Exploring the Influence of the Digital Economy on Marine Pollution Mitigation: A Spatial Econometric Study of Coastal China
Abstract
:1. Introduction
2. Marine Pollution Index and Autocorrelation
2.1. Construction of Marine Pollution Index
2.2. Spatial Autocorrelations among Coastal Marine Pollutions
3. Data Description
3.1. Core Explanatory Variable: The Digital Economy Index
3.2. Control Variables
- Economic Growth (EG): This is quantified by the per capita GDP of each city, incorporating a quadratic term to consider potential non-linear effects, as suggested by the environmental Kuznets curve (EKC) hypothesis [27].
- Population Density (PD): Calculated as the number of people per square kilometer. High population density is a primary contributor to coastal water pollution, which escalates sewage discharge and intensifies ocean pollution.
- Energy Efficiency (EE): Measured by the energy consumption per unit of GDP in each city, the effects of which on MP have been reported in Ref. [29].
- Industrial Structure (IS): Defined as the ratio of secondary industry output to the city’s total GDP. The impact of industrial activities on the coastal marine environment is transparent and well recognized.
- International Openness (IO): Defined by the share of utilized foreign direct investment in the city’s GDP.
- Government Intervention (GI): This is represented by the ratio of government fiscal spending to the city’s GDP and introduced as a measure of governmental activity.
- Marine Economic Development (MED): This is evaluated using gross ocean product data at the provincial level due to the absence of city-specific data, following the methodology in Ref. [22]. A detailed list of the cities and corresponding provinces is provided in Appendix A.
3.3. Data Source and Description
4. Empirical Evaluation
4.1. Spatial Durbin Model
4.2. Empirical Results
4.3. Robustness Checks
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
City Index | City | Province |
1 | Dandong | Liaoning |
2 | Dalian | Liaoning |
3 | Yingkou | Liaoning |
4 | Panjin | Liaoning |
5 | Jinzhou | Liaoning |
6 | Huludao | Liaoning |
7 | Qinhuangdao | Heibei |
8 | Tangshan | Hebei |
9 | Tianjin | Tianjin |
10 | Cangzhou | Hebei |
11 | Dongying | Shandong |
12 | Weifang | Shandong |
13 | Qingdao | Shandong |
14 | Weihai | Shandong |
15 | Rizhao | Shandong |
16 | Lianyungang | Jiangsu |
17 | Yancheng | Jiangsu |
18 | Nantong | Jiangsu |
19 | Shanghai | Shanghai |
20 | Jiaxing | Zhejiang |
21 | Ningbo | Zhejiang |
22 | Taizhou | Zhejiang |
23 | Wenzhou | Zhejiang |
24 | Ningde | Fujian |
25 | Fuzhou | Fujian |
26 | Putian | Fujian |
27 | Quanzhou | Fujian |
28 | Xiamen | Fujian |
29 | Zhangzhou | Fujian |
30 | Shantou | Guangdong |
31 | Shanwei | Guangdong |
32 | Huizhou | Guangdong |
33 | Shenzhen | Guangdong |
34 | Zhuhai | Guangdong |
35 | Jiangmen | Guangdong |
36 | Yangjiang | Guangdong |
37 | Maoming | Guangdong |
38 | Fangchenggang | Guangxi |
39 | Beihai | Guangxi |
40 | Zhanjiang | Guangdong |
41 | Haikou | Hainan |
42 | Sanya | Hainan |
References
- Kar, S.; Banerjee, S. Pollution Abatement and Production Outsourcing in India. J. Ind. Compet. Trade 2022, 22, 83–97. [Google Scholar] [CrossRef]
- Zolkefli, N.; Sharuddin, S.S.; Yusoff, M.Z.M.; Hassan, M.A.; Maeda, T.; Ramli, N. A review of current and emerging approaches for water pollution monitoring. Water 2020, 12, 3417. [Google Scholar] [CrossRef]
- Bhardwaj, L.K. Occurrence of microplastics (MPs) in Antarctica and its impact on the health of organisms. Marit. Technol. Res. 2023, 6, 265418. [Google Scholar] [CrossRef]
- Agarwala, N. Monitoring the ocean environment using robotic systems: Advancements, trends, and challenges. Mar. Technol. Soc. J. 2020, 54, 42–60. [Google Scholar] [CrossRef]
- Fulke, A.B.; Kotian, A.; Giripunje, M.D. Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect. Bull. Environ. Contam. Toxicol. 2020, 105, 182–197. [Google Scholar] [CrossRef]
