Can Plant-Associated Chironomids Be Used as an Indicator of Lake Status with the Alternative States Theory?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Data Analysis
3. Results
3.1. Environmental Variables
3.2. Chironomid Community
3.3. Functional Feeding Groups
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scheffer, M.; van Nes, E.H. Shallow lakes theory revisited: Various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 2007, 584, 455–466. [Google Scholar] [CrossRef]
- Gulati, R.D.; Van Donk, E. Lakes in the Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia 2002, 478, 73–106. [Google Scholar] [CrossRef]
- Körner, S. Loss of submerged macrophytes in shallow lakes in north-eastern Germany. Int. Rev. Hydrobiol. 2002, 87, 375–384. [Google Scholar] [CrossRef]
- Dokulil, M.T.; Teubner, K. Eutrophication and climate change: Present situation and future scenarios. In Eutrophication: Causes, Consequences and Control; Springer: Dordrecht, The Netherlands, 2011; pp. 1–16. [Google Scholar]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; de Meester, L.; et al. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef]
- Kosten, S.; Huszar, V.L.; Mazzeo, N.; Scheffer, M.; Sternberg, L.D.S.; Jeppesen, E. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecol. Appl. 2009, 19, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Kangur, K.; Haldna, M. Variation of macrozoobenthos communities in the reed Phragmites australis belt of two large shallow lakes. Proc. Est. Acad. Sci. Biol. Ecol. 2007, 56, 141–153. [Google Scholar] [CrossRef]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Ozen, A.; et al. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J. Environ. Qual. 2009, 48, 1930–1941. [Google Scholar] [CrossRef]
- Hilt, S.; Alirangues Nuñez, M.M.; Bakker, E.S.; Blindow, I.; Davidson, T.A.; Gillefalk, M.; Hansson, L.-A.; Janse, J.H.; Janssen, A.B.G.; Jeppesen, E.; et al. Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Front. Plant Sci. 2018, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Sayer, C.D.; Davidson, T.A.; Jones, J.I. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: A eutrophication-driven pathway from plants to plankton? Freshw. Biol. 2010, 55, 500–513. [Google Scholar] [CrossRef]
- Ferrington, L.C. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 2008, 595, 447–455. [Google Scholar] [CrossRef]
- Motta, L.; Massaferro, J. Climate and site-specific factors shape chironomid taxonomic and functional diversity patterns in northern Patagonia. Hydrobiologia 2019, 839, 131–143. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, E.; Herzschuh, U.; Mischke, S.; Chang, J.; Sun, W.; Ning, D. Taxonomic and functional diversity differentiation of chironomid communities in northern Mongolian Plateau under complex environmental impacts. Hydrobiologia 2020, 847, 2155–2167. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Rieradevall, M. Early succession of the macroinvertebrate community in a shallow lake: Response to changes in the habitat condition. Limnologica 2011, 41, 363–370. [Google Scholar] [CrossRef]
- Eggermont, H.; Heiri, O. The chironomid-temperature relationship: Expression in nature and palaeoenvironmental implications. Biol. Rev. 2012, 87, 430–456. [Google Scholar] [CrossRef]
- Nandi, S.; Aditya, G.; Saha, G.K. Nutrient condition and chironomid assemblages in Kolkata, India: Assessment for biomonitoring and ecological management. J. Limnol. 2012, 71, 320–329. [Google Scholar] [CrossRef]
- Rossaro, B.; Marziali, L.; Boggero, A. Response of chironomids to key environmental factors: Perspective for biomonitoring. Insects 2022, 13, 911. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, E.; Langdon, P.G.; Liu, E.; Shen, J. Chironomid-inferred environmental change over the past 1400 years in the shallow, eutrophic Taibai Lake (south-east China): Separating impacts of climate and human activity. Holocene 2014, 24, 581–590. [Google Scholar] [CrossRef]
