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Abstract: This work employs the spatial econometric model to explore the potential relation between
the condition of marine ecosystems and the rapid development of the digital economy (DE), focusing
on the coastal area of China. While the environmental benefits of the DE are well studied regarding the
land and atmospheric pollution, its influence on marine pollution (MP) remains underexplored, and
this work aims to fill in this gap. By analyzing panel data from 42 coastal cities in China using a spatial
Durbin model to examine both the direct and indirect impacts of the DE on MP, the results highlight
the positive role that the DE plays in reducing MP, benefitting not only the local marine environments
but also those of neighboring areas through non-negligible spatial spillover effects. In addition,
we find a non-linear, inverted U-shaped relationship between the DE and MP. These results are
further confirmed through extensive robustness tests. This work enriches the field of environmental
economics by reporting the first empirical study on the marine benefits of the DE and offers policy
recommendations to optimize digital technologies for marine environmental preservation.

Keywords: digital economy; marine pollution; spatial econometric analysis; spillover effects

1. Introduction

In recent years, the issue of environmental pollution has attracted considerable re-
search attention worldwide due to its urgency and complexity [1-3]. Numerous studies
have evaluated the critical determinants of environmental degradation from both the
microscopic and macroscopic perspectives. The emergence of the digital economy (DE),
characterized by rapid technological progress and expanded digital integration, has sparked
significant interest in its environmental consequences. Most existing research in this direc-
tion has focused on the DE’s capacity to alleviate land-based and atmospheric pollutants.
This focus is rational and natural, as advancements in the DE enhance resource man-
agement, boost energy efficiency, and foster innovative sustainable practices, collectively
aiding in the reduction of various pollution types.

At the same time, much research attention is also paid to the third kind of environ-
mental system—the marine system [4-9]. It is well recognized that marine ecosystems
are essential for global biodiversity and the sustenance of human communities, especially
for the over 40% of the world’s population residing in coastal zones. Recent studies have
extensively examined marine pollution (MP) from various angles. For instance, investiga-
tions into the origins of coastal MP by Shen et al. [10] have identified local governmental
competition in China as a contributing factor, with more pronounced effects observed
under intense fiscal pressures. Similarly, Jiang and Li [11] demonstrated that the GDP
evaluation systems employed by local governments exacerbate MP. Port development and
operations also significantly impact marine environments. Agarwala [12] highlighted the
environmental degradation caused by seaport activities, emphasizing the need for sustain-
able practices to mitigate these effects. Another significant contributor to MP is the rapid
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urbanization process of coastal cities. Freeman et al. [13] indicated that pollution resulting
from urbanization adversely impacts coastal water quality through mechanisms such as
river inputs, urban runoff, and port discharges. Additionally, Garcés-Ordofiez et al. [14]
found that the development of coastal tourism has led to significant marine pollution,
which in turn affects water quality. Trade openness and industrialization play further key
roles in MP. Ullah et al. [15] analyzed the relationship between trade, industrialization,
and MP, demonstrating that these factors markedly increase MP due to industrial waste
water that contains heavy metals, organic compounds, and toxic chemicals, all of which
cause marine pollution if not properly treated. Issifu and Sumaila [16] discussed the severe
impact of plastic waste on marine ecosystems, stressing the importance of effective policy
interventions to manage and reduce plastic pollution. Moreover, Alam et al. [17] discussed
the inadequacies of marine environmental governance—including the negative externalities
of marine ecological protection, the confusion within marine management systems, and
the lack of social participation mechanisms—as important reasons for the increasing MP.

Despite the significant economic factors influencing MP outlined previously, the specific
perspective of the digital economy (DE) and its potential influence on MP remains unexplored.
Considering the DE’s rapid evolution and its proven effects on terrestrial and atmospheric
pollution, it is particularly crucial to investigate whether the DE similarly influences MP as
well. As global industries increasingly adopt digital technologies—a transformation that
directly and indirectly affects marine environments—it becomes essential to explore this
relationship. This study addresses this question by focusing on how the DE influences MP in
costal China and aims to provide insights for the sustainable management of both the digital
economy and marine ecosystems.