- Willis, K.A.; Serra-Goncalves, C.; Richardson, K.; Schuyler, Q.A.; Pedersen, H.; Anderson, K.; Stark, J.S.; Vince, J.; Hardesty, B.D.; Wilcox, C.; et al. Cleaner seas: Reducing marine pollution. Rev. Fish Biol. Fish. 2022, 32, 145–160. [Google Scholar] [CrossRef]
- Ferraro, G.; Failler, P. Governing plastic pollution in the oceans: Institutional challenges and areas for action. Environ. Sci. Policy 2020, 112, 453–460. [Google Scholar] [CrossRef]
- Agarwala, N. Managing marine environmental pollution using Artificial Intelligence. Marit. Technol. Res. 2021, 3, 120–136. [Google Scholar] [CrossRef]
- Sidrah, H.; Man Sing, W.; Sawaid, A.; Coco, Y.T.K.; Janet, N.; Kwon Ho, L.; Danling, T.; Lilian, P. Detection and Monitoring of Marine Pollution Using Remote Sensing Technologies. In Monitoring of Marine Pollution; Houma Bachari, F., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 2; ISBN 978-1-83880-812-9. [Google Scholar]
- Shen, W.; Hu, Q.; Yu, X.; Imwa, B.T. Does coastal local government competition increase coastal water pollution? Evidence from China. Int. J. Environ. Res. Public Health 2020, 17, 6862. [Google Scholar] [CrossRef]
- Jiang, S.-S.; Li, J.-M. Do political promotion incentive and fiscal incentive of local governments matter for the marine environmental pollution? Evidence from China’s coastal areas. Mar. Policy 2021, 128, 104505. [Google Scholar] [CrossRef]
- Agarwala, N.; Saengsupavanich, C. Oceanic Environmental Impact in Seaports. Oceans 2023, 4, 360–380. [Google Scholar] [CrossRef]
- Freeman, L.A.; Corbett, D.R.; Fitzgerald, A.M.; Lemley, D.A.; Quigg, A.; Steppe, C.N. Impacts of Urbanization and Development on Estuarine Ecosystems and Water Quality. Estuaries Coasts 2019, 42, 1821–1838. [Google Scholar] [CrossRef]
- Garcés-Ordóñez, O.; Espinosa Díaz, L.F.; Pereira Cardoso, R.; Costa Muniz, M. The impact of tourism on marine litter pollution on Santa Marta beaches, Colombian Caribbean. Mar. Pollut. Bull. 2020, 160, 111558. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Nuta, F.M.; Levente, D.; Yiyu, B.; Yihan, Z.; Yi, C.; Shah, M.H.; Kumar, R. Nexus between trade, industrialization, and marine pollution: A quantile regression approach. Ecol. Indic. 2023, 155, 110992. [Google Scholar] [CrossRef]
- Issifu, I.; Sumaila, U.R. A Review of the Production, Recycling and Management of Marine Plastic Pollution. J. Mar. Sci. Eng. 2020, 8, 945. [Google Scholar] [CrossRef]
- Alam, M.W.; Bhuyan, M.S.; Xiangmin, X. Protecting the Environment from Marine Pollution in Bangladesh: A Brief in Legal Aspects with Response to National and International Cooperation’s. Thalass. Int. J. Mar. Sci. 2021, 37, 871–881. [Google Scholar] [CrossRef]
- Hu, Q.; Shen, W. Effects of Industrial Land Conveyance on Coastal Marine Pollution: An Spatial Durbin Econometric Analysis. Sustainability 2021, 13, 7209. [Google Scholar] [CrossRef]
- Shao, Q. Nonlinear effects of marine economic growth and technological innovation on marine pollution: Panel threshold analysis for China’s 11 coastal regions. Mar. Policy 2020, 121, 104110. [Google Scholar] [CrossRef]
- Shao, Q.; Guo, J.; Kang, P. Environmental response to growth in the marine economy and urbanization: A heterogeneity analysis of 11 Chinese coastal regions using a panel vector autoregressive model. Mar. Policy 2021, 124, 104350. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Song, M.; Zhao, R. Analyzing the decoupling relationship between marine economic growth and marine pollution in China. Ocean Eng. 2017, 137, 1–12. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Z. Impact of coastal urbanization on marine pollution: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10718. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Zhang, W.; Li, W. Promoting the development of marine low carbon through the digital economy. J. Innov. Knowl. 2023, 8, 100285. [Google Scholar] [CrossRef]
- Shiwei, W.; Jinmin, D.; Shuang, P. How does Digital Economy Promote Green Innovation: Empirical Evidence from Chinese Cities. Collect. Essays Financ. Econ. 2022, 38, 10–20. [Google Scholar]
