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Abstract: Consuming poisoned shellfish can lead to severe health problems and even death.
Alexandrium catenella (Group I) and A. pacificum (Group IV) cause paralytic shellfish poisoning
(PSP) in Korea, and PSP is detected more in a wider area. However, the association between toxic
dinoflagellates and shellfish poisoning is unclear. Therefore, it is necessary to understand the toxicity,
detoxification, and compositional differences in PSP in Mytilus edulis exposed to PSP caused by
A. catenella and A. pacificum. High-performance liquid chromatography with post-column oxidation
was used to analyze PSP toxicity in poisoned M. edulis. PSP in M. edulis increased as the A. catenella
and A. pacificum cell density increased. However, the cell density of A. catenella peaked faster than
that of A. pacificum, and a high level of toxicity was detected. In the detoxification experiment, PSP in
M. edulis decreased rapidly within 24 h in filtered seawater. However, PSP was continuously detected
without decreasing below the detection limit until the last day of the experiment. In addition, the
carbamate composition (GTX1+4) was detected as the main toxic composition in poisoned M. edulis,
unlike in vegetative cells. GTX1+4 can poison shellfish quickly when toxic dinoflagellates appear in
the marine environment. However, poisoned shellfish take a long time to be completely detoxified.
Moreover, if shellfish continuously feed on poisonous dinoflagellates, their toxicity can increase
rapidly due to biotransformation. Our results can help identify the mechanisms of shellfish toxicity
and detoxification after PSP caused by toxic dinoflagellates.

Keywords: Alexandrium catenella; Alexandrium pacificum; paralytic shellfish poisoning; Mytilus edulis;
toxification; detoxification

1. Introduction

Bivalves feed on particulate organic matter floating in seawater, and toxic plankton
can accumulate poison in the shellfish, leading to them being poisoned. Consuming
poisoned shellfish can lead to food poisoning and even death [1–7]. Among various shellfish
poisons, paralytic shellfish poisoning (PSP) is caused by a toxin produced primarily by the
dinoflagellate Alexandrium species, Gymnodinium catenatum, and Pyrodinium bahamense. PSP
has been occurring for a long time in coastal environments and has strong heat-resisting
properties that are not easily destroyed by general heating and cooking [8–10]. Among the
more than 20 Alexandrium species, six species are present in Korea (A. catenella, A. affine,
A. insuetum, A. pacificum, A. minitum, and A. fraterculus) [11–13]. Moreover, early detection
of shellfish toxins accelerates with increasing water temperature, and the area of occurrence
also expands [14,15]. Although PSP caused by A. pacificum (Group IV), which grows at
relatively higher temperatures than A. catenella (Group I) [16], has not yet been reported,
bivalves in late spring or early summer may be toxified due to climate change.

Aquaculture in the coastal areas of Korea, dominated by seaweed and shellfish, ac-
counts for over 60% of Korea’s fishery production [17]. However, during spring in the
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southeastern coastal area of Korea, the PSP in shellfish aquaculture caused by A. catenella ex-
ceeds the regulatory limit (<80 µg/100 g of tissue) annually. The blue mussel Mytilus edulis
is the second most productive shellfish after the Pacific oyster (Crassostrea gigas) and is
produced in large quantities on the southern coast of Korea [18]. M. edulis is a filter feeder
more easily poisoned than other bivalves under the same environmental conditions [19–21]
and has high bioaccumulation [22–24]. Thus, mussels are typical biomarkers that provide
an early warning of PSP, as they accumulate PSP and reach high toxicity faster than other
species [25].

However, the PSP of bivalves is occasionally unrelated to toxic dinoflagellate exposure
according to the increasing and decreasing cell density of toxic dinoflagellates in coastal
areas [26] because the maximum toxicity of bivalves does not always match the maximum
cell density of toxic dinoflagellates [27,28]. Moreover, PSP in bivalves has been observed
even in coastal areas where the cell density of toxic dinoflagellates is extremely low or
where appearances have not been reported yet [26,27,29,30]. Therefore, the relationship
between toxic dinoflagellates and shellfish poisoning remains unclear.

