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Abstract: There is a growing need for proactive planning for natural hazards in a changing climate.
Computational modeling of climate hazards provides an opportunity to inform planning, particularly
in areas approaching ecosystem state changes, such as Interior Alaska, where future hazards are
expected to differ significantly from historical events in frequency and severity. This paper considers
improved modeling approaches from a physical process perspective and contextualizes the results
within the complexities and limitations of hazard planning efforts and management concerns. There-
fore, the aim is not only to improve the understanding of potential climate impacts on streamflow
within this region but also to further explore the steps needed to evaluate local-scale hazards from
global drivers and the potential challenges that may be present. This study used dynamically down-
scaled climate forcing data from ERA-Interim reanalysis datasets and projected climate scenarios
from two General Circulation Models under a single Representative Concentration Pathway (RCP 8.5)
to simulate an observational gage-calibrated WRF-Hydro model to assess shifts in streamflow and
flooding potential in three Interior Alaska rivers over a historical period (2008–2017) and two future
periods (2038–2047 and 2068–2077). Outputs were assessed for seasonality, streamflow, extreme
events, and the comparison between existing flood control infrastructure in the region. The results
indicate that streamflow in this region is likely to experience increases in seasonal length and baseflow,
while the potential for extreme events and variable short-term streamflow behavior is likely to see
greater uncertainty, based on the divergence between the models.

Keywords: climate change; extreme events; risk modeling; dynamical downscaling; natural hazards;
climate adaptation

1. Introduction

There is a growing need for proactive approaches to planning for natural hazards in a
changing climate. River systems in Interior Alaska are currently undergoing significant
changes, which have the potential to amplify in a changing climate in the future. Warming
temperatures, combined with increased precipitation, have been shown to increase per-
mafrost thaw within the region [1,2] and could cause rapid subsurface warming and the
decline of the region’s near-surface permafrost [3,4]. Permafrost-rich environments experi-
ence a complex relationship with subsurface hydrology in this region, which represents a
significant challenge for local communities in terms of mitigating hazards associated with
the rapidly changing climate. Understanding how these systems are likely to be altered in
the future is critical for river and ecosystem management, risk identification, and long-term
planning for the built environment. There is a significant gap in our knowledge of how we
connect observed and projected changes in the rapidly changing environment with rational
mitigation efforts. On the technical and computational side, in areas lacking significant
observational records, historical calibration is challenging; therefore, confidence in future
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projected changes may reduce the ability to confidently engage in no-regret adaptation or
mitigation measures.

Approaches to assessing peak streamflow, particularly in remote locations, may in-
volve a wide range of methods including modeling, observed discharge measurements,
and remote sensing [5–7]. Prior studies indicate that spring snowmelt streamflow in In-
terior Alaska rivers has declined in recent decades, particularly in snowmelt-dominated
systems, although the minimum baseflow has increased in winter months [8–10]. Increased
minimum baseflow has been closely linked with warming temperatures in the region,
late-fall precipitation increases, and altered season lengths, leading to the deepening of the
active layer and increased groundwater flow [11,12]. Studies also indicate that the region is
expected to continue to experience increases in precipitation in the future [13], leading to
greater uncertainty in the system with the future projected climate. Since most planning
efforts are based on historical occurrences, significant ecosystem state changes can present
unexpected challenges, including the amplification of existing hazards or the introduction
of new hazards. The intent of this paper serves two primary purposes: (1) to enhance
and improve model simulation approaches from a physical process perspective and (2) to
contextualize modeling results within the complexities and limitations of hazard planning
efforts. Based on this, the goal is to provide an important forward-looking perspective on
predicting and understanding potential shifts in streamflow behavior and how these shifts
need to be mitigated.

In this study, three Interior Alaska river systems were simulated using the WRF-
Hydro modeling environment [14] to assess the potential future trajectories of mean and
extreme streamflow using downscaled data from multiple climate models for a single future
emissions scenario. These models were selected as part of a previous assessment of General
Circulation Model (GCM) performance within Arctic Alaska and Canada [15]. As this work
was primarily exploratory in nature, specific predictions were not made as to the outcomes.
However, the expectations were that seasonality would continue to grow in the future, based
on the aforementioned prior work in the region. Based on the results of these modeling
efforts, the impacts were assessed in terms of policy and decision-making uncertainty and
the limitations that may be associated with high uncertainty with regard to long-term climate
adaptation measures. Therefore, in addition to improving the understanding of potential
climate impacts on streamflow within this region, our second goal of this paper is not only
to improve the understanding of potential climate impacts on streamflow within this region
but also to characterize the steps needed to explore local scale hazards from global model
outputs and the potential challenges associated with those steps.

2. Background
2.1. Study Area

Our study area was situated in Interior Alaska and included the Chena (5740 km2),
Salcha (5350 km2), and Goodpaster (1770 km2) River basins (see Figure 1) [10,16]. These
three basins flow into the Tanana River (66,205 km2) [10], a major tributary of the Yukon
River system (853,300 km2), which eventually flows into the Yukon–Kuskokwim River
Delta and exits into the Bering Sea [17]. All three basins are currently in areas with a high
presence of discontinuous permafrost, where thawing has the potential to alter groundwater
flow [17]. Local ecosystems consist primarily of subarctic boreal forests with coniferous-
dominant vegetation [18], which are undergoing a shift toward a deciduous-dominated
area, driven by warming temperatures and wildfire activity [19].

The climate is categorized as subarctic, with annual temperatures in the region ranging
from very cold, dropping below −40 ◦F (−40 ◦C) in wintertime, to very warm, often
exceeding 80 ◦F (26 ◦C) in summertime [20]. Temperatures have trended up in the last few
decades [21] and are expected to continue to rise in the future, with both minimum and
maximum temperatures shifting upward [13]. Historically, precipitation in the region has
typically been low, with annual means in low-lying areas below 300 mm in the Fairbanks
area [17], while areas at higher elevations within the study area may exceed 700 mm of
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accumulation annually [22]. The 2020 census indicates that approximately 100,000 people
live in the study area, with the vast majority located in the Chena River basin downstream
of and protected by the Chena Flood Control Project in and around Fairbanks and North
Pole, Alaska (see Figure 1), with as many as 85,000 people at risk from a catastrophic failure
of control measures [23,24].
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Figure 1. Map showing the three primary study areas. Chena (top left), Salcha (middle), and
Goodpaster (bottom right) River basins. Gage locations are shown with yellow dots and their gage
ID. Communities within the region are indicated by white dots. The orange line, near North Pole,
Alaska, represents the extent of the Moose Creek Dam and Chena Flood Control project, including
the reservoir and spillway into the Tanana River. The original Alaska IFSAR 5 m digital terrain model
(DTM) is shown as a base layer in a green-to-blue gradient [25]. The inset map shows the state of
Alaska, with the location of the study areas shown within a black rectangle.

