Determination of River Ecological Flow Thresholds and Development of Early Warning Programs Based on Coupled Multiple Hydrological Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Improved Dynamic Calculation Method
2.3.2. NGPRP Method
2.3.3. Improved Monthly Frequency Calculation Method
2.3.4. Improved RVA Method
2.3.5. Tennant Method
2.3.6. Gram–Charlier A Series Model
3. Results
3.1. Ecological Flows Calculated by Each Hydrological Method
3.2. Analysis of the Level of Satisfaction
3.3. Economic Benefit Analysis
3.4. Determination of Ecological Flow Thresholds
3.5. Ecological Flow Early Warning Program
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skiniti, G.; Lilli, M.; Skarakis, N.; Tournaki, S.; Nikolaidis, N.; Tsoutsos, T. A Holistic Approach for Tourism Carrying Capacity Estimation in Sensitive Ecological Areas. Environ Dev Sustain. 2024, 1–25. [Google Scholar] [CrossRef]
- Wei, N.; Xie, J.; Lu, K.; He, S.; Gao, Y.; Yang, F. Dynamic Simulation of Ecological Flow Based on the Variable Interval Analysis Method. Sustainability 2022, 14, 7988. [Google Scholar] [CrossRef]
- Jia, H.; Ma, H.; Wei, M. Calculation of the Minimum Ecological Water Requirement of an Urban River System and Its Deployment: A Case Study in Beijing Central Region. Ecol. Model. 2011, 222, 3271–3276. [Google Scholar] [CrossRef]
- Chen, A.; Sui, X.; Wang, D.; Liao, W.; Ge, H.; Tao, J. Landscape and avifauna changes as an indicator of Yellow River Delta Wetland restoration. Ecol. Eng. 2016, 86, 162–173. [Google Scholar] [CrossRef]
- Yin, J.; Slater, L.; Gu, L.; Liao, Z.; Guo, S.; Gentine, P. Global Increases in Lethal Compound Heat Stress: Hydrological Drought Hazards Under Climate Change. Geophys. Res. Lett. 2022, 49, e2022GL100880. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, Y.; Meng, Y.; Liu, Y.; Yan, D. Study on the Theories and Methods of Ecological Flow Guarantee Rate Index under Different Time Scales. Sci. Total Environ. 2021, 771, 145378. [Google Scholar] [CrossRef] [PubMed]
- Kolomiets, O.A.; Lachenmeier, D.W.; Hoffmann, U.; Siesler, H.W. Quantitative Determination of Quality Parameters and Authentication of Vodka Using near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2010, 18, 59–67. [Google Scholar] [CrossRef]
- Poff, N.L.; Matthews, J.H. Environmental Flows in the Anthropocence: Past Progress and Future Prospects. Curr. Opin. Environ. Sustain. 2013, 5, 667–675. [Google Scholar] [CrossRef]
- Karakoyun, Y.; Dönmez, A.H.; Yumurtacı, Z. Comparison of environmental flow assessment methods with a case study on a runoff river–type hydropower plant using hydrological methods. Environ. Monit. Assess. 2018, 190, 722. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Q.; Xie, Y.; Xu, P.; Du, H. Evaluation of Minimum and Suitable Ecological Flows of an Inland Basin in China Considering Hydrological Variation. Water 2023, 15, 649. [Google Scholar] [CrossRef]
- Efstratiadis, A.; Tegos, A.; Varveris, A.; Koutsoyiannis, D. Assessment of environmental flows under limited data availability: Case study of the Acheloos River, Greece. Hydrol. Sci. J. 2014, 59, 731–750. [Google Scholar] [CrossRef]
- Leone, M.; Gentile, F.; Lo Porto, A.; Ricci, G.F.; De Girolamo, A.M. Ecological Flow in Southern Europe: Status and Trends in Non-Perennial Rivers. J. Environ. Manag. 2023, 342, 118097. [Google Scholar] [CrossRef] [PubMed]
