through the various geological
formations, and it also supports recharge at the level of the piezometric domes [23,64].
This can also be supported by the decreasing of the bicarbonate-calcium-magnesium facies
according to the flow direction.

Indeed, as the meteoric waters infiltrate the piezometric domes, they dissolve in the
soil, creating a weak acid (carbonic acid), charged with carbon dioxide (CO2) from the
atmosphere. This acid attacks the limestone (CaCO3) present in the rocks, dissolving it in
the following reaction [35,65]:

CaCO3 + H2CO3 → Ca2+ + 2HCO−
3 (12)

This dissolution of limestone releases calcium (Ca2+) and bicarbonate (HCO−
3 ) into

the water, increasing its mineralization and providing its calcium bicarbonate facies. These
meteoric waters thus impart the calcic bicarbonate facies that will evolve with the flow of
water to the outlet toward the facies, reflecting the lithology of the formations encountered.

The profile of the isotopic contents along the flow direction obtained by piezometry
reinforces this hypothesis (Figures 5 and 6). Indeed, this profile shows that the water
becomes poorer the further you move away from the piezometric dome. The isotopic
enrichment observed between 300 and 400 km is thought to be linked to the presence
of a large body of water (the Sourou dam), which is subject to evaporation and hence
enrichment. Groundwater in the vicinity of the dam is naturally affected by this enrichment
through infiltration into the water body.

For a thorough understanding of the hydrodynamics, a coupled approach to hydro-
geochemistry and hydrogeology in the unsaturated zone is required. This would enable
better characterization of the recharge mechanisms and verification of the conclusions
regarding the renewal time. Horizon-by-horizon sampling during deep drilling would
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help to establish whether a single water table or several distinct water tables are present at
the scale of the study area.

5.2. Groundwater Mineralization

The binary diagrams between a few ions, including calcium, magnesium, sulfate,
bicarbonate, sodium, and chlorine, for the three reservoirs categorized above (Figures 12–14)
combined with mineral saturation indices (Figure 15) help to clarify the processes responsi-
ble for groundwater mineralization:

• Evaporitic dissolution: In all three reservoirs, calcium and bicarbonate are generally
more abundant than sulfate (Figure 12a,c, Figure 13a,c and Figure 14a,c). However,
there are a few samples, mainly from the carbonate and sandstone-carbonate reservoirs
of the CT, which are in the equilibrium zone. This indicates that the gypsum (or anhy-
drite) dissolution process is present but less significant. This may be supported by a
general undersaturation to gypsum, with some high values observed in the formations
mentioned above due to the presence of gypsum in the SAC1 and SAC2 formations. In
terms of halite dissolution, sodium is more abundant than chlorine in the IC sandstone
and CT sandstone-carbonate reservoirs, with a few points on the equilibrium line
in the IC sandstone formations (Figures 12e and 14e). For the carbonate formations
(Figure 13e), we find roughly the same quantities on either side of the equilibrium
line, with points also located on the line. The high halite undersaturation observed
in all the formations indicates that the presence of halite is not due to the evaporitic
dissolution of halite but rather to anthropogenic input, particularly in the shallows
where water evaporation contributes to increasing sodium concentration.

• Carbonate dissolution: The diagrams Ca2+ − HCO−
3 and Mg2+ − HCO−

3 show the
contribution of carbonate dissolution (calcite, dolomite) to water mineralization. The
sandstone IC (Figure 12b,d) shows little influence of carbonate dissolution on water
mineralization, with calcium and magnesium coming more from other mechanisms
(silicate hydrolysis, cation exchange) than from carbonate dissolution. Clay-carbonate
IC (Figure 13b,d) and CT (Figure 14b,d) show a significant contribution of carbonate
dissolution to water mineralization. These findings are confirmed by the saturation
indices for dolomite and calcite; the waters in general show a slight undersaturation
of these two indices. It should be noted, however, that the clay-carbonate IC and the
CT have higher average contents than the sandstone IC.

• Cation exchange: The diagram Na±HCO−
3 shows the same trend for all three reservoir

types (Figures 12f, 13f and 14f). We note that the points are more toward the bicarbon-
ate pole and only a few toward the sodium pole, marking here the cation exchange
mechanism. This diagram shows that silicate hydrolysis remains the major process
responsible for groundwater mineralization.