2.2. Flood Control and Flood Events

The Chena and Salcha Rivers have significant influences on the nearby communities
of Fairbanks, North Pole, and Salcha, Alaska. These river basins each have a history of
generating flooding events throughout the region. Notably, the Fairbanks area was the
location of an extreme flooding event in August of 1967, which resulted in USD 85 million
in damages at the time [26], or over USD 775 million adjusted for inflation (calculated in
August 2023) [27]. During the 1967 event, approximately 95 percent of the city of Fairbanks
was flooded, with some areas being inundated with nearly 5 feet of water [26]. During the
1967 event, some streamflow gages in the region were completely destroyed, limiting the
ability to collect data related to the flood [26]. This event prompted substantial changes
to the management of local river flows, directly leading to the construction of the Chena
Flood Control Project and the Moose Creek Dam, which was intended to divert water
during high-flow events [28]. Shortly after the completion of the flood control project,
increased instrumentation and monitoring efforts were established to assess the operational
capabilities and impacts of the system on the local environment [29].
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Since its installation in 1979 and first activation in 1981 [30], the Chena Flood Control
Project has been activated 30 times (as of 2021) to prevent downstream flooding impacts [31].
The project is designed to manage peak streamflow such that downstream flow is limited
to approximately 12,000 ft3/s (340 m3/s) through Fairbanks, based on its assessed channel
capacity [32]. If the system reaches this capacity, the floodgates at the dam are lowered to
divert excess flow into a connected reservoir. In an event where this reservoir capacity is
exceeded, overflow is diverted into the Tanana River through a spillway past the Tanana
Levee [24]. As of 2024, the flood control project is undergoing modifications and upgrades
as part of a U.S. Army Corps of Engineers project to improve streamflow management
and reinforce the embankment [33]. These upgrades are expected to be completed in
2026 [34]. This effort also reduces the potential for seepage under the main levee through
the inclusion of deeper groundwater barriers [24,33]. Activation of the flood control system
also impacts sediment accretion upstream of the dam and reduces nutrients downstream,
which presents a series of challenges for flood diversion and wildlife within the area. While
this flood control project primarily affects only one of the three study basins, it protects
most of the population in the study area and therefore has a significant impact on human
safety and the overall protection of the built environment of the region.

Flooding events in the Chena River basin typically fall under two primary patterns:
spring snowmelt and intense summer rains [30]. Historically, the majority of these ap-
pear as summertime rain events, primarily occurring in June, July, and August, during
short-duration, intense precipitation events [30,35]. The 1967 flood, for example, generated
nearly 10 inches of precipitation within a 12-day period in August [26], approaching the
total annual average for the area. The duration of the activation of the flood control project
has varied substantially across events, with the longest event taking place in 1992 spanning
19 days and resulting in the only time excess flow poured into the Tanana via the spill-
way [36]. This event was unusual as it combined a heavy winter snowpack, late spring
snowmelt, and intense rains.

Flooding events in this region can also be caused by ice-jams. Ice-jam occurrence
is often a mix of hydro-meteorological conditions combined with stream morphology
characteristics, such as sinuosity [37]. For instance, in 2020, the Chena Flood Control Project
was activated due to a spring ice-jam event, which is seen as a semi-unique event in the
history of the project, only having happened one other time, in 2002 [38]. However, in
the Salcha River basin, the history of ice-jam flooding is more prevalent, with a number
of events occurring in recent decades during spring breakup [39]. Streamflow rates in
the Salcha River tend to peak at higher levels, despite having a similar overall extent as
the Chena basin system (5740 km2 for the Salcha basin versus 5350 km2 for the Chena
basin), potentially leading to more ice-jam effects [10]. During the 1967 floods, the Salcha
River experienced intense flooding events, and while preventative removal of the gage
at the time limited data gathering, manual measurements were later used to generate
peak flow estimates of nearly 97,000 ft3/s (~2750 m3/s) [26]. Flooding in 2008 near Salcha
was recorded as the most significant event since the 1967 event, with over 100 homes
experiencing flooding [40]. Since 2012, as part of a railroad expansion project, an installed
levee has helped to reduce risks associated with spring melt and river breakup events in
Salcha [41,42].

While the Goodpaster River basin is significantly smaller than either the Chena or
Salcha River basins, it has a higher proportion of its catchment area located above 600 m
in elevation compared to the other study basins [16]. With no major settlements along the
Goodpaster River, floods have a less direct impact on populations, but its inclusion offers
an additional unmanaged river system for comparative analysis.

2.3. Streamflow Gages

Within the study area, the U.S. Geological Service (USGS) maintains multiple official
streamflow gages, with six located in the Chena River basin, one in the Salcha River basin,
and one in the Goodpaster River basin [43]. For consistency, the use of the USGS preferred
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spelling of gage, rather than gauge, is used within this paper [44]. The placement of these
gages and their record lengths played an important role in the calibration and analysis
potential within this study.

The record length of most existing gages in the Chena River basin is limited when it
comes to long-term historical as well as pre-dammed flow. The streamflow gage with the
longest record is located downstream of the Chena Flood Control Project, near Fairbanks
(15514000, Figure 1). However, since the completion of the flood control project in 1979 [30],
the downstream record reflects a managed environment with the goal of preventing or
minimizing flooding. Thus, any study of peak streamflow events must be compared to
unmanaged areas along the river systems.

The nearest upriver gage to the flood control project, Chena River Below Hunts Creek
(15493400) [45], was installed in 1989 and has operated nearly continuously since. Peak
flow measurements from this gage align closely with peak flows from the upriver gage
at Chena River near Two Rivers (15493000), with Kling-Gupta Efficiency (KGE) scores
of 0.84, and it would be reasonable to assume within the same basin system that flow
patterns downstream would similarly be reflected under a natural or unmanaged flow
environment. The focus on the Chena River Below Hunts Creek gage (15493400) allowed
for calibration as the furthest downstream point that is not under the active management of
streamflow, providing closer comparisons to natural flow. Additional gages in the Salcha
and Goodpaster River basins were used as secondary analysis sites, despite having a shorter
observational record.