This study investigated the toxicity and detoxification of M. edulis after exposure to
A. catenella and A. pacificum to clarify the environmental conditions contributing to PSP
caused by toxic dinoflagellates in the natural environment. We discuss the changes in toxin
amount, toxicity, and toxicity composition during toxification and detoxification.

2. Materials and Methods
2.1. Microalgae Culture

A. catenella (JM-1) was collected from the surface seawater of Jangmok Bay in January
2021. The cells were separated with a Pasteur pipette (length 230 mm) and washed with fil-
tered seawater (0.22 µm pore size, Millipore, Burlington, MA, USA) to establish monoclonal
cells. A. pacificum (LIMS-PS-2611) was obtained from the Library of Marine Samples at the
Korea Institute of Ocean Science and Technology. f/2 medium [31] based on the Southern
Sea of Korea was used, and the incubation temperature, salinity, and light conditions were
15 ◦C, 30 psu, and 300 µmoL/m2/s (12-h period), respectively, to maintain the A. catenella
and A. pacificum cultures.

Two types of mass cultures were used for the exposure experiments. The batch culture
for the initial culture was started in 250 mL of f/2 medium, and the culture conditions were
the same as those for the maintenance culture. A mass culture system was then constructed
by inoculating the two species in 10 L and 30 L water tanks, respectively, and the exposure
experiment was performed by culturing until the late exponential phase.

2.2. Toxification of M. edulis by Continuous Exposure to A. catenella and A. pacificum

M. edulis were collected from the tidal zone of Jangmok Bay. The shell length,
height, width, and wet weight were 65.34 ± 5.93 mm, 24.04 ± 2.59 mm, 35.86 ± 2.67 mm,
and 5.52 ± 1.4 g, respectively. M. edulis transported to the laboratory were acclimatized
(15 ± 1 ◦C; DBA-075, Daeil Cooler Co., Busan, Republic of Korea) in 10 L filtered (GF/C
filter; 1.2 µm pore size) seawater in a 20 L water tank for 3–5 days, and aerated using an
aquarium air pump. The same conditions were maintained during the experimental period,
and freshly filtered seawater was exchanged once every two days.

Total 18 M. edulis individuals was continuously exposed to A. catenella and A. pacificum
for five days. A. catenella at cell densities of 10, 100, and 1000 cells/mL and A. pacificum at
cell densities of 10 and 100 cells/mL were constantly inoculated into the experimental tank
containing M. edulis under 15 ± 1 ◦C, 30 psu, 100 µmoL/m2/s (12-h period), similar to the
acclimatization conditions (Figure 1). Three M. edulis individuals in the experimental tank
were randomly collected at the same time every day, and their whole flesh was analyzed.
An aquarium air pump was used to prevent suffocation, and every effort was made to
protect the M. edulis from external stimuli during the experimental period. Before initiating
the experiment, the toxicity of M. edulis was below the detection limit (Day 0). Three
M. edulis individuals in the experimental tank were randomly collected at the same time
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every day, and their whole flesh was analyzed. To compare the toxic compositions of
Alexandrium species and M. edulis, the toxic compositions of Alexandrium species were
analyzed immediately before exposure.
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Figure 1. Schematic of the experimental design for continuous exposure of Alexandrium catenella
(Group I) and A. pacificum (Group IV) to Mytilus edulis. A. catenella at cell densities of 10, 100 and
1000 cells/mL and A. pacificum at cell densities of 10 and 100 cells/mL were constantly exposed to the
experimental tank containing M. edulis under 15 ± 1 ◦C, 30 psu, and 100 µmoL/m2/s. The exposure
solution contained the dinoflagellates. Exposure solution was 10 L, and the experimental tank was
20 L.

2.3. Detoxification of M. edulis Poisoned by A. catenella and A. pacificum

The exposure solution (10 L) containing A. catenella and A. pacificum was exposed to
the 20 L experimental tank containing M. edulis (maximum cell densities of A. catenella
and A. pacificum were approximately 2500 and 4500 cells/mL, respectively). Microscopic
observations confirmed that M. edulis consumed A. catenella and A. pacificum in the exposure
solution for 20 min. The experimental conditions of temperature, salinity, and light intensity
were identical to those used for the continuous exposure experiments. For the detoxification
analysis, three M. edulis individuals were randomly collected from the experimental tank at
the same time each day, and their whole flesh was analyzed. The initial toxicity to M. edulis
(day 0), before exposure, was below the detection limit. One day after the first exposure
to Alexandrium, the entire volume of seawater in the experimental tank was replaced with
freshly filtered seawater. The experiment was conducted over nine days.