All the results presented so far point to the hypothesis that mineralization is essentially
caused by the hydrolysis of silicates, followed by the dissolution of carbonates. To obtain
better insight into the role of these two processes in the groundwater composition, we
have used the binary diagram

[
Ca2+ + Mg2+

]
vs.

[
HCO−

3 + SO2−
4

]
(Figure 16). It shows

the following:

• In the sandstone aquifer (IC), most water samples plot close to and below the equilib-

rium line, tending toward the
[

HCO∓
3 SO2−

4

]
pole side. This suggests silicate hydroly-

sis as the dominant process governing their chemistry. However, the presence of a few
samples above the line indicates that carbonate dissolution can also play a secondary
role in influencing the water composition of these specific samples.

• In the case of the clay-carbonate IC, the number of samples on either side of the
equilibrium line is roughly the same, indicating that silicate hydrolysis and carbonate
dissolution are the two major processes controlling water mineralization.
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• For the CT, most water samples are located near and above the equilibrium line on
the

[
Ca2+ + Mg2+]. This indicates that dissolution of carbonate rocks is the main
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Figure 16. Binary diagram
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vs.
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HCO−

3 + SO2−
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]
for the IC sandstone reservoir

(a), IC clay-carbonate reservoir (b) and Continental Terminal reservoir (c).

For all three reservoirs, and mainly for the clay-carbonate CI and the CT, there are
a few samples with excess calcium and magnesium, which may be the result of other
processes, such as cation exchange reactions.

5.3. Groundwater Renewal

A study of the ranges and isotopic contents formation by formation (Figure 10a,b),
as well as the average values (Table 6) of the groundwater (−29.21‰ for deuterium and
−4.66‰ for oxygen-18) compared with rainwater (−24.82‰ for deuterium and −4.30‰
for oxygen-18), informs us that the groundwater isotopic contents are therefore within
the range of the rainfall contents and slightly more depleted than rainwater and surface
water. Given the current climatic conditions, the hypothesis of current infiltration without
evaporation must be rejected. Rather, it would be water infiltrated at a time when the
climatic conditions were more favorable; in this case, a wetter and less hot climate than at
present in the Sahel (around 10–12 k years BP according to [10] or 4–4.5 k years according
to [23]). Surface water is naturally more enriched than rainwater due to evaporation, and it
lines up along a straight line with a slope of 4.67 (Figure 11), which is the evaporation line
close to that obtained by [5] for the Malian and Burkinabe parts of the Taoudéni Basin.

Table 6. Stable isotope content range.

Statistics No. of Samples Average 1 Minimum Maximum

Rainwater

2H (‰ vs. SMOW) 72 −24.82 −68.74 9.5
18O (‰ vs. SMOW) 72.00 −4.30 −9.63 0.81
d (‰ vs. SMOW)
3H (T.U)

72.00
65.00

9.65
3.58

0.08
1.95

9.13
5.37

Surface water

2H (‰ vs. SMOW) 17.00 −22.70 −31.46 −0.81
18O (‰ vs. SMOW) 17.00 −3.53 −5.07 1.34
d (‰ vs. SMOW) 17.00 5.51 −11.53 14.06

Groundwater

2H (‰ vs. SMOW) 133.00 −29.21 −39.30 −9.90
18O (‰ vs. SMOW) 133.00 −4.66 −6.48 −1.47
d (‰ vs. SMOW)
3H (T.U)

133.00
71.00

8.11
0.01

−4.93
1.54

13.84
8.7

Note: 1 Average rainwater values are calculated by weighting the monthly rainfall over the measurement period.

A study of the relationship between oxygen-18 and deuterium for each lithology
sampled (Figure 17) provides a better understanding of the conceptual flow model in the
study area. This shows that, for the deepest formations, there are a few points above the
meteoric line (GKS, GFG, GGK and SAC1) and many points below the meteoric line that are
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a little closer to it. These points correspond, respectively, to current infiltrated water (with
a deuterium excess of between 10 and 13) and water mixed with old water as confirmed by
the profile of isotopic contents and electrical conductivity along the flow direction obtained
by piezometry (Figures 5 and 6).
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In fact, these four formations are found in the water table’s recharge area. For the other,
more recent formations, the points move further and further away from the meteoric line,
indicating that these are waters originating from the paleorecharge. The mixing of present-
day and ancient water could also be explained by the presence of faults in this zone, which
would help to establish hydraulic continuity between the surface and the underground.