2.4. Discontinuous and Sporadic Permafrost

Permafrost plays a significant role in ground hydrology, acting as both a barrier
to downward infiltration, as well as a cause of the rapid degradation or alteration of
previously existing groundwater and surface water patterns. Wildfires, warming, and
heavy precipitation events can modify permafrost extent and features, resulting in changes
to subsurface flow dynamics that may generate permanent changes to existing streamflow
patterns and local ecosystems [46]. In some cases, permafrost degradation can occur rapidly,
through short-term extreme events [47]. In Interior Alaska, there is a significant presence
of sporadic and discontinuous permafrost [48], which presents additional interactions for
streamflow due to its susceptibility to rapid thaw events, altering subsurface hydrology [1].
Warming temperatures, combined with greater snow cover, have already been attributed to
increases in active layer thickness in the region and increases in permafrost temperatures in
the last few decades [49]. Most recently, between 2017 and 2019, there have been numerous
examples of sites within the region where the permafrost has not completely refrozen in
winter, generating suprapermafrost taliks, or patches of ground that are unfrozen but sit
above the permafrost and below the active layer [49]. In the future, permafrost thaw models
indicate a substantial decline in sporadic and discontinuous permafrost within Interior
Alaska, which is likely to impact seasonal runoff patterns, as soil storage capabilities and
ground connectivity increase due to a reduction in ground ice [4].

2.5. Hazard Assessment

As with many regions, the rivers of Interior Alaska are an important part of the natural
ecosystem and play an integral role in the built environment of populations living within
proximity to riverine ecosystems. This role is deeply connected to flooding events, which
act as potential hazards to the population, and infrastructure (e.g., roads, airports, houses).
Traditionally, flood hazards have often been assessed based on a recurrence interval (e.g.,
1 in 100 years, 1 in 10 years, etc.), sometimes referred to as a return period. These intervals
are normally derived from known historical occurrences and sometimes an extrapolated
probability distribution based on those occurrences and may be represented as something
like Tr = 1/P, where Tr represents a return period and P represents the annual exceedance
probability at a certain threshold [50]. Inverting this approach offers an annual exceedance
probability (AEP), which provides the percent chance of the event occurring annually
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(e.g., 1 percent per year, 10 percent per year, etc.) [51]. The 1 percent AEP has been used
by the United States National Flood Insurance Program since the 1960s as the basis for
the insurance program [52]. These thresholds help to determine insurance rates for those
living within flood-prone areas but may lack nuance when it comes to the variability of
specific events, which vary in intensity, duration, and frequency and may have high spatial
variability [53].

The approach to defining flood hazards focuses on an assumption of stationarity
in flood recurrence causes. However, it is increasingly being recognized that the non-
stationarity of flood recurrence and other hazards may make it difficult to use this approach
in the future as system state changes lead to entirely new hazard regimes [54]. In areas
where climate change is expected to produce events that significantly depart from known
event probabilities, it becomes important to consider extreme events under a range of
possible future conditions to better understand the ability of existing systems to withstand
those extremes. Emerging extreme events, which may not have been experienced in the
past within a given region, present additional challenges for local planners and residents,
as this introduces new uncertainties and may require significant study to proactively
mitigate associated hazards [55]. However, perceptions of risk are often counterintuitive,
as indicated by recent surveys highlighting that those living in high-flood-risk areas may
hold lower levels of risk perception surrounding those events [56]. Perception of risk is
also often influenced by multiple factors, with awareness of risk being only one of many
components, while preparedness against a particular risk and levels of worry or stress
about those particular risks also influence their prioritization [57].

3. Methods

The WRF-Hydro model, which offers an open-source, flexible, and extensible modeling
architecture, was selected as the primary modeling tool for simulating streamflow in this
study [58,59]. WRF-Hydro includes a land-surface module, overland routing, and channel
routing and can be coupled directly with WRF atmospheric models or run in standalone
mode, which was the approach used in this study. WRF-Hydro was selected due to its
basis as part of the National Water Model [60] and to act as a testbed for Interior Alaska
basins. While WRF-Hydro has seen limited applications in Alaska, it was adapted for
the region during the study period and is now in limited operational use in some regions
of the state [61]. While WRF-Hydro has been widely tested in the contiguous 48 states,
differences in Alaskan ecosystems, including subsurface dynamics, seasonal cycles, and
local infrastructure, required modifications to the study region. WRF-Hydro has a very
detailed soil scheme, explicitly solving Richard’s equation for the propagation of moisture,
with hydraulic conductivity being a function of soil properties (e.g., soil can be rocky with
a lot of voids or very dense and uniform in the case of clay) and temperature (hydraulic
conductivity values are significantly reduced when soil is frozen), which makes it suitable
for cold environments.

Substantial experimentation, both in the initialization and setup of the model, was
required to correctly account for permafrost through frozen ground modules. Additional
effort was also required to identify and develop datasets that would correctly represent
regional hydrologic behavior, particularly in areas with active flood control structures, due
to their influence on rerouting streamflow. Input datasets required to run the WRF-Hydro
model included topography and climate-forcing data.

The WRF model was used to dynamically downscale the climate data used to force
and calibrate WRF-Hydro, following similar prior work at 20 km [62], taking reanalysis
and GCM data from coarse scales to produce high-resolution (1 km) air temperature at 2 m,
precipitation, specific humidity, wind, radiative forcing, and surface pressure, at hourly time
steps. To adjust for the overrepresentation of precipitation in the dynamically downscaled
WRF model outputs, future climate forcings were then bias-corrected at hourly time steps
using Quantile Delta Mapping (QDM) approaches, which allows for the preservation
of relative changes [63]. The calibration of the model focused on a comparison of the
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European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim data to
key streamflow gage locations and overlapping periods between reanalysis and projected
data [64]. Analysis of WRF-Hydro model output data was performed using Python-based
geospatial and analysis libraries, leveraging matplotlib [65], numpy [66], pandas [67], and
xarray [68] to summarize and visualize model outputs.