To achieve this objective, we analyzed panel data from 42 coastal cities in China,
spanning from 2006 to 2015. Using the concentration data of four primary marine pollutants,
we constructed a comprehensive index for MP. Similarly, we formulated a DE index from
various indicators. Benefitting from previous studies, we evaluated the DE’s influence on
marine environments using the spatial econometric techniques. Our findings indicate that
the DE plays a significant role in mitigating MP through both direct and indirect effects, as
supported by various robustness checks, and lead to several policy recommendations.

The structure of this paper is organized as follows. Section 2 elaborates on the con-
struction of the MP index from four principal marine pollutants and establishes the spatial
autocorrelations among these indices across the coastal cities, laying the foundation for
the spatial econometric analysis. Section 3 describes the used data in detail, highlighting
the DE index as the main variable of interest, along with other control variables. Section 4
provides step-by-step tests to pick out the most appropriate spatial econometric model and
reaches toward the major finding of this work, which is followed by various robustness
checks. Finally, Section 5 summarizes our results and leads to the discussion in Section 6.

2. Marine Pollution Index and Autocorrelation
2.1. Construction of Marine Pollution Index

For the purpose of assessing the impact of the digital economy (DE) on marine pol-
lution (MP) through spatial analysis, the first task is to develop an accurate MP index
to represent the overall sea water quality. In the literature, the construction of an MP
index is not unique. Some studies, such as Ref. [18], used the nitrogen as the single index;
Refs. [19,20] used the industrial wastewater discharged directly into the sea; Ref. [21] used
the proportion of four inferior types of seawater quality to measure marine pollution, and so
on. Considering the data coverage and availability, we follow the methodology in Ref. [22]
to construct the MP index using concentration measurements of four key marine pollu-
tants found in coastal waters: reactive phosphate (RP), inorganic nitrogen (IN), chemical
oxygen demand (COD), and petroleum hydrocarbon (PH). Notably, IN is considered the
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primary pollutant and often used as the sole indicator of MP in existing works [18]. The
formula for calculating the representative MP index is:

MPj; = v1RPj; + ¥2IN;+v3CODj; + 74 PHy 1)

Here, MP;; stands for the MP index for the i-th city in the t-th year, whose units are
all mg/L, and 7; denotes the weight of each pollutant. The data for these pollutants were
collected from 42 coastal cities in China over the period from 2006 to 2015 from the China
Coastal Environmental Quality Bulletin. The weight 7; is assigned as the average value of
the point exceedance rate of each pollutant in the considered time period, which leads
to [22]: 1 = 0.63, v = 0.03, 93 = 0.29 and 4 = 0.05. The resultant MP indices will be
used as the dependent variables in our spatial econometric analysis. This dataset includes
most of China’s coastal areas, providing a comprehensive system appropriate for spatial
econometric exploration. This approach is consistent with the methodologies employed in
Refs. [18-20,22,23]. For ease of reference, a map showing the geographic distribution of the
42 cities selected for this study is provided in the inset of Figure 1.
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Figure 1. Mapping the digital economy index in 2015, where the name of each city is given in the
appendix with corresponding index number. Inset: A depiction of the geographical distribution of
the 42 selected coastal cities.

2.2. Spatial Autocorrelations among Coastal Marine Pollutions

Once the representative MP indices are established, the subsequent task is to confirm
their spatial autocorrelations—a necessary step for any spatial econometric analysis. This
verification is conducted using the Moran’s I tests. Moran’s I index, which quantifies the
overall spatial correlation among the MP indices, is computed as follows:

[ Eim X w6 = %) (% — %) )
522?:1 2]7;21 wij

Here, $2 = Y. | (x; — ¥)*/n, denoting the sample variance, and w is the spatial weight
matrix that defines the spatial relationships between the i-th and j-th cities. Initially, a
straightforward yet effective weight configuration is used, i.e., w;; = 1if the i-th and j-th
cities are neighbors, and wij = 0 otherwise. Different configurations of w will be tested in
the subsequent robustness analysis.
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The Moran’s I values range from —1 to 1, where positive or negative values indicate
the presence of positive or negative spatial autocorrelations, respectively. Table 1 presents
the global (here the term “global” refers to the overall spatial autocorrelation across all the
selected coastal cities) Moran’s I outcomes for the MP indices of the 42 selected coastal
cities in China from 2006 to 2015. Notably, aside from the year 2008, the Moran’s I values
have remained positively significant at the 1% level, indicating substantial positive spatial
correlations in MP throughout these coastal areas.