- Luoto, T.P. Indicator value of midge larvae (Diptera: Nematocera) in shallow boreal lakes with a focus on habitat, water quality, and climate. Aquat. Insects 2011, 33, 351–370. [Google Scholar] [CrossRef]
- Płóciennik, M.; Pawłowski, D.; Vilizzi, L.; Antczak-Orlewska, O. From oxbow to mire: Chironomidae and Cladocera as habitat palaeoindicators. Hydrobiologia 2020, 847, 3257–3275. [Google Scholar] [CrossRef]
- Morais, S.S.; Molozzi, J.; Viana, A.L.; Viana, T.H.; Callisto, M. Diversity of larvae of littoral Chironomidae (Diptera: Insecta) and their role as bioindicators in urban reservoirs of different trophic levels. Braz. J. Biol. 2010, 70, 995–1004. [Google Scholar] [CrossRef]
- Van Hardenbroek, M.; Heiri, O.; Wilhelm, M.F.; Lotter, A.F. How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquat. Sci. 2011, 73, 247–259. [Google Scholar] [CrossRef]
- Vanni, M.J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 2002, 33, 341–343. [Google Scholar] [CrossRef]
- Lemes-Silva, A.L.; Pagliosa, P.R.; Petrucio, M.M. Inter-and intra-guild patterns of food resource utilization by chironomid larvae in a subtropical coastal lagoon. Limnology 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Balci, P.; Kennedy, J.H. Comparison of chironomids and other macroinvertebrates associated with Myriophyllum spicatum and Heteranthera dubia. J. Freshw. Ecol. 2003, 18, 235–247. [Google Scholar] [CrossRef]
- Cerba, D.; Mihaljevic, Z.; Vidakovic, J. Colonisation of temporary macrophyte substratum by midges (Chironomidae: Diptera). Ann. Limnol. Int. J. Limnol. 2010, 46, 181–190. [Google Scholar] [CrossRef]
- Tarkowska-Kukuryk, M. Composition and distribution of epiphytic midges (Diptera: Chironomidae) in relation to emergent macrophytes cover in shallow lakes. Pol. J. Ecol. 2011, 59, 141–151. [Google Scholar]
- Ingvason, H.R.; Olafsson, J.S.; Gardarsson, A. Food selection of Tanytarsus gracilentus larvae (Diptera: Chironomidae): An analysis of instars and cohorts. Aquat. Ecol. 2004, 38, 231–237. [Google Scholar] [CrossRef]
- Tarkowska-Kukuryk, M. Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: Effect of macrophyte species and food resources. Limnology 2014, 15, 141–153. [Google Scholar] [CrossRef]
- Tóth, M.; Móra, A.; Kiss, B.; Dévai, G. Chironomid communities in different vegetation types in a backwater Nagy-Morotva of the active floodplain of river Tisza, Hungary. Bol. Mus. Munic. Funchal 2008, 13, 169–175. [Google Scholar]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- PN-C-04576; Water and Sewage—Testing the Content of Nitrogen Compounds—Determination of Ammonium Nitrogen in Water by Direct Nesslerization. Polish Committee for Standarization: Szczecin, Poland, 2004.
- PN-ISO 10260; Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. Polish Committee for Standarization: Szczecin, Poland, 2002.
- Kornijów, R. Quantitative sampler for collecting invertebrates associated with submersed and floating-leaved macrophytes. Aquat. Ecol. 1998, 32, 241–244. [Google Scholar] [CrossRef]
- Wiederholm, T. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 1. Larvae; Entomologica Scandinavica Supplement 19; Borgströms Tryckeri AB: Motala, Sweden, 1983. [Google Scholar]
- Mandaville, S.M. Benthic Macroinvertebrates in Freshwaters: Taxa Tolerance Values, Metrics, and Protocols; Soil & Water Conservation Society of Metro Halifax: Nova Scotia, Canada, 2002; p. 128. [Google Scholar]
- Merritt, R.W.; Cummins, K.W.; Berg, M.B. Trophic relationships of macroinvertebrates. Methods Stream Ecol. 2017, 1, 413–433. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Boggero, A.; Fureder, L.; Lencioni, V.; Simcic, T.; Thaler, B.; Ferrarese, U.; Lotter, A.F.; Ettinger, R. Littoral chironomid communities of Alpine lakes in relation to environmental factors. Hydrobiologia 2006, 562, 145–165. [Google Scholar] [CrossRef]
- Tarrats, P.; Cañedo-Argüelles, M.; Rieradevall, M.; Prat, N. The influence of depth and macrophyte habitat on paleoecological studies using chironomids: Enol Lake (Spain) as a case study. J. Paleolimnol. 2018, 60, 97–107. [Google Scholar] [CrossRef]