There are two main categories of water:

• Water below the global meteoric line: This is deep water from a paleorecharge. They
account for 80% of samples.

• Water located above the meteoric line: This water is mainly located at the level of
the piezometric dome and is mostly superficial. This is water from current recharges,
representing 20% of samples.

Between the two types of water are those resulting from the mixing of old and
new water.

Similar results have been obtained by [66] for the Karoo Basin in South Africa, by [67]
for the Gafsa Basin in Tunisia and by [68] for the North American Sedimentary Basin.
Previous work by [1] using carbon-14 and tritium dating found relatively very high ages
for the waters of this basin.

Concerning tritium, current levels in the environment make it possible to distinguish
between ancient and recent waters according to the following intervals [22]:

• Contains less than 0.30 TU: These are ancient waters from deep aquifers.
• Contents between 0.30 and 3 TU: These are waters resulting from a mixture of old and

young waters.
• Content over 3 TU: This refers to water from current recharge.

Indeed, work by the French nuclear safety authority (Autorité de Sûreté Nucléaire)
indicates that the disappearance of tritium of thermonuclear origin began in the 2000s and
that by 2007 only around 7%, or 40 kg, of the 560 kg of tritium released into the environment
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during nuclear testing in the 1950s and 1960s remained [26,69]. This justifies the above
ranges, based on recent work by [22]:

So, for the study area, the results are as follows:

• Old water accounts for 12% of the samples collected.
• Mixed water accounts for 74% of the samples collected.
• And recent waters account for 14% of the samples collected.

Comparing these results with those from stable isotopes, it appears that a significant
proportion of waters previously identified as ancient by stable isotopes are now categorized
as mixed waters when tritium is used. This disparity seems to stem from the decrease in
the tritium content in the environment, making the detection of old water more delicate.
Spatialization of these results yields a map of the relative age of the groundwater for the
period 2013 to 2022 (Figure 18).
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This map illustrates the conclusions drawn from the natural isotope data, showing
that we are dealing with predominantly old water with a contribution from recent recharge.
Recent recharge appears to be more associated with localized recharge mechanisms, indi-
cating that diffuse recharge is less significant [70,71]. This justifies the overall low renewal
rate obtained. These results differ from those obtained by [5] but are more in line with
those of [1]. The difference with [5] stems from the latter’s failure to take into account the
evolving nature of the tritium thresholds in the atmosphere. In fact, he used a threshold of
1 TU as the detection limit for ancient waters, in reference to [63], whereas this threshold has
dropped significantly (0.3 TU) according to recent work by [22] based on North America’s
data or 0.5 TU in Korea according to [72]. It is expected to be lower for the African region
due to the hemispheric difference [69].

Other work carried out in a portion of the study area (the Kou Basin) indicates a
decrease in the flow of springs [2]. This decline is linked to the large-scale extractions carried
out by the national service in charge of water supply and sanitation, the “ONEA” (“Office
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National de l’Eau et Assainissement”), on the one hand, but also to low recharge in general.
Although rainfall records show an upward trend, temperatures and evapotranspiration
are also following the same trend, which does not necessarily contribute to a remarkable
increase in recharge. Work on the diagnosis of Burkina’s water resources conducted by the
World Bank in 2017 found a renewal rate of 2% for the study area [3].

These results raise questions about the management of this resource. If we continue to
exploit this water, which renews itself very slowly, we are heading for the water table to dry
up. Possible solutions should consider, among other things, the integrated management of
water resources and the monitoring and surveillance of groundwater quantity and quality.
Quality must also be considered due to recent recharge, even if it is minimal. This recharge
implies anthropogenic inputs highlighted in this work, as evidenced by localized pollution
in formations such as “SAC1”, “SAC2”, “GFR”, “GGQ”, and “GKS”. Therefore, it is vital to
acknowledge growing concerns about human impacts on groundwater. The highlighted
pollution incidents underscore the need for comprehensive groundwater management.
Further investigations, including nitrogen-15 isotope analysis, mapping of vulnerability and
susceptibility to pollution, and solute transport modeling, are crucial for understanding the
contamination sources, aiding in identifying the contamination hotspots and establishing
protection zones for sustainable groundwater use [7,73,74].