Table 1. Global Moran'’s I statistics for marine pollution, 2006 to 2015.

Year 2006 2007 2008 2009 2010
Moran’s I 0.411 *** 0.414 *** —0.008 0.327 *** 0.391 ***
Year 2011 2012 2013 2014 2015
Moran’s I 0.262 ** 0.370 *** 0.383 *** 0.402 *** 0.454 ***

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

3. Data Description
3.1. Core Explanatory Variable: The Digital Economy Index

Based on the findings in the preceding section, we decided to use a spatial econometric
model to explore how the DE impacts marine pollution (MP). Consequently, our next step
involves creating a suitable index to quantify the DE’s progress at the municipal level. To
provide a thorough and precise index construction, and given the data at our disposal, we
follow the guidance in Ref. [24] to select four key components of the DE index: internet
penetration rate, employment levels in technology sectors, output from related industries,
and mobile phone penetration rate. Detailed definitions of these components can be found
in Table 2. We then normalize these metrics and construct a composite DE index for each
city with the standard entropy method [24]. This composite DE index will serve as the
principal explanatory variable in our subsequent analyses. To visually illustrate this, a
heatmap displaying the DE indices’ distribution across the 42 selected cities for the year
2015 is provided in Figure 1, where higher DE index values are marked with the red color
and indicate more advanced digital development in corresponding city, and the opposite
applies to the blue color.

Table 2. Composition of the DE index.

Primary Index Secondary Index Index Interpretation

Number of broadband internet
connections per 100 people
Share of computer service and
Digital economy Industry employment ratio software industry workers among
development level urban employment
Per capita volume of
telecommunications services
Mobile phone subscriptions
per 100 people

Internet penetration rate

Business output

Mobile phone usage

To further analyze the spatial heterogeneity, we examine the Moran scatterplots. These
plots categorize into four distinct quadrants or clusters as follows: high—high (HH), low—
high (LH), low-low (LL), and high-low (HL). The HH cluster represents areas where high
values are surrounded by other high-value locations; conversely, the LL cluster indicates
areas with low values surrounded by similar low-value regions. The HL and LH clusters
are interpreted analogously. Positive spatial autocorrelations in MP would typically result
in a concentration of data points in the HH and LL quadrants.

Interestingly, the behavior of the Moran scatterplots is consistent across the years, with
the exception of 2008. Therefore, in Figure 2, we display the scatterplots for the years 2006
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Moran scatterplot (Moran's | = 0.411)
MP2006

and 2014 as illustrative examples. As hypothesized, the majority of data points cluster
in the HH and LL quadrants, confirming the presence of positive regional correlations in
marine pollution, which strengthens the findings of the global Moran’s I assessments.

Moran scatterplot (Moran's | = 0.402)
MP2014

(a) (b)
Figure 2. Moran scatterplots for marine pollution in the years 2006 (a) and 2014 (b).

In conclusion, the data from the Moran’s I values and the scatterplots validate the
existence of positive spatial autocorrelation among the MP indices in coastal regions of
China. This substantiates the later application of spatial econometric models to explore the
dynamics between the DE and MP. Before that, we first outline the explanatory and control
variables that will be employed in our econometric analysis.