2.4. PSP Analysis Using High-Performance Liquid Chromatography

PSP toxicity and toxin composition were measured in the whole flesh of three M. edulis
individuals collected at 16:00 on the first, second, third, fourth, and fifth days after continu-
ous exposure to A. catenella and A. pacificum. Fresh samples from three M. edulis individuals
and two species of Alexandrium were immediately pretreated to toxin analysis by the
following protocol. The supernatants were removed by centrifuging (3000× g, 10 min;
Combi-514R, Hanmail Scientific Inc., Deajeon, Republic of Korea) using cells in the late
exponential growth phase to analyze the PSP of A. catenella and A. pacificum. Then, 0.5 N
acetic acid was added, and after freezing for 24 h (−20 ◦C), the cells were fragmented using
a sonicator, and the supernatant was fractionated through centrifugation (3000× g, 10 min).
The aliquoted supernatant was filtered with an ultrafiltration filter (10,000 MW, Millipore;
Merk Millipore, Billerica, MA, USA) and frozen (−20 ◦C) until analysis.

For M. edulis PSP analysis, the same amount of 0.1 N HCl as the weight of the whole
flesh was added, and the tissue was fragmented using a sonicator. After boiling at 100 ◦C
for 5 min, the mixture was centrifuged at 3000× g for 10 min. The supernatant was passed
through a Sep-pak C18 cartridge (Waters Associates Inc., Mulford, MA, USA), filtered
through an ultrafilter (10,000 MW), and frozen (−20 ◦C) until analysis. All pretreated
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samples were subjected to a HPLC (high-performance liquid chromatography) with flu-
orescence detector (UtiMate 3000, Thermo Fisher Scientific, Sunnyvale, CA, USA) with
post-column derivatization and a Hypersil Gold C8 column (250 mm × 4.6 mm i.d., particle
size 5 µm) as previously described by Oshima [32]. The toxin content and composition
of the samples were determined by comparing the detection time and peak area with
those of a standard toxin. The toxicity of the mussels was calculated from the calculated
toxin content using the non-toxicity value [32]. Standard toxins (N-sulfocarbamoyl toxin
1 and 2, gonyautoxin 1 and 4, gonyautoxin 2 and 3, gonyautoxin 5 and 6, neosaxitoxin,
and saxitoxin) were purchased from the National Research Council Institute for Marine
Biosciences. Abbreviations of toxins are as follows: C1+2 = N-sulfocarbamoyl toxin 1+2,
GTX 1+4 = gonyautoxin 1+4, GTX 2+3 = gonyautoxin 2+3, GTX 5+6 = gonyautoxin 5+6,
neoSTX = neosaxitoxin, STX = saxitoxin.

3. Results
3.1. A. catenella Causes Higher Toxicity in M. edulis Than A. pacificum

When M. edulis was exposed to 10 cells/mL of A. catenella, the toxin amount and
toxicity accumulated in M. edulis gradually increased from the first day after exposure
(Figure 2a). However, no values exceeding the regulatory limit of 4 MU/g were observed.
At 100 cells/mL (Figure 2b), the toxin amount and toxicity increased continually by day
4. However, the toxicity exceeded the regulatory limit from day 1 (4.86 MU/g). On the
fifth day, the toxicity was approximately 17.5 times higher than the maximum toxicity
(1.51 MU/g) when M. edulis was exposed to 10 cells/mL A. catenella. After exposing
M. edulis to 1000 cells/mL (Figure 2c), the accumulated toxin amount in M. edulis on
the fifth day was the highest at 65.1 nmoL/g. This toxin amount was approximately
35 and 3.76 times higher than that after exposure to 10 and 100 cells/mL, respectively.
The toxicity increased rapidly from the second day and exceeded the regulatory limit. On
the fifth day, the toxicity was 41.7 and 23.8 times higher than that of exposure to 10 and
100 cells/mL, respectively.