- Nichat, V.; Shenouda, N.; Koujak, K.; Zwicker, K.; Barrowman, N.; Bijelic, V.; Shapira-Zaltsberg, G. Clinical and Radiological Correlation of Low Flow Vascular Malformation Treated With Percutaneous Sclerotherapy. Can. Assoc. Radiol. J. 2023, 74, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Piniewski, M.; Eini, M.; Chattopadhyay, S.; Okruszko, T.; Kundzewicz, Z.W. Is there a coherence in observed and projected changes in riverine low flow indices across Central Europe? Earth-Sci. Rev. 2022, 233, 104187. [Google Scholar] [CrossRef]
- Liu, Z.; Mo, L.; Lou, S.; Zhu, Y.; Liu, T. An Ecology-Oriented Single–Multi-Objective Optimal Operation Modeling and Decision-Making Method in the Case of the Ganjiang River. Water 2024, 16, 970. [Google Scholar] [CrossRef]
- Rodríguez, E.; Salazar, J.F.; Villegas, J.C.; Mercado-Bettín, D. Assessing Changes in Extreme River Flow Regulation from Non-Stationarity in Hydrological Scaling Laws. J. Hydrol. 2018, 562, 492–501. [Google Scholar] [CrossRef]
- Yu, J.; Yu, S.; Zhang, H.; Wang, Z.; Zhou, C.; Chen, X. Determination of Ecological Flow Thresholds for Rainfall-Recharging Rivers Based on Multiple Hydrological Methods. Front. Environ. Sci. 2023, 11, 1116633. [Google Scholar] [CrossRef]
- Tan, G.; Yi, R.; Chang, J.; Shu, C.; Yin, Z.; Han, S.; Feng, Z.; Lyu, Y. A New Method for Calculating Ecological Flow: Distribution Flow Method. AIP Adv. 2018, 8, 045118. [Google Scholar] [CrossRef]
- Yang, L.; Hou, J.; Tong, Y.; Wang, P.; Cheng, L.; Song, C.; Yuan, L.; Lv, J.; Xue, S. Assessment of Suitable Minimum Ecological Flow Downstream of a Dam in the Upper Yellow River Based on Native Fish Conservation. J. Hydroinformatics 2023, 25, 150–162. [Google Scholar] [CrossRef]
- Shah, S.J.; van Walraven, C.; Jeon, S.Y.; Boscardin, J.; Hobbs, F.R.; Connolly, S.J.; Ezekowitz, M.D.; Covinsky, K.E.; Fang, M.C.; Singer, D.E. Estimating Vitamin K Antagonist Anticoagulation Benefit in People With Atrial Fibrillation Accounting for Competing Risks: Evidence From 12 Randomized Trials. Circ. Cardiovasc. Qual. Outcomes 2024, 17, e010269. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef]
- Ge, J.; Peng, W.; Huang, W.; Qu, X.; Singh, S.K. Quantitative Assessment of Flow Regime Alteration Using a Revised Range of Variability Methods. Water 2018, 10, 597. [Google Scholar] [CrossRef]
- Tennant, D.L. Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- Hamidifar, H.; Akbari, F.; Rowiński, P.M. Assessment of Environmental Water Requirement Allocation in Anthropogenic Rivers with a Hydropower Dam Using Hydrologically Based Methods—Case Study. Water 2022, 14, 893. [Google Scholar] [CrossRef]
- Khan, I.; Zakwan, M.; Pulikkal, A.K.; Lalthazula, R. Environmental Flow Assessment for the Musi River, India. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Wang, W.; Seta, K.; Ikegaya, N. Modelling Probability Density Functions Based on the Gram–Charlier Series with Higher-Order Statistics: Theoretical Derivation and Application. J. Wind. Eng. Ind. Aerodyn. 2022, 231, 105227. [Google Scholar] [CrossRef]
- Poroseva, S.V.; Murman, S.M. Analysis of High-Order Velocity Moments in a Strained Channel Flow. Int. J. Heat Fluid Fl 2021, 89, 108796. [Google Scholar] [CrossRef]
- bin Zainol, M.A.; Ikegaya, N.; Mohamad, M.F. Stochastic and Statistical Characteristics of Artificially Generated Turbulent Flow Following Karman Spectrum in a Wind-Tunnel Experiment. J. Wind. Eng. Ind. Aerodyn. 2022, 229, 105148. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, H.; Yang, Z.; Yang, W. Environmental flow assessments for transformed estuaries. J. Hydrol. 2015, 520, 75–84. [Google Scholar] [CrossRef]