3.2. Control Variables

In response to the inherent issue of omitted variable bias and reflecting the specific
conditions of China’s coastal MP as reported in prior studies [25,26], we have chosen the
set of control variables listed below.

e  Economic Growth (EG): This is quantified by the per capita GDP of each city, incorpo-
rating a quadratic term to consider potential non-linear effects, as suggested by the
environmental Kuznets curve (EKC) hypothesis [27].

e  Urbanization Rate (UR): Defined by the ratio of urban to permanent residents. The
growth in population and urban development in coastal areas indicates increased
economic activities, influencing the marine environment, as noted in previous re-
search [13,28].

e  Population Density (PD): Calculated as the number of people per square kilometer.
High population density is a primary contributor to coastal water pollution, which
escalates sewage discharge and intensifies ocean pollution.

e  Energy Efficiency (EE): Measured by the energy consumption per unit of GDP in each
city, the effects of which on MP have been reported in Ref. [29].

e  Industrial Structure (IS): Defined as the ratio of secondary industry output to the city’s
total GDP. The impact of industrial activities on the coastal marine environment is
transparent and well recognized.

e International Openness (IO): Defined by the share of utilized foreign direct investment
in the city’s GDP.

o  Government Intervention (GI): This is represented by the ratio of government fiscal
spending to the city’s GDP and introduced as a measure of governmental activity.

e  Marine Economic Development (MED): This is evaluated using gross ocean product
data at the provincial level due to the absence of city-specific data, following the
methodology in Ref. [22]. A detailed list of the cities and corresponding provinces is
provided in Appendix A.
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3.3. Data Source and Description

As outlined in the preceding section, data concerning marine pollutants were sourced
from the China Coastal Environmental Quality Bulletin, covering the years 2006 to 2015;
consequently, we have compiled panel data for 42 cities within this timeframe. Data pertain-
ing to the DE indicators were derived from the China City Statistical Yearbook. Additional
variables, such as the population density (PD), economic Growth (EG), urbanization rate
(UR), industrial structure (IS), energy efficiency (EE), international openness (I0), and gov-
ernment intervention (GI), were similarly sourced from the China City Statistical Yearbook
and Statistical Bulletin. Data on marine economic development (MED) were collected
from the China Marine Statistical Yearbook. All the monetary variables were deflated to
the base-year prices of 2006. For the purposes of our econometric analysis, logarithmic
transformations were applied to all the variables. The quantitative descriptive statistics for
these variables are provided collectively in Table 3.

Table 3. Descriptive statistics for all the employed variables (“In” denotes the natural logarithm).

Variable Type Variable Name Symbol Observations Mean Stal}da?rd Min Max
Deviation
Explained Variable Marine pollution InMP 420 —1.930 0.738 —4.010 0.380
Digital economy InDE 420 —2.468 0.852 —5.026 —0.046
Core Explanatory Ouadratic t ;
Variables pacratic term o (InDE)? 420 6.814 4559 0.002 25,263
digital economy
Economic growth InEG 420 10.646 0.597 9.086 12.066
Quadratic term of (INEG)? 420 113.699 12.724 82.556 145.581
economic growth
Urbanization rate InUR 420 —0.260 0.124 —0.575 0
Population density InPD 420 6.266 0.579 4.890 7.882
Energy efficiency InEE 420 —1.064 1.071 —3.878 1.580
Control Variables ;
Industrial structure InlS 420 3.881 0.212 2.958 4.390
Degree of openness B _ B
to the outside world InIO 420 3.787 1.013 6.640 2.028
Government InGI 420 —2.166 0.344 —3.155  —1275
intervention
Marine economic InMED 420 9.823 0.514 8.577 10.847

development

4. Empirical Evaluation
4.1. Spatial Durbin Model

Considering the spatial autocorrelations among the marine pollution indices (MPs),
we employ the spatial Durbin model (SDM) for the subsequent regression analysis, the
formula for which is as follows:

InMPj; =19 + PZ] Wi]'ll’lMP]‘t + mInDEj + 11 (lnDEit)Z + n3InXj; + 1742] W,‘]‘lnDEjtJr