The toxin amounts and toxicities of M. edulis exposed to A. pacificum were lower than
those exposed to A. catenella (Figure 3a). When M. edulis was exposed to 10 cells/mL of
A. pacificum, the toxin amount and toxicity increased; however, the values were much
lower than those in the 10 cells/mL continuous exposure experiment of A. catenella. Toxin
amounts and toxicities increased with increased time after exposure to 100 cells/mL and
were the highest on day 5 (Figure 3b); however, the toxicity was approximately 5.2 times
lower than the maximum toxicity achieved by exposure to 100 cells/mL of A. catenella.
Considering the M. edulis toxicities after continuous exposure to A. pacificum at 10 and
100 cells/mL, the toxicities of M. edulis continually exposed to 1000 cells/mL of A. pacificum
may be much lower than those of A. catenella, although an exposure of 1000 cells/mL of
A. pacificum was not tested.

3.2. Fresh Seawater Detoxifies M. edulis

The toxin content and toxicity in M. edulis exposed to A. catenella reached the maximum
values on the first day after exposure, exceeding the shipping prohibition toxicity standard
value (Figure 4a). On the second day, after the water was replaced with fresh seawater,
the toxin content and toxicity decreased sharply to below the shipping prohibition toxicity
standard value and continued to maintain a similar level until the ninth day. The maximum
toxin content and toxicity were detected on the second day after A. pacificum exposure.
However, the maximum toxin content and toxicity of A. pacificum were lower than those of
A. catenella even though the cell density of A. pacificum was approximately 1.8 times higher
than that of A. catenella (Figure 4b). The toxin content and toxicity rapidly decreased from
the third day, and then gradually decreased until the last day.
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Figure 2. Changes in toxin content and toxicity of Mytilus edulis exposed to Alexandrium catenella
(Group I) at a cell density of 10 (a), 100 (b), and 1000 cells/mL (c).

3.3. GTX1+4 Is the Most Prevalent Composition in M. edulis Poisoned by A. catenella and
A. pacificum

Among the toxic compositions of A. catenella vegetative cells used in this study, C1+2,
GTX1+4, and neoSTX were the main compositions, whereas GTX2+3 and GTX5 were
minor compositions (Table 1, Figure 5). The toxic compositions of A. pacificum vegetative
cells comprised C1+2 and GTX 5 as the main compositions, and neoSTX as the minor
composition (Table 1, Figure 6).
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Table 1. Toxic contents detected in Alexandrium catenella (Group I) and A. pacificum (Group IV) in
this study.

Toxin A. catenella
(fmol/Cells)

A. pacificum
(fmol/Cells)

C1+2 37.91 ± 5.17 * 9.73 ± 1.13
GTX 1+4 10.96 ± 0.30 -
GTX 2+3 0.16 ± 0.02 -

GTX 5 0.72 ± 0.07 10.67 ± 0.26
neo STX 17.49 ± 1.46 1.49 ± 0.21

Total 67.24 ± 6.83 21.89 ± 0.61
Note: * Mean and standard deviation were calculated from cellular toxic cotents in the late exponential phase
after 2 times repeatedly incubating to each same strain.
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When M. edulis was exposed to A. catenella at a cell density of 10 cells/mL (Figure 5a),
GTX1+4 was the most prevalent composition in M. edulis. On the first day of exposure,
GTX1+4 and C1+2 accounted for 54.7% and 45.1%, respectively. On the second day, GTX1+4
expression increased substantially and was maintained until the fifth day. When M. edulis
was exposed to A. catenella at a cell density of 100 cells/mL (Figure 5b), GTX1+4 increased
considerably from the first day after exposure, unlike that at 10 cells/mL. After that, a
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similar trend was observed until the fifth day. When M. edulis was exposed to A. catenella
at a cell density of 1000 cells/mL (Figure 5c), GTX1+4 accounted for 78.1% of the primary
composition, similar to that at 100 cells/mL. Unlike in 10 and 100 cells/mL, neoSTX was
detected as a minor composition (13.7%). When M. edulis was exposed to 10 cells/mL
A. pacificum, the toxic composition of M. edulis was C1+2 from days 1 until 5 (Figure 6a).
Unlike in 10 cells/mL A. catenella, no carbamate toxins were detected. However, when
100 cells/mL A. pacificum was exposed to M. edulis (Figure 6b), the toxic composition of
GTX1+4 on the first day accounted for approximately 98.8% of the main compositions.
C1+2 was detected as a minor composition, and the pattern was similar until the fifth day.