3.1. Model Setup

WRF-Hydro simulations were developed using version 5.1.1 of the model [14]. Sim-
ulations were run using Weather Research and Forecasting (WRF) [69], downscaled data
for the ERA-Interim reanalysis dataset [64], and two climate models selected from the
Intergovernmental Panel for Climate Change (IPCC) Coupled Model Intercomparison
Project (CMIP) phase 5 [70], including the Community Climate System Model (CCSM)
version 4 from the National Center for Atmospheric Research (NCAR) [71] and Climate
Model version 3 (CM3) from the Geophysical Fluid Dynamics Laboratory (GFDL) [72].
Both models were run using their outputs from Representative Concentration Pathway
(RCP) 8.5 [73]. These two models were selected based on prior work showing CCSM and
GFDL ranked first and third, respectively, among 21 CMIP5 GCMs in the simulation of
the seasonal cycles of temperature, precipitation, and sea level pressure over Alaska [15].
RCP8.5 was selected as the highest forcing scenario with the greatest degree of warming
in Alaska over lower scenarios such as RCP4.5 [74] and because observed carbon dioxide
emissions have continued to best track RCP8.5 [75]. Both CCSM and GFDL were run for
three time periods (2008–2017, 2038–2047, and 2068–2077), while ERA-Interim was run
for 2001–2018, including the overlap period between the two GCMs. Each run used the
parameterized landscape setup from the output of the calibration results as the starting
point, described later in this section, offering direct comparisons in time spans between
reanalysis and modeled datasets. Simulations were performed using overland flow and
gridded diffusive wave routing, at an hourly time step, for the entire simulation period,
for each of the six periods plus the historical periods. As discussed regarding the domain
setup, model resolution for the reach characteristics was set at 250 m, while WRF forcing
data were at a resolution of 1 km.

3.2. Domain Setup

As portions of the study domain represent managed waterways, it was necessary to
develop a domain that properly reflected flood control structures in the area (levees, dams,
etc.) that may alter the flow of water differently than a natural flow regime. Thus, we
adjusted the flow and routing layers using the WRF-Hydro preprocessing tools [76]. Early
efforts, using default digital elevation model (DEM) layers, led to overflow between the
two basin systems. This occurred primarily due to coarse DEMs (90 m) failing to effectively
capture the widths of those flood control structures, resulting in unexpected overflow
events between basins. This result also offered an unexpected highlight of the importance
of the existing control structures, and the potential for spillover should those systems fail
and natural flow be restored.

Routing paths and basin extents were generated programmatically using the WRF-
Hydro pre-processing tools for the National Center for Atmospheric Research (NCAR) [76],
with the Alaska IFSAR dataset using the digital terrain model (DTM) acting as the primary
DEM layer for the domain, which covered the entire study domain at a 5 m resolution [25].
The DTM was chosen to best represent the direct flow surface for routing, which largely
excluded the heights of vegetation, which could inadvertently affect routing. IFSAR was
then upscaled to 250 m for computational efficiency during simulations. Different minimum
basin stream size values were tested, and a final value of 100 cells was used in the routing
to identify streams to strike a balance between accuracy and computational efficiency.

The total area of the domain was established to include three main basin systems:
the Chena, Goodpaster, and Salcha (see Figure 1). The primary comparative locations
for forecast points were identified as USGS gage 15493400 (Chena, below Hunts Creek),
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15484000 (Salcha, near Salchaket), and 15477740 (Goodpaster, near Big Delta). These
locations represent gaged locations for each basin that are not subject to flow restrictions
from flood control measures, allowing for an analysis of natural flow regimes. Lakes and
reservoirs were not included as part of this work, as the primary emphasis was on extreme
events and scouring that occurs during high flow. However, the resolution of the DTM can
support these efforts in the future.

For each actively maintained USGS gage location, however, a forecast point was
identified within the routing in order to provide analyses and comparisons. In addition
to observation sites, an extra forecast point was added to each basin to gather the total
outflow from each of the basins. Manual correction of gage locations was applied in cases
where gages were not perfectly aligned with identified reach segments within the model to
align forecast points with the nearest available gage reach segment.

3.3. Forcing Data

The forcing data in this set of simulations were produced as part of a larger project
focused on the modeling of Interior Alaska river systems in order to identify implications
for ecosystem management and impacts on fish populations within the study domain [77].
As high-resolution forcing data for the study area were previously unavailable, the devel-
opment of these datasets was necessary. Historical and future forcing data were developed
through dynamical downscaling within WRF of the ERA-Interim historical reanalysis
dataset and projected climate data for RCP 8.5 of the GFDL and CCSM models.

The dynamical downscaling approach applied in this study was based on work
previously performed for statewide Alaska downscaling efforts [62], and existing tools
and expertise were leveraged to produce a 1 km resolution product centered on the study
region, based on the bounding box visible in Figure 1. The new 1 km downscaling product
followed much of the WRF physics options outlined in Bieniek et al. [62], which consisted
of the RRTM radiation scheme, Mellor–Yamada–Janjic planetary boundary layer scheme,
Monin–Obukhov surface layer scheme, and Noah land surface model. A key difference
was that there was no cumulus scheme used as the 1 km spatial resolution was convective
permitting, and the Goddard cloud microphysics scheme was employed after visually
comparing the precipitation outputs with historical radar observations for a summer test
period. Testing using a nested domain revealed that the primary impact on the downscaled
outputs was primarily on the spatial distribution of summer precipitation, with minimal
differences in the winter. For this study, a single 1 km resolution domain was used to limit
the computational requirements of the downscaling.

The downscaled WRF runs were conducted for 54 h periods, which included a 6 h
spin-up that was discarded, producing successive 2-day runs spanning each simulation
period. Snow depth from the end of each prior 2-day simulation was used to initialize
the next simulation period to provide a temporally consistent, high-resolution snowpack.
Post-downscaling, WRF outputs were adjusted to align with the WRF-Hydro model in-
put requirements, such that the hourly accumulation of precipitation was converted to
precipitation rates in mm/s.

3.4. Bias-Correction

Initially, uncorrected simulation runs of the future projected models (CCSM and
GFDL) had significant precipitation biases, which resulted in a high number of extreme
events over the observed period. These issues appeared to originate within the dynamically
downscaled outputs, inherited from the GCMs and ERA-Interim data, indicating that all
of these datasets produced higher rates of precipitation in the region, although to varying
degrees, when compared to PRISM precipitation baseline data [78], as seen in Figure 2.
This uncorrected set of model runs produced both historical and future simulations that far
exceeded historical flow rates, making it challenging to properly assess change over time.
However, analyses of the high precipitation bias in these models aligned with previous
work assessing coarser downscaling efforts in the region, indicating that both CCSM and
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GFDL projections appear to produce wetter than expected conditions over the observed
period within the study region [62]. Based on this early evaluation, it was determined that
bias-correction approaches would be necessary to accurately represent precipitation for the
study region and be able to identify decadal shifts more clearly.
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Figure 2. Multi-model precipitation comparison. Three-month groupings of seasonal precipitation
over the study area, with PRISM as the baseline, showing dynamically downscaled ERA-Interim and
RCP 8.5 for GFDL and CCSM.