- Brodersen, K.P.; Odgaard, B.V.; Vestergaard, O.; Anderson, N.J. Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: Chironomid–macrophyte co-occurrence. Freshw. Biol. 2001, 46, 253–267. [Google Scholar] [CrossRef]
- Cronin, G.; Lewis, W.M., Jr.; Schiehser, M.A. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquat. Bot. 2006, 85, 37–43. [Google Scholar] [CrossRef]
- Sahuquillo, M.; Miracle, M.R.; Rieradevall, M.; Kornijów, R. Macroinvertebrates assemblages on reed beds, with special attention to Chironomidae (Diptera), in Mediterranean shallow lakes. Limnetica 2008, 27, 239–250. [Google Scholar] [CrossRef]
- Rumes, B. Regional Diversity, Ecology and Palaeoecology of Aquatic Invertebrate Communities in East African Lakes. Doctoral Dissertation, Ghent University, Ghent, Belgium, 2010. [Google Scholar]
- Da Silva, J.S.; Albertoni, E.F.; Palma-Silva, C. Temporal variation of phytophilous Chironomidae over a 11-year period in a shallow Neotropical lake in southern Brazil. Hydrobiologia 2015, 742, 129–140. [Google Scholar] [CrossRef]
- Langdon, P.G.; Ruiz, Z.; Wynne, S.; Sayer, C.D.; Davidson, T.A. Ecological influences on larval chironomid communities in shallow lakes: Implications for palaeolimnological interpretations. Freshw. Biol. 2010, 55, 531–545. [Google Scholar] [CrossRef]
- Williams, N.; Suárez, D.A.; Juncos, R.; Donato, M.; Guevara, S.R.; Rizzo, A. Spatiotemporal structuring factors in the Chironomidae larvae (Insecta: Diptera) assemblages of an ultraoligotrophic lake from northern Patagonia Andean range: Implications for paleolimnological interpretations. Hydrobiologia 2020, 847, 267–291. [Google Scholar] [CrossRef]
- Brodersen, K.P.; Quinlan, R. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quat. Sci. Rev. 2006, 25, 1995–2012. [Google Scholar] [CrossRef]
- Langdon, P.G.; Ruiz, Z.O.E.; Brodersen, K.P.; Foster, I.D. Assessing lake eutrophication using chironomids: Understanding the nature of community response in different lake types. Freshw. Biol. 2006, 51, 562–577. [Google Scholar] [CrossRef]
- Tarkowska-Kukuryk, M.; Mieczan, T. Diet composition of epiphytic chironomids of the Cricotopus sylvestris group (Diptera: Chironomidae) in a shallow hypertrophic lake. Aquat. Insects 2008, 30, 285–294. [Google Scholar] [CrossRef]
- Niswati, A.; Yamazaki, M.; Ikenaga, M.; Kimura, M. Bacterial communities associated with aquatic organisms in the flood water of a Japanese paddy field estimated by RFLP pattern analysis. Soil Sci. Plant Nutr. 2002, 48, 185–193. [Google Scholar] [CrossRef]
- Jones, J.I.; Sayer, C.D. Does the fish–invertebrate–periphyton cascade precipitate plant loss in shallow lakes? Ecology 2003, 84, 2155–2167. [Google Scholar] [CrossRef]
- Van de Meutter, F.; Stoks, R.; de Meester, L. The effect of turbidity state and microhabitat on macroinvertebrate assemblages: A pilot study of six shallow lakes. Hydrobiologia 2005, 542, 379–390. [Google Scholar] [CrossRef]
- Davidson, T.A.; Jeppesen, E. The role of palaeolimnology in assessing eutrophication and its impact on lakes. J. Paleolimnol. 2013, 49, 391–410. [Google Scholar] [CrossRef]
- Guo, X.; Potito, A.P.; Luo, L.; Beilman, D.W. Twentieth century human and climate impacts on a large mountain lake in southwest China. Hydrobiologia 2013, 718, 189–206. [Google Scholar] [CrossRef]
- Feio, M.J.; Dolédec, S. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: A case study in Portugal. Ecol. Indic. 2012, 15, 236–247. [Google Scholar] [CrossRef]
- Feio, M.J.; Dolédec, S.; Graça, M.A.S. Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environ. Pollut. 2015, 196, 300–308. [Google Scholar] [CrossRef]
- Saulino, H.H.; Leite-Rossi, L.A.; Trivinho-Strixino, S. The effect of small reservoirs on chironomid diversity and trait composition in Savanna streams: Evidence for Serial Discontinuity Concept. Hydrobiologia 2016, 793, 109–119. [Google Scholar] [CrossRef]