- Jia, R.; Fan, M.; Shao, S.; Yu, Y. Urbanization and haze-governance performance: Evidence from China’s 248 cities. J. Environ. Manag. 2021, 288, 112436. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-C.; Miao, Y.-M.; Gao, C.; Long, R.-Y.; Chen, H.; Zhao, B.; Wang, S.-X. Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. J. Clean. Prod. 2019, 208, 340–352. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Qiao, Y.; Yang, Y.; Gu, J.; Zhao, J. Distribution and geochemical speciation of heavy metals in sediments from coastal area suffered rapid urbanization, a case study of Shantou Bay, China. Mar. Pollut. Bull. 2013, 68, 140–146. [Google Scholar] [CrossRef]
- Ouyang, X.; Gao, B.; Du, K.; Du, G. Industrial sectors’ energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration. Energy 2018, 145, 408–416. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, X. The identification problem of spatial externalities. Stat. Res. 2013, 30, 94–100. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: New York, NY, USA, 2014; ISBN 978-3-642-40339-2. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009; ISBN 9780429138089. [Google Scholar]
- Ma, N.; Liu, P.; Xiao, Y.; Tang, H.; Zhang, J. Can green technological innovation reduce hazardous air pollutants?—An empirical test based on 283 cities in China. Int. J. Environ. Res. Public Health 2022, 19, 1611. [Google Scholar] [CrossRef]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Zhang, H.; Ahmad, M. Digital economy and environmental quality: Insights from the spatial Durbin model. Int. J. Environ. Res. Public Health 2022, 19, 16094. [Google Scholar] [CrossRef] [PubMed]
- Ekpe, G.K.; Klis, A.A. Spillover Effects in Irrigated Agriculture from the Groundwater Commons. Environ. Resour. Econ. 2023, 86, 469–507. [Google Scholar] [CrossRef]
- Cole, M.A.; Ozgen, C.; Strobl, E. Air pollution exposure and COVID-19 in Dutch municipalities. Environ. Resour. Econ. 2020, 76, 581–610. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Choumert-Nkolo, J.; Combes, J.-L.; Motel, P.C.; Kéré, E.N.; Ongono-Olinga, J.-G.; Schwartz, S. Neighborhood effects in the Brazilian Amazônia: Protected areas and deforestation. J. Environ. Econ. Manag. 2019, 93, 272–288. [Google Scholar] [CrossRef]
- Lin, H.-L.; Li, H.-Y.; Yang, C.-H. Agglomeration and productivity: Firm-level evidence from China’s textile industry. China Econ. Rev. 2011, 22, 313–329. [Google Scholar] [CrossRef]
- Li, K.; Fang, L.; He, L. How population and energy price affect China’s environmental pollution? Energy Policy 2019, 129, 386–396. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X. An empirical analysis of the relationship between China’s marine economy and marine environment. Appl. Nanosci. 2023, 13, 2831–2836. [Google Scholar] [CrossRef]
- Saengsupavanich, C. The 2018-Coastal Problems in Thailand’s Second Largest Coastal City. In Proceedings of the 10th International Conference on Asian and Pacific Coasts(APAC 2019), Hanoi, Vietnam, 25–28 September 2019; pp. 1029–1034. [Google Scholar]
- Japan News Asia News Network. Japan to Monitor Microplastic Pollution with AI Device. Available online: https://www.nationthailand.com/news/30353025 (accessed on 25 June 2024).
- Gavin, D.; Dhu, T.; Sagar, S.; Mueller, N.; Dunn, B.; Lewis, A.; Lymburner, L.; Minchin, S.; Oliver, S.; Ross, J. Digital Earth Australia-From Satellite Data to Better Decisions. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8633–8635. [Google Scholar]
Year | 2006 | 2007 | 2008 | 2009 | 2010 |
Moran’s I | 0.411 *** | 0.414 *** | −0.008 | 0.327 *** | 0.391 *** |
Year | 2011 | 2012 | 2013 | 2014 | 2015 |
Moran’s I | 0.262 ** | 0.370 *** | 0.383 *** | 0.402 *** | 0.454 *** |
Primary Index | Secondary Index | Index Interpretation |
---|---|---|
Digital economy development level | Internet penetration rate | Number of broadband internet connections per 100 people |
Industry employment ratio | Share of computer service and software industry workers among urban employment | |
Business output | Per capita volume of telecommunications services | |
Mobile phone usage | Mobile phone subscriptions per 100 people |