For the needs of this study, the xclim package, which provides numerous built-in
bias-correction and indicator tools, was used to bias-correct the downscaled datasets for
GCMs, both for historical and future time periods [79]. QDM was selected as the training
and adjustment method for bias-correction in order to better preserve extreme events within
future datasets as it has been shown to increase the ability to represent and maintain peak
flow events and has shown greater preservation of relative changes, particularly when
correcting precipitation [63].

Precipitation data were bias-corrected through multiplicative scaling to retain the
intermittent nature of precipitation in the region, while temperature data were corrected
via an additive application of deltas. Data were corrected using a monthly grouping, with
2008–2017 ERA-Interim data used for the reference dataset and the 2008–2017 period used
as the historical period for each GCM. Biases were calculated using the full month and
then applied to temperature and precipitation within the modeled time periods (2008–2017,
2038–2047, and 2068–2077). Attempts were made to use larger quantile sets (50 instead of
the default 20), but this resulted in amplified extremes within the observed overlap period
and was discontinued.
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Comparisons between pre- and post-bias-corrected datasets were assessed during
the overlap period to evaluate GCM improvements against ERA-Interim baseline data.
Bias-corrected temperatures followed similar annual and seasonal patterns for both CCSM
and GFDL. Precipitation data varied more significantly between models and decades, with
annual variability remaining higher in CCSM in future decades, while GFDL presented a
more general upward progression of precipitation as the decades advanced (see Figure 3).
CCSM produced seasonal behavior including steeper monthly average precipitation in-
creases, but the total annual precipitation rose to higher maximums in GFDL, exceeding
700 mm annually (Figure 3).
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3.5. Calibration

The WRF-Hydro model was calibrated using PyWrfHydroCalib [80], an internal
parameter sensitivity and analysis package written in Python and R, developed and
maintained by NCAR. This package makes use of the R package hydroGOF (to perform
goodness-of-fit testing) behind a series of controller scripts to streamline the calibration
process across basins and manage spin-up, calibration, and validation phases [81]. This
allowed for a semi-autonomous, minimally supervised, and time-reduced calibration of
WRF-Hydro domains and streamflow, based on selected metrics, and was designed to allow
for a high number of subdomains to be calibrated across major basins. This toolset was
originally developed to assist NCAR in the calibration of basins throughout the contiguous
United States as part of the National Water Model [60] and has been tested across thousands
of basins in the contiguous United States.

For this study, as replicating peak flow events was the primary goal, KGE was selected
as the best available calibration within selected toolsets as it has been shown to have
improved effectiveness at replicating peak flow events while reducing the loss of other
parameters’ performance [82]. While scores above certain thresholds may be considered
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good for KGE, this depends on the aim of the modeling efforts [83]. In this case, since semi-
automated fit testing was performed, scores were used to inform points of diminishing
returns, not as a specific threshold for success. WRF-Hydro was calibrated in two distinct
batches, based on available computational resources, with the first beginning with default
initial conditions for 250 iterations and the second of over 225 iterations using improved
starting conditions. The spin-up phase, especially in cold environments, is particularly
challenging, as there is no simple method to initialize it in a climatologically consistent
way, especially over complex terrain. Assigning negative temperatures in a uniform way
to soil layers does not solve the spin-up challenge because soil temperatures have very
pronounced seasonal dependence and variability, based on soil properties, vegetation,
terrain, and other factors at each grid point. Therefore the spin-up was chosen to be long
enough (2001–2010) to establish baseline soil parameters and frozen ground, while the
calibration phase was focused on 2013–2015, both to account for high flow events that
occurred during that period and to balance computational efficiency [35]. The validation
phase was then set for 2016–2018 to test calibration performance for each iteration.

The first round of calibration produced a maximum KGE score of 0.71, while the
average of all runs was 0.60. The highest performing set of parameters produced were
then used as starting conditions for a second batch and produced a maximum KGE score
of 0.728, with an average KGE across all runs of 0.61. The final highest-performing run
was used to establish the baseline for climate simulations and future projection-based runs.
The negligible improvements of the second batch of runs indicated diminishing returns
that did not justify further rounds. The calibrated model was re-run through an extended
reanalysis period within the ERA-Interim-based forcing data to provide comparisons for
2001–2018. Additional details about the calibration, sensitivity and variability, and selection
of the highest-performing parameterization can be found in the Supplementary Materials,
in Figures S1–S15.

4. Results
4.1. Calibration Results

Using the derived model calibration parameters produced simulated maximum stream-
flow values comparable with observed streamflow peaks for the Chena River but led to poorer
performance for the Salcha River, where maximums exceeded observed events (Figures 4 and 5).
Both seasonal streamflow distributions and peak flows for the Salcha River indicated more
substantial mismatches between observed and modeled data, despite being one basin adjacent
to the Chena River, where calibration was primarily focused. For the Salcha, streamflow was
simulated with improved skill for two years (2007 and 2012), even though these were not
part of the calibration years. However, the overall performance was still degraded when
compared to the Chena. This may be improved upon in future studies through the refinement
of components such as subsurface soil properties, frozen ground conditions, and vegetation
layers and, most importantly, by basin-specific calibration. Comparisons between the ob-
served and simulated data can be seen in Figures 4 and 5. Wet bias in the model forcing data
(as seen in Figure 2) was present in the WRF downscaled ERA-Interim data and GCM outputs
when compared to PRISM. While attempts were made to avoid overfitting during calibration,
this bias persisted in the projections as well since calibration was based on the ERA-Interim
reanalysis data, rather than being corrected to PRISM.
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4.2. Model Divergence

The divergence between future GCM-driven simulations presented itself in the dis-
tribution of both extreme events and non-extreme streamflow. This divergence can be
seen in Figures 6–8, representing all three basins within this study. For these plots, the box
represents the interquartile range of annual means or maximums, while whiskers represent
the highs and lows within the variance from the quartiles. Outliers are marked with circles.
GFDL showed a clear increase in mean annual streamflow and total streamflow when
compared to both the historical period and the CCSM simulations, as well as a more modest
increase in extreme flow events (see Figure 6). Variability tended to be significantly lower
within GFDL as opposed to CCSM, and simulations produced consistently higher stream-
flow across basins, in some cases producing a near-two-fold increase in streamflow over the
duration of the simulated years, particularly in mean annual flow. This was consistent with
the precipitation patterns identified earlier, with GFDL experiencing consistent decadal
increases in annual precipitation. While GFDL generally maintained a narrower range
of variability in most decades and basins, the 2038–2047 and 2068–2077 periods for the
Goodpaster River basin produced particularly high variability in maximum flows, which
narrowed some by the 2068–2077 period (Figure 8).
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Figure 8. Mean and max flow for Goodpaster River basin. Annual mean flow (left) and maximum
flow (right) for USGS Gage ID 15477740 (Goodpaster River) for the observed period (blue) and
projected CCSM (purple) and GFDL (green) model runs.