4. Discussion

Paralytic shellfish toxin in shellfish is expected to increase with the abundance of
toxic dinoflagellates, including Alexandrium species. Continuous exposure to increasing
A. catenella and A. pacificum cell densities rapidly increased the toxin amount and toxicity
in M. edulis. Similarly, the toxicity of the Corbicula japonica clam gradually increased with
the A. tamarense cell density, and the toxicity showed maximum values one week after
exposure to the maximum A. tamarense cell density [33]. Furthermore, toxicity in mussels
is associated with the abundance of A. catenella in Korean coastal areas [34]. Thus, if toxic
dinoflagellates appear around bivalve aquaculture sites, the bivalves may be poisoned
quickly. However, in some cases, bivalves were observed with PSP below the detection
limit, even though the cell density of A. catenella and A. pacificum was high. Moreover,
shellfish toxicity did not decrease, although non-toxic phytoplankton such as diatoms
were dominant [35]. Discrepancies in the relationship between the cell density of toxic
dinoflagellates and the toxicity of shellfish might have occurred because of biological factors
such as temperature, salinity, and nutrients [36–41].

The paralytic shellfish toxin of M. edulis rapidly decreased within 24 h in the filtered
seawater; however, it was continuously detected without decreasing below the detection
limit until the last day of the experiment. The toxicity of low-poisoned (84 µg/100 g) blue
mussels was reduced by approximately 36% after 10 days and decreased by approximately
40% after 1 month using a flow water tank, which was continuously supplied with seawater
containing free toxic dinoflagellates. However, in highly poisoned (2684 µg/100 g) blue
mussels, the toxicity was reduced by approximately 94% after 5 days and decreased by
approximately 97% after 1 month [42]. Similarly, the toxicity of poisoned bivalves in a flow-
water tank was reduced by 90% after 5 days, and toxicity was not detected after 1 month [43].
The detoxification of poisoned mussels possibly depends on excreting seawater from the
gut containing digested or poorly digested toxic dinoflagellate cells in the early stages [44].
In contrast, Sekiguchi et al. [45] speculated that another unknown mechanism in toxin
accumulation in the food chain involves toxin accumulation in bivalves. We hypothesized
that the rapidly decreasing toxicity of mussels poisoned by A. catenella and A. pacificum in
the early stages could be due to replacing the water with new filtered seawater. However,
detoxification above 90% may require considerable time when using only filtered seawater.

Feeding activity is essential to detoxifying poisoned bivalves [46]. In a study on the
detoxification rate of oysters exposed to A. minutum, the detoxification rate differed by more
than two-fold depending on the presence of organic matter, and activating feeding behavior
was due to promoting the overall metabolism (i.e., decomposition and excretion) of the
intestinal excretion rate [47,48]. The results of our study, conducted under controlled condi-
tions such as filtering seawater, would have differed from those of a natural environment
where a large amount of organic matter exists. Therefore, to completely detoxify poisoned
shellfish over a short period, continuously feeding non-toxic algae or moving shellfish to
sea areas without toxic dinoflagellates rather than in a filtered seawater environment would
be more effective. In Canada and the United States, detoxifying shellfish is achieved by
moving poisoned shellfish to an area where no toxic plankton have been detected [49–51].