Variable Type | Variable Name | Symbol | Observations | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|---|---|
Explained Variable | Marine pollution | lnMP | 420 | −1.930 | 0.738 | −4.010 | 0.380 |
Core Explanatory Variables | Digital economy | lnDE | 420 | −2.468 | 0.852 | −5.026 | −0.046 |
Quadratic term of digital economy | (lnDE)2 | 420 | 6.814 | 4.559 | 0.002 | 25,263 | |
Control Variables | Economic growth | lnEG | 420 | 10.646 | 0.597 | 9.086 | 12.066 |
Quadratic term of economic growth | (lnEG)2 | 420 | 113.699 | 12.724 | 82.556 | 145.581 | |
Urbanization rate | lnUR | 420 | −0.260 | 0.124 | −0.575 | 0 | |
Population density | lnPD | 420 | 6.266 | 0.579 | 4.890 | 7.882 | |
Energy efficiency | lnEE | 420 | −1.064 | 1.071 | −3.878 | 1.580 | |
Industrial structure | lnIS | 420 | 3.881 | 0.212 | 2.958 | 4.390 | |
Degree of openness to the outside world | lnIO | 420 | −3.787 | 1.013 | −6.640 | −2.028 | |
Government intervention | lnGI | 420 | −2.166 | 0.344 | −3.155 | −1.275 | |
Marine economic development | lnMED | 420 | 9.823 | 0.514 | 8.577 | 10.847 |
Test | Content | Statistics | p-Value |
---|---|---|---|
LM Test | Spatial error | 19.276 | 0.000 |
Spatial lag | 12.939 | 0.000 | |
Robust-LM Test | Spatial error | 12.199 | 0.000 |
Spatial lag | 5.861 | 0.015 | |
LR Test | SEM and SDM | 65.99 | 0.000 |
SAR and SDM | 61.75 | 0.000 | |
Wald Test | SEM and SDM | 95.49 | 0.000 |
SAR and SDM | 83.02 | 0.000 | |
LR Test | Two-Way and Spatial | 229.16 | 0.000 |
Two-Way and Time | 385.93 | 0.000 |
Variables | Direct Effects | Indirect Effects | Total Effects |
---|---|---|---|
lnDE | −0.346 ** | −2.077 *** | −2.423 *** |
(0.165) | (0.352) | (0.487) | |
(lnDE)2 | −0.0460 * | −0.297 *** | −0.343 *** |
(0.0263) | (0.0570) | (0.0788) | |
lnUR | 0.981 ** | 2.566 ** | 3.547 ** |
(0.489) | (1.177) | (1.590) | |
lnEE | −0.0129 | 0.304 | 0.292 |
(0.0759) | (0.193) | (0.248) | |
lnPD | 0.275 ** | 0.414 | 0.688 |
(0.128) | (0.330) | (0.435) | |
lnIS | −0.322 | −0.277 | −0.599 |
(0.261) | (0.613) | (0.809) | |
lnIO | 0.0118 | 0.00831 | 0.0201 |
(0.0369) | (0.0750) | (0.102) | |
lnEG | −3.647 *** | −12.21 *** | −15.86 *** |
(1.369) | (3.422) | (4.560) | |
(lnEG)2 | 0.187 *** | 0.582 *** | 0.770 *** |
(0.0631) | (0.157) | (0.209) | |
lnGI | −0.172 | −0.736 | −0.908 |
(0.187) | (0.438) | (0.584) | |
lnMED | −0.122 | −0.257 | −0.379 |
(0.131) | (0.276) | (0.358) | |
Observations | 420 | 420 | 420 |
R-squared | 0.393 | 0.393 | 0.393 |
Number of id | 42 | 42 | 42 |
Variables | Replacing Weight Matrix | Replacing Explained Variable | Replacing Core Explanatory Variable | ||||||
---|---|---|---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |
lnDE | −0.381 * | −5.645 *** | −6.025 *** | −0.779 *** | −3.448 *** | −4.226 ** | −0.443 ** | −2.509 *** | −2.951 *** |
(0.205) | (1.460) | (1.608) | (0.251) | (0.644) | (0.868) | (0.213) | (0.454) | (0.630) | |
(lnDE) 2 | −0.042 | −0.806 ** | −0.848 *** | −0.090 ** | −0.495 ** | −0.585 *** | −0.0559 | −0.411 *** | −0.467 *** |
(0.033) | (0.235) | (0.258) | (0.040) | (0.105) | (0.141) | (0.042) | (0.090) | (0.124) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Wang, Q.; Wei, L. Exploring the Influence of the Digital Economy on Marine Pollution Mitigation: A Spatial Econometric Study of Coastal China. Water 2024, 16, 1990. https://doi.org/10.3390/w16141990
Xu W, Wang Q, Wei L. Exploring the Influence of the Digital Economy on Marine Pollution Mitigation: A Spatial Econometric Study of Coastal China. Water. 2024; 16(14):1990. https://doi.org/10.3390/w16141990
Chicago/Turabian StyleXu, Wangfang, Qianqian Wang, and Longbao Wei. 2024. "Exploring the Influence of the Digital Economy on Marine Pollution Mitigation: A Spatial Econometric Study of Coastal China" Water 16, no. 14: 1990. https://doi.org/10.3390/w16141990
APA StyleXu, W., Wang, Q., & Wei, L. (2024). Exploring the Influence of the Digital Economy on Marine Pollution Mitigation: A Spatial Econometric Study of Coastal China. Water, 16(14), 1990. https://doi.org/10.3390/w16141990