- Beauchard, O.; Veríssimo, H.; Queirós, A.M.; Herman, P.M.J. The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecol. Indic. 2017, 76, 81–96. [Google Scholar] [CrossRef]
- Kuzmanovic, M.; Dolédec, S.; de Castro-Catala, N.; Ginebreda, A.; Sabater, S.; Muñoz, I.; Barceló, D. Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environ. Restor. 2017, 156, 485–493. [Google Scholar] [CrossRef]
- Serra, S.R.; Graça, M.A.; Dolédec, S.; Feio, M.J. Discriminating permanent from temporary rivers with traits of chironomid genera. Ann. Limnol. Int. J. Limnol. 2017, 53, 161–174. [Google Scholar] [CrossRef]
- Castro, D.M.P.; Dolédec, S.; Callisto, M. Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecol. Indic. 2018, 84, 573–582. [Google Scholar] [CrossRef]
- Gomes, W.I.A.; da Silva Jovem-Azevêdo, D.; Paiva, F.F.; Milesi, S.V.; Molozzi, J. Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: A biomonitoring approach. Ecol. Indic. 2018, 93, 404–410. [Google Scholar] [CrossRef]
- Mondy, C.P.; Usseglio-Polatera, P. Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshw. Biol. 2014, 59, 584–600. [Google Scholar] [CrossRef]
- Trivinho-Strixino, S. Chironomidae (Insecta Diptera, Nematocera) do Estado de São Paulo, Sudeste do Brasil. Biota Neotrop. 2011, 11, 675–684. [Google Scholar] [CrossRef]
Lake | Coordinates | Surface Area (ha) | Max Depth (m) | Lake Code |
---|---|---|---|---|
Kleszczów | 51°31′ N; 22°53′ E | 53.9 | 2.3 | MD1 |
Rotcze | 51°22′ N; 23°06′ E | 42.7 | 4.3 | MD2 |
Skomielno | 51°29′ N; 23°00′ E | 75.0 | 5.5 | MD3 |
Białe Sosnowickie | 51°32′ N; 23°02′ E | 144.8 | 2.7 | PMD1 |
Domaszne | 51°28′ N; 23°00′ E | 95.0 | 3.1 | PMD2 |
Głębokie Uścimowskie | 51°28′ N; 22°55′ E | 20.5 | 7.1 | PMD3 |
Sumin | 51°22′ N; 23°08′ E | 91.5 | 6.5 | PMD4 |
Dratów | 51°20′ N; 22°56′ E | 167.9 | 3.0 | PD1 |
Krzczeń | 51°23′ N; 22°56′ E | 160.7 | 5.2 | PD2 |
Syczyńskie | 51°17′ N; 23°14′ E | 5.6 | 2.9 | PD3 |
Lake | Secchi Disc Depth (m) | Total P (mg dm−3) | Chlorophyll-a (mg dm−3) | Macrophyte Biomass (g DW m−2) | Macrophyte Cover (%) |
---|---|---|---|---|---|
MD1 | 1.2 ± 0.2 | 0.022 ± 0.007 | 9.64 ± 4.5 | 4354 ± 200 | 67 |
MD2 | 1.1 ± 015 | 0.053 ± 0.007 | 8.73 ± 4.3 | 3270 ± 131 | 60 |
MD3 | 2.2 ± 0.6 | 0.073 ± 0.05 | 7.52 ± 5.8 | 4650 ± 244 | 74 |
PMD1 | 0.8 ± 0.16 | 0.149 ± 0.089 | 52.26 ± 7.5 | 2450 ± 282 | 29 |
PMD2 | 0.7 ± 0.05 | 0.158 ± 0.053 | 38.32 ± 5.3 | 2116 ± 145 | 37 |
PMD3 | 0.7 ± 0.15 | 0.127 ± 0.013 | 41.51 ± 2.1 | 2164 ± 178 | 26 |
PMD4 | 0.8 ± 0.03 | 0.136 ± 0.009 | 39.87 ± 3.1 | 2284 ± 231 | 21 |
PD1 | 0.4 ± 0.1 | 0.256 ± 0.013 | 50.87 ± 5.2 | 404 ± 59 | 12 |
PD2 | 0.5 ± 0.05 | 0.193 ± 0.024 | 48.23 ± 4.7 | 649 ± 85 | 10 |
PD3 | 0.3 ± 0.1 | 0.348 ± 0.028 | 51.18 ± 6.2 | 760 ± 78 | 15 |
Responsible Variable | Predictor Variables | b | Partial Correlation | t | p Value |
---|---|---|---|---|---|
Par.aus. | mac.bio | 0.97 | 0.894 | 10.34 | <0.001 * |
TP | 0.03 | 0.063 | 0.36 | 0.722 | |
End.alb | mac.bio | −1.223 | −0.803 | −6.991 | <0.001 * |
TP | 0.938 | 0.718 | 5.358 | <0.001 * | |
Cri. syl | mac.bio | 0.037 | 0.051 | 0.270 | 0.789 |
TP | 0.909 | 0.784 | 6.579 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarkowska-Kukuryk, M.; Majczak, M. Can Plant-Associated Chironomids Be Used as an Indicator of Lake Status with the Alternative States Theory? Water 2024, 16, 1984. https://doi.org/10.3390/w16141984
Tarkowska-Kukuryk M, Majczak M. Can Plant-Associated Chironomids Be Used as an Indicator of Lake Status with the Alternative States Theory? Water. 2024; 16(14):1984. https://doi.org/10.3390/w16141984
Chicago/Turabian StyleTarkowska-Kukuryk, Monika, and Marta Majczak. 2024. "Can Plant-Associated Chironomids Be Used as an Indicator of Lake Status with the Alternative States Theory?" Water 16, no. 14: 1984. https://doi.org/10.3390/w16141984
APA StyleTarkowska-Kukuryk, M., & Majczak, M. (2024). Can Plant-Associated Chironomids Be Used as an Indicator of Lake Status with the Alternative States Theory? Water, 16(14), 1984. https://doi.org/10.3390/w16141984