The toxic compounds produced by dinoflagellates remain constant and species-specific
despite dramatic variations in toxicity [43,52–56]. Thus, the toxic composition has been
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used as a biochemical marker [55,57,58]. Although the toxin compositions of identified
Alexandrium species in Korean coastal waters have rarely been reported, Kim et al. [57] and
Cho and Lee [59] reported that the toxic compositions of A. tamarense in the southeastern
coastal waters of Korea were C1 and neoSTX as major compositions, and GTX 1+4, GTX 2+3,
and dcGTX 2+3 as minor compositions. However, STX and GTX 5 could not be detected
in A. tamarense strains [59]. In addition, the major toxins produced by A. catenella (Group
I) were C1+2, and those produced by A. tamarense (Group IV) were C1+2 and GTX4 in
most isolates from similar coastal areas [60]. Recently, Baek et al. [34] found C1+2, GTX-1,
and GTX-2 in A. catenella (Group I) bloom samples from the Geoje coast. In contrast, Shin
et al. [16] found that GTX 3+4 (~90 mol%) was the dominant PSTs in A. catenella (Group
I) and A. pacificum (Group IV). C2 (7.8 mole%) was the next most toxic compound in
both species.

However, toxic compositions vary significantly with the growth phase and under dif-
ferent environmental conditions, such as temperature, salinity, and nutrients [36,38,39,41].
High salinity increases GTX 2+3 in A. minutum [36]. Furthermore, variations in toxic com-
position during exponential growth in batch cultures of Alexandrium isolates were also
reported. The largest changes in the toxic composition occurred in response to variations
in temperature [38]. Furthermore, the response of toxin composition under phosphorous
depletion varied with the nitrogen source, such as urea, NH4, and NO3 [40]. Changes in the
toxic composition of dinoflagellates under different nutrient conditions are strain-specific
because apparent regular patterns of toxic composition changing under different nutrient
conditions were not observed [39].

Poison in bivalves has a higher carbamoyl toxin than the N-sulfocarbamoyl toxin,
which differs from the toxicity of ingested swimming cells [47,61,62]. When Aulacomy ater
was exposed to A. catenella swimming cells, the main compositions of C1+2, GTX1+4, and
GTX2+3 accounted for most of the primary toxic compositions in the bivalves [63]. In
addition, the toxins detected in A. catenella swimming cells in the field were C1, GTX1, and
GTX2. However, in M. galloprovincialis fed with them, toxic compositions were detected in
the order of GTX1+4, GTX3, and STX [34]. Toxic dinoflagellates are converted into toxic
carbamoyl toxins in shellfish tissues through hydrolysis at low pH and natural reduc-
ing agents when many unstable N-sulfocarbamoyl toxins are present owing to chemical
toxin conversion [64–66]. In bivalves that feed on toxic dinoflagellates, chemical toxin
conversion [65,66] through acid hydrolysis and natural reducing agents at low pH and
bioconversion [32,47,67] through enzymatic reactions occur. Therefore, even if the toxic
dinoflagellates have low toxicity owing to a large amount of N-sulfocarbamoyl toxin, it
is likely that the toxicity level will be converted into a high-toxicity composition by the
ingested dinoflagellates, which will increase the toxicity of shellfish and lead to public
health risks. In this study, A. catenella required careful monitoring because this toxin con-
version phenomenon was evident, and A. pacificum was expected to convert to a high level
of toxicity in bivalves with continuous exposure.

In conclusion, M. edulis was exposed to toxic dinoflagellates, and toxicity was detected
after 24 h. PSP accumulated in M. edulis was detected at a higher level when fed A. catenella
than when fed A. pacificum and reached its maximum value quickly. The poisoned M. edulis
was reduced to below the permissible PSP level within a short time in the absence of toxic
dinoflagellates; however, it is expected that it will take a considerable amount of time to
detoxify M. edulis below the detection limit completely. In addition, the N-sulfocarbamoyl
composition (C1+2) was the main composition responsible for the toxicity of A. catenella and
A. pacificum swimming cells, but the carbamate composition (GTX 1+4) was detected as the
main composition because of biotransformation in M. edulis fed with it. Our study results
can help to clarify the environmental conditions of PSP generation caused by toxic plankton
in the future and help establish a preliminary forecast system for PSP. Therefore, continuous
monitoring over more than 9 days is necessary to minimize damage. Furthermore, research
on the differences in toxic compositions according to numerous A. catenella and A. pacificum
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strains and the changing toxic compositions under different environmental conditions is
necessary to understand the PSP outbreak in Korean coastal areas.
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