CCSM presented a modest but subtle downward trend in long-term streamflow rela-
tive to the historical period, indicating declines in mean annual streamflow and widening
variability in annual maximums when compared to historical values (Figures 6–8). This
pattern was presented similarly across the basins, with CCSM experiencing higher vari-
ability in maximum streamflow events compared to both GFDL and ERA simulations,
particularly during the observed period (2008–2017), when extreme streamflow events in
CCSM nearly doubled compared to those generated by ERA-Interim simulations across all
basins (Figure 7). Therefore, it was important to assess both GFDL and CCSM streamflow
in relative terms as well when compared to their own historical periods. In future decades,
a relative decline in maximum streamflow was observed, while GFDL experienced outliers
(e.g., extremes) late into the 21st century.

4.3. Seasonality

Based on temperature trends in the region, and the previously mentioned expectations
of multi-seasonal warming, the results indicated a lengthening of the streamflow season,
with earlier snowmelt events and higher flow events extending later into the warm season.
These seasonal expansions can be seen in Figure 9, showing snowmelt-driven streamflow
events occurring one month earlier, in April instead of May, and elevated flow persisting
into late fall. Rainfall-driven events during late summer experienced an increase in mag-
nitude over earlier decades. In the case of GFDL, the result was a more bi-modal pattern
of streamflow increase, with both spring and late-summer high-flow patterns. CCSM,
however, experienced a significant increase in mid-summer streamflow, particularly in the
2038–2047 period, driven by multiple years of high precipitation (as seen in Figure 3).
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ovation projects may help to reduce, but not eliminate, these challenges, and may be tested 
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Figure 9. Mean weekly streamflow averaged by decade. Mean weekly streamflow hydrograph by
decade comparison for CCSM (top, purple shades) and GFDL (bottom, green shades) during the
2008–2017 (dark solid line), 2038–2047 (medium dashed line), and 2068–2077 (light dotted line) time
frames for the Chena River below Hunts Creek, Salcha River near Salchaket, and Goodpaster River
gage locations.

4.4. Flood Control Implications

Based on the previously estimated 12,000 ft3/s (340 m3/s) threshold used to restrict
downstream flow rates, the frequency of activations of the flood control project in the future
increased significantly under GFDL (see Figure 10), with over three times as many events
in the mid-decade period and over eight times as many events in the later decade, while
flood frequency appeared to stay within a similar range under CCSM in the 2038–2047
period followed by a decline (see Figure 11). GFDL indicated a consistent increase in
both the duration and frequency of flood events. Particularly under GFDL, these results
indicate that flood control management may be required more frequently in the future,
with an increased number and longer activations of the floodgates, assuming no changes in
current flood control infrastructure occur. Previous activations of the Moose Creek Dam
have highlighted the potential for nearby residences and areas to experience groundwater
infiltration, as the dam is unlined and subject to hydrostatic pressure transfer. Newer
renovation projects may help to reduce, but not eliminate, these challenges, and may be
tested under the extremes indicated for GFDL [24].
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5. Discussion 
This study highlights a number of important factors when it comes to the behavior 

of future streamflow within the study area, emphasizing the potential for future projec-
tions to improve our understanding of Arctic riverine systems in terms of shifts in season-
ality, the intensity of extreme events, and changes to mean annual streamflow within river 
systems. Shifts in infrastructure demands and the need for mitigating controls are also 
important factors that present opportunities for decision-makers to plan around system 
changes well in advance of those changes being realized. This study helps to advance this 
effort by offering a future perspective on shifts to streamflow within the region, while 
prior work was primarily focused on historical changes. This can allow for a potential 

Figure 10. Flooding events for CCSM. Events modeled under CCSM indicating the crossing of pre-
established flood control thresholds. Dark purple represents the number of days where streamflow
rates exceeded the 12,000 ft3/s (340 m3/s) threshold. Light purple represents the total number of
events per year exceeding that rate. Each event represents one or more days where the streamflow
continuously exceeded thresholds.
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Figure 11. Flooding events for GFDL model. Events modeled under GFDL indicating the crossing of
pre-established flood control thresholds. Dark green represents the number of days where streamflow
rates exceeded the 12,000 ft3/s (340 m3/s) threshold. Light green represents the total number of
events per year exceeding that rate. Each event represents one or more days where the streamflow
continuously exceeded thresholds.

5. Discussion

This study highlights a number of important factors when it comes to the behavior of
future streamflow within the study area, emphasizing the potential for future projections to
improve our understanding of Arctic riverine systems in terms of shifts in seasonality, the
intensity of extreme events, and changes to mean annual streamflow within river systems.
Shifts in infrastructure demands and the need for mitigating controls are also important
factors that present opportunities for decision-makers to plan around system changes well
in advance of those changes being realized. This study helps to advance this effort by
offering a future perspective on shifts to streamflow within the region, while prior work
was primarily focused on historical changes. This can allow for a potential reduction of
impacts through proactive adaptation, whether through nature-based solutions (e.g., the
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establishment of non-buildable floodable lands) [84] or engineering-guided development
(e.g., dams and levees) [85]. Other approaches aimed at risk reduction are also possible,
including rezoning to reduce new risk or buyouts within existing high-risk areas [86].