Furthermore, it has been observed that tritium’s effectiveness as a tracer for old
groundwater decreases due to its natural atmospheric decay and the low level of thermonu-
clear tritium in current precipitation [26,69]. Considering tritium’s 12.3-year half-life, a
significant portion of the rainwater samples collected in this study fall within the range of
mixed or old groundwater. This is because some samples date back to 2010, with tritium
levels below 5.37 TU (Table 6), indicating current tritium levels of less than 2.5 TU due to ra-
dioactive decay, which is not the case here. This presents a challenge for hydrologists using
this technique to date old groundwater. The reduced sensitivity limits the detection and
quantification of tritium in older groundwater. Despite these limitations, tritium remains
useful for hydrogeological investigations, especially when combined with other dating
techniques. For this study, further analysis of individual samples, considering lithology
and comparing tritium with oxygen-18, could provide a more detailed understanding of
the relative age of the groundwater [21,75]. Ongoing research into methods like noble gas
isotopes and radiocarbon dating offers promising prospects [76–78].

5.4. Aquifer’s Discrimination

All the results obtained above pave the way for an initial attempt to distinguish
the waters of the study area basin into several aquifers. Based solely on the lithology,
hydrogeochemistry and isotopy, the waters of the Taoudéni Basin can be grouped into six
aquifers, presented from the top to the bottom in Table 7:

Table 7. Discrimination of the Taoudéni Basin aquifers.

Proposed Aquifer’s (Water Table) Name Lithology

CT CT

Upper sandstone IC GFB
SQ

SAC2 SAC2

Middle sandstone IC GFR

SAC1 SAC1

Lower sandstone IC

GGQ
GFG
GKS
GI
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This hydrogeochemical discrimination differs from that established by [79], which
relied on geological and hydrogeological data from the Kou Basin, a portion of the study
area (1823 km2 of 42,000 km2). According to this study, the formations cropping out in this
area, including GKS, GFG, GGQ, and SAC1, reveal the presence of two distinct aquifers:
the GKS aquifer and the GFG-GGQ-SAC1 aquifer. These results need to be supplemented
by other tools, such as hydraulic test data, geophysical tools, and in particular, seismic
methods, to verify this hypothesis and deepen our understanding of the hydrodynamics.
In particular, the use of seismic methods will enable us to highlight and more precisely
delineate the various aquifers present in the study area.

6. Conclusions

In this study, hydrogeochemical and isotopic tools were used to understand the
groundwater flow patterns and mineralization processes in Burkina Faso’s Taoudéni Basin.

In terms of the mineralization mechanisms, the facies study was complemented by
binary diagrams and saturation indices. Silicate hydrolysis, carbonate dissolution, and
anthropogenic input were identified as major contributors, with silicate hydrolysis being
predominant due to the presence of silicate minerals. Carbonate dissolution is significant in
clay-carbonate reservoirs. The anthropogenic influence, marked by sulfated chloride facies,
indicates current recharge, with minor roles for evaporitic dissolution and cation exchange.

Regarding the hydrodynamics, examination of the physico-chemical parameters, with
a particular emphasis on the spatialization of the electrical conductivity, revealed a mineral-
ization trend consistent with the defined flow direction. This conclusion is also supported
by the spatial evolution of the hydrochemical facies and stable isotope content. In addition,
the conclusions drawn from hydrochemical facies and binary diagrams enabled us to
differentiate the waters into several distinct aquifers.

Concerning the groundwater renewal, stable isotope statistics suggested recharge at a
time less prone to evaporation, probably during a wetter, cooler Sahel climate (over 4.5 kyr
B.P.). Tritium content analysis confirmed the presence of ancient, mixed waters in the study
area. The analysis of the deuterium–oxygen 18 relationship and the spatial mapping of
stable isotopes in relation to piezometry have attempted to discriminate aquifers on the one
hand and to validate the direction of flow on the other. In fact, depending on the direction
of flow and from top to bottom according to the lithological scale, the water flows further
and further below the meteoric line, which means that the age of the water increases with
the depth and direction of the flow. This study also raises questions about the relevance of
using tritium to detect old water, given its decay in the atmosphere.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/w16131922/s1, Table S1: Isotopic content of groundwater in the
study area.
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