- Sun, T.; Xu, J.; Yang, Z.F. Environmental flow assessments in estuaries based on an integrated multi-objective method. Hydrol. Earth Syst. Sci. 2013, 17, 751–760. [Google Scholar] [CrossRef]
- Armentrout, G.W.; Wilson, J.F. An assessment of low flows in streams in northeastern Wyoming. Water-Resour. Investig. Rep. 2013. [Google Scholar] [CrossRef]
- Acreman, M.C.; Dunbar, M.J. Defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Palau, A.; Alcázar, J. The basic flow method for incorporating flow variability in environmental flows. River Res. Appl. 2010, 28, 93–102. [Google Scholar] [CrossRef]
- Qu, J.; Ding, X.; Sang, J.; Fenech, A.; Zhang, X. A Comprehensive Ecological Flow Calculation for a Small Hydropower Development River: A Case Study. Hydrol. Process. 2022, 36, e14772. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.-P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H.; Zhang, L. River Ecological Flow Early Warning Forecasting Using Baseflow Separation and Machine Learning in the Jiaojiang River Basin, Southeast China. Sci. Total Environ. 2023, 882, 163571. [Google Scholar] [CrossRef] [PubMed]
- Garza-Díaz, L.E.; Sandoval-Solis, S. Identifying Thresholds, Regime Shifts, and Early Warning Signals Using Long-Term Streamflow Data in the Transboundary Rio Grande–Rio Bravo Basin. Water 2022, 14, 2555. [Google Scholar] [CrossRef]
- Liu, L.; Shi, L.; Chen, D.; Wu, J.; Yang, F.; Yang, M.; Zhao, Y.; Ma, X. Framework of ecological infrastructure construction based on landsenses ecology: Meeting natural and human needs. Int. J. Sustain. Dev. World Ecol. 2023, 30, 850–867. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, S.; Bai, X.; Yuan, W.; Wang, B.; Hong, F.; Guo, W. Quantifying the impacts of climate change and human activities on ecological flow security based on a new framework. Ecohydrology 2024, e2660. [Google Scholar] [CrossRef]
Model Year | Dry Year | Flat Water Year | Wet Year |
---|---|---|---|
Percentage anomaly |
Narrative Description of Flow | Recommended Base Flow Regimens
(Percentages of Average Annual Flow)/% | |
---|---|---|
Wet Season | Dry Season | |
Flushing or Maximum | 200 | 200 |
Optimal Range | 60~100 | 60~100 |
Outatanding | 60 | 40 |
Excellent | 50 | 30 |
Good | 40 | 20 |
Fair | 30 | 10 |
Minimum | 10 | 10 |
Severe Degradation | 0~10 | 0~10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, J.; Wang, L.; Zhang, R. Determination of River Ecological Flow Thresholds and Development of Early Warning Programs Based on Coupled Multiple Hydrological Methods. Water 2024, 16, 1986. https://doi.org/10.3390/w16141986
Zhang X, Yu J, Wang L, Zhang R. Determination of River Ecological Flow Thresholds and Development of Early Warning Programs Based on Coupled Multiple Hydrological Methods. Water. 2024; 16(14):1986. https://doi.org/10.3390/w16141986
Chicago/Turabian StyleZhang, Xiaoyan, Jiandong Yu, Liangguo Wang, and Rui Zhang. 2024. "Determination of River Ecological Flow Thresholds and Development of Early Warning Programs Based on Coupled Multiple Hydrological Methods" Water 16, no. 14: 1986. https://doi.org/10.3390/w16141986
APA StyleZhang, X., Yu, J., Wang, L., & Zhang, R. (2024). Determination of River Ecological Flow Thresholds and Development of Early Warning Programs Based on Coupled Multiple Hydrological Methods. Water, 16(14), 1986. https://doi.org/10.3390/w16141986