The results of this work show variability within streamflow and system response
patterns in future simulations under RCP 8.5 for the two models considered (GFDL and
CCSM). Based on the results, the seasonality of future streamflow is expected to lengthen in
the future, leading to earlier snowmelt events in the spring and later streamflow events in
the late fall. This impact is primarily influenced by the extension of warm seasons, where
above-freezing air temperatures support streamflow for longer periods throughout the
year. This coincides with a decrease in the snow season length as warm season lengths
extend both earlier and later compared to the historical period, which has been identified
in prior studies of the region [87]. Previous studies have also highlighted an increase
in both wintertime precipitation and total year precipitation in the region over recent
decades, along with an increase in extreme events [88]. While peak flow events were
projected to occur in the future, the number of these events is limited, making it difficult to
ascertain with high confidence how many such events could be expected. However, this
result does highlight a shift from the historical period, indicating a pattern of increased
variability based on the distribution of streamflow events as opposed to a semi-linear
trend. While both GCMs generally aligned with the ERA simulations during the historical
period after bias-correction, each simulation presented different responses when it came
to mean streamflow, peak events, and total streamflow volumes in future decades. These
differences in responses highlight challenges when it comes to informed planning under
climate change scenarios, particularly for decision-makers hoping to plan for extreme
weather events in their region. However, the approaches taken here also offer pathways
toward the improved identification of plausible futures that may not otherwise have been
considered under historically focused approaches and highlight a greater need for flexibility
in designed solutions to address a wide range of considerations.

5.1. Model Limitations

While this effort helps to advance the understanding of Interior Alaska river systems
under potential climate futures, it is also limited in certain applications, based on available
resources, datasets, and observational data inputs, combined with the challenges of sim-
ulating an actively managed flood control project. Many of these issues are common in
natural system modeling, which leads to uncertainty within modeling efforts [89]. These
challenges can play an important role when exploring extreme events such as flooding,
which can be particularly sensitive to non-linear responses and may require alternative
approaches, such as spatial frequency analysis-derived events [90]. As GCMs are designed
and tuned to consider the global-scale simulation of future climate change impacts, they are
not intended to accurately represent local processes. Steps taken to guide local processes
through GCM outputs may introduce added challenges for analysis. Stochasticity, model
setup, and data complexity are all therefore important considerations with respect to the
limitations of this work when exploring future changes in extreme events.

5.1.1. Stochasticity

One of the major challenges of using reanalysis data and downscaled GCM output is
the limited number of physics realizations available for many products in guiding those
simulations and the computational complexity required to downscale them. Streamflow
rates depend on numerous variables but are particularly responsive to short-term precip-
itation rates. Due to the highly variable nature of extreme hydrological events, limited
realizations restrict the ability to explore parameter sensitivity more effectively under
uncertain futures, with storm systems playing a particularly strong role in flood behavior
in this region, such as that of the 1967 floods. However, storm systems are challenging to
represent within GCMs when it comes to frequency and extent and may be highly sensitive
to model mechanics and parameterizations within the GCM [91].
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While the two GCMs used in this study indicated divergence in behavior, both for
mean annual flow and extremes, simulations were limited to a single RCP, each with a
single physics realization. Therefore, it was difficult to ascertain the level of internal model
sensitivity when compared to the differences between the models themselves or between
RCPs. At the time of this study, the highly limited range of GCMs considered was driven
heavily by computational resource availability; thus, physical process-based downscaling
across many scenarios or realizations was not possible. More recent advances in machine
learning-based approaches to climate forcing may offer opportunities to improve the
variability of outputs of a smaller number of physical process-based outputs in the future,
offering a balance between computational efficiency and the robustness of events [92]. On
the other hand, the selection of the highest RCP in this work allowed for the exploration
of potential worst-case scenarios. The inclusion of a broader range of GCMs, combined
with multiple physical realizations and RCPs, would allow for a greater understanding of
the range of plausible future climate change responses and may produce a greater degree
of confidence in the variability represented within the hydrological simulations of these
systems over time.

5.1.2. WRF-Hydro Model Setup

While necessary for the efficient completion of the project, choices in WRF-Hydro
model design may have limited certain aspects of this modeling effort. Due to computa-
tional restrictions and data availability, forcing data were only available for three distinct
time periods (2008–2017, 2038–2047, and 2068–2077). A lack of continuous data can present
challenges in an environment that is also undergoing gradual changes that may impact the
degree of infiltration and runoff in the region, as permafrost thaw continues to alter subsur-
face hydrological behavior. Because each period utilized the calibrated model parameters,
each time series began with similar starting conditions, until forcing data altered those
landscapes. Under natural conditions, gradual warming would occur between decades, re-
ducing permafrost and frozen ground thickness in the region. This reduction in permafrost
thickness would likely lead to an increase in groundwater storage, the infiltration of surface
water, and a potential decrease in peak runoff [4]. As a result, the 20-year gap between the
simulation time periods would likely produce differences in groundwater behavior that
may not be present in the initial conditions for each of the simulations performed. Future
work could consider the inclusion of either decadal spin-ups or a continuous series.

5.1.3. Bias Variability and Uncertainty

While the outputs of the WRF-Hydro model simulations indicated extended season
lengths, increasing variability, and potential shifts in high-flow occurrence and seasonality,
shortcomings in forcing data due to wet bias, downscaling, and bias-correction methods led
to greater uncertainty surrounding peak flows, which is expected to continue with the CMIP
phase 6 models [93]. In the case of this study, monthly bias-correction of climate projections
(temperature and precipitation) and the limited overlap period in datasets (2008–2017)
resulted in discontinuities within monthly temperatures. While preserving annual trends,
this approach resulted in jumps between months, potentially influencing rapid springtime
melt events as temperature thresholds were crossed. Modified approaches for this have
been shown to improve hydrological outcomes surrounding seasonal boundaries [94,95].
It is therefore possible that this resulted in an over-emphasis on spring melt events in
particular, as they are highly dependent on the rate of spring warming, and peaks may be
less extreme with more gradual temperature shifts between spring months.

The implementation of the WRF-Hydro model for Interior Alaska allows for future
simulations to be developed to improve extreme events analyses in the region for riverine
flooding. Improvements in the inclusion of permafrost dynamics, the adoption of the
ERA-5 dataset for modeling, extensions of the input forcing data to longer periods to
allow for improved bias-correction, and modification of the bias-correction process to
include annual cycles as opposed to monthly would all be potential ways to improve future
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simulation and predictive accuracy. However, despite these shortcomings, the current WRF-
Hydro model outputs offer insights into changes in seasonality (both length and timing of
occurrences), changes in total streamflow and summertime extremes, and perspectives into
the divergence of major model outputs based on temperature/precipitation interactions.

5.2. Implications for Decision-Making

Watershed and flood management programs are often based on historical conditions
or flood recurrence intervals. This makes adapting to rapid change or unforeseen changes
challenging due to the long timelines required for policy changes, impact studies, acquiring
funding, and the development of solutions. The disconnect between planning windows and
environmental responses from climate change, therefore, requires an increase in forward-
looking assessments of risks and attempts to understand potential shifts in extremes
decades in advance. Within the study area, local governments have identified concerns
surrounding the increased potential for flooding events as part of emergency management
and planning efforts, with a focus on flooding, groundwater seepage, erosion and scouring
events, and increasing development in the region [39]. However, the ability to plan for the
future risks faced by people and built infrastructure depends on the ability to understand
how those risks compare to historical events.

Globally, floods account for a significant portion of disasters, with estimates indicating
that between 41 and 47 percent of disasters are caused by flood-related hazards [96,97]. As
a result, the understanding of flood potential is a critical component to reducing risks in
currently affected or future-affected communities. When it comes to proactive approaches
to flooding, recent analyses indicate that the return on investment is high, with benefit–cost
ratios for riverine flooding showing between USD 5 and 8 saved in damages for every
USD 1 spent, with approaches ranging from mitigating infrastructure to improved building
code requirements [98]. However, high levels of uncertainty [99], or a lack of clarity as to
sources of uncertainty [89], may lead to difficulty in determining what level of proactive
mitigation is justified. Simultaneously, decision-makers and planners are increasingly
looking to models to identify potential local- or regional-scale challenges. Planning efforts
must weigh a complex set of variables including model accuracy and uncertainty as well
as socio-cultural and economic factors, including, for example, the economic resources
available, the tolerance for risk in particular communities or regions, and public support.
Therefore, it becomes necessary to frame outcomes in the context of the level of confidence
required to undertake planning, within the scales associated with hazards.

While efforts such as this study help to provide insights for decision-makers on
potential future climate change impacts, it is important to be cautious in the interpretation
of the results when developing major infrastructure plans. The results of this study show
agreement between the two GCMs on increasing total streamflow and season length
through the study basins, but they differ in their outcomes when it comes to extreme
streamflow events. This creates challenges in terms of the development of solutions, such
as rezoning or the installation of large infrastructure, which may come with substantial
costs or lead to the displacement of populations over time or restrictions on local land use.

Instead, general trends may inform primary concerns but must be framed within the
capacity of planners to contextualize the associated uncertainty. A preference for no-regret
or robust multi-hazard resilient solutions, therefore, is important in multi-decadal plan-
ning [85]. Both of these GCMs indicate the extended seasonality of streamflow; however,
the GCMs also produce potentially very different futures, where streamflow extremes
differ by time of year, intensity, frequency, and duration. This poses difficulties when the
development of large infrastructure depends on long lead times and a significant number
of resources and has the potential to generate significant ecosystem impacts. Understand-
ing the potential for these extremes, however, provides planners with insights as to how
the infrastructure designs of the past may be limited under highly uncertain futures and
necessitates a potentially unforeseen need for flexibility in design.
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The intent, then, is that while GCMs may not be able to highlight the future as if
deterministic, the potential variability or uncertainty is communicated to the best of all
abilities. This aligns with growing requirements to identify risk, scenarios, and uncertainty
in applied modeling efforts [100]. From this, the outcome of this study is that, given the
impacts under the two GCMs and RCP 8.5, along with the bias-correction and presence of
history-exceeding events, the relative change within each GCM over time represents the
potential for extreme events that exceed those that have been dealt with since the developing
of flood control infrastructure within the region. While the magnitude, frequency, and
duration of these events are likely to vary, this provides room to understand the potential
for these events well in advance of their occurrence, helping to provide planners with
insights as to how issues of awareness and preparedness can be addressed well in advance
of expected extremes being realized.

5.3. Future Improvements

This study was limited by factors of both model and data dimensions, as well as
those in the decision-making realm. Further studies may benefit from the inclusion of a
broader range of RCPs and GCMs, as a limited range of scenarios may make it challenging
to ascertain the full range of conditions that can be expected under future planning. A
growing set of tools in the realm of machine learning may help transform these issues
for extreme events [92] but may also face challenges in systems experiencing permanent
state changes. While RCP 8.5 is the strongest warming scenario within CMIP5, it may not
fully represent the range of flooding potential in a moderate-warming, high-precipitation
future. Additionally, the assimilation of dynamic permafrost data may improve insights
into seasonal flooding or extreme event potential. Beyond this, there is a need for a greater
stochasticity of results to highlight where variability in short-term outputs may influence
extremes. This may also be an opportunity for further exploration of bias-correction
methods that could provide improved assessments of conditions within a fixed number of
simulation inputs.

Another addition to this approach would be the greater inclusion of affected planners.
The inclusion of regional decision-makers in the evaluation of the results would allow for
improved outreach and communication efforts to ensure that similar efforts reach those
assessing planning efforts. Increasing the linkages between modeling efforts and planners
is an integral component of actionable change going forward due to the long timelines
involved in infrastructure and planning-based mitigation and adaptation efforts. Improved
linkage may also help to identify the shortcomings in operational planning that may result
from incompatibilities with modeling efforts.

6. Conclusions

In order to better plan for the dynamic needs expected in future climate change scenarios,
it is increasingly necessary to model the potential for extreme events under different climate
regimes and contextualize those outputs within decision-making efforts. This study explored
the potential for future hydrological system changes in three Interior Alaska rivers, assessing
dynamically downscaled outputs from two GCMs under RCP 8.5. The results indicate that
with the highest warming pathways, feedback responses may vary substantially between
models when it comes to extreme events, based primarily on model-dependent temperature
and precipitation changes. However, both GCMs agreed on long-term increases in mean and
total streamflow, as well as the potential for extended streamflow season lengths in future
decades. The results also indicate that as the decades progress, streamflow may exceed events
that have been observed historically within these basins.

Additionally, this study highlights connections between increased seasonality and
extended streamflow and the potential implications for shifts in flood control efforts. The
complexity of non-stationary processes present in the study region requires greater inte-
gration between geophysical implications and disaster planning to form a comprehensive
understanding of potential hazards. This research sets a foundation for future work, rec-
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ognizing a need for improved data assimilation, the selection and correction of future
projections, and a greater inclusion of permafrost dynamics. Through these approaches,
future efforts can offer an opportunity to develop more robust and proactive adaptation
strategies in systems like Interior Alaska, where significant change is already underway.
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