2 @)
1752] Wij (li’lDEﬁ) +7762] Wl]li’lX]t + ui + /\t"‘gﬂit

Here, InMP;; is the logarithm of the MP index for the i-th city in year t; InDEj; is
the primary explanatory variable—the DE index; and InXj; includes the chosen control
variables. The term p signifies the spatial lag coefficient, which measures the influence of
MP among neighboring areas; 7 is the intercept; 771 to #3 are coefficients for the explanatory
variables; 174 to 16 are coefficients for the spatial spillover effects; y; accounts for the regional
effects; A; is the time effect; and ¢;; is a stochastic error term. The SDM effectively addresses
the spatial correlations from various sources and establishes a standard framework for
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detecting spatial spillovers. Depending on the parameters, the SDM may be transformed
into models like the spatial autoregression model (SAR) [30]. In the following, we will
conduct various evaluations to pick out the most optimal model setup for our research. To
provide a quick overview, we have presented all the test outcomes in Table 4.

Table 4. Correlation tests for model selection.

Test Content Statistics p-Value

Spatial error 19.276 0.000

LM Test
Spatial lag 12.939 0.000
Spatial error 12.199 0.000

Robust-LM Test

Spatial lag 5.861 0.015
SEM and SDM 65.99 0.000

LR Test
SAR and SDM 61.75 0.000
SEM and SDM 95.49 0.000

Wald Test

SAR and SDM 83.02 0.000
Two-Way and Spatial 229.16 0.000

LR Test
Two-Way and Time 385.93 0.000

We initiate our empirical evaluation with the standard Lagrange multiplier (LM) tests
to select the preliminary model. Both the LM and robust LM tests confirm the presence of
significant spatial errors and lag effects, as evidenced in Table 4, with all the results notable
at a 5% significance level, reinforcing the choice of a spatial econometric model in light of
the Moran’s I test findings.

Next, likelihood ratio (LR) tests are conducted to compare the different spatial econo-
metric frameworks, including the SDM, SEM, and SAR. The tests indicate that the SDM
remains robust, not reducing to the SAR or SEM even at a 1% significance level, which
suggests the SDM is suitable as a spatial econometric model. This is consistent with the
Wald test outcomes, which align closely with those of the LR tests.

Finally, we perform LR tests to finalize the specifications of the SDM. The results
demonstrate that the two-way fixed effects model outperforms both the spatial and tempo-
ral fixed effects models at the 1% significance level, leading us to adopt this configuration
for our final empirical analysis.

4.2. Empirical Results

Typically, the influence of an explanatory variable on an explained variable is quan-
tified by the partial derivative of the outcome with respect to the explanatory variable.
However, in the presence of spatially lagged variables, this relationship becomes more
complex, which potentially obscures the traditional measures of impact and significance
in spatial econometric models [31]. Instead, LeSage and Pace [32] recommend analyzing
the direct, indirect, and total effects to more accurately capture these dynamics in spatial
regression models. The direct effect quantifies how much an explanatory variable affects the
explained variable locally within the same city, including both the immediate impact and
the feedback effect—that is, the influence induced by variables from neighboring regions
due to spatial correlations. The indirect effects, often termed spatial spillover effects, reflect
how local variables in one city influence the explained variables in other cities. The total
effects represent the aggregate of the direct and indirect effects, which essentially describes
the overall impact of the explanatory variables on the explained variable across all the cities.
Adopting this methodology, we computed the direct, indirect, and total effects within our
SDM framework, and the results of these calculations are presented in Table 5.
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Table 5. Direct, indirect, and total effects from the SDM regression.

Variables Direct Effects Indirect Effects Total Effects
—0.346 ** —2.077 *** —2.423 ***
InDE
(0.165) (0.352) (0.487)
—0.0460 * —0.297 *** —0.343 ***
(InDE)?
(0.0263) (0.0570) (0.0788)
0.981 ** 2.566 ** 3.547 **
InUR
(0.489) (1.177) (1.590)
—0.0129 0.304 0.292
InEE
(0.0759) (0.193) (0.248)
0.275 ** 0.414 0.688
InPD
(0.128) (0.330) (0.435)
—0.322 —0.277 —0.599
InlS
(0.261) (0.613) (0.809)
0.0118 0.00831 0.0201
nIO
(0.0369) (0.0750) (0.102)
—3.647 *** —12.27 *** —15.86 ***
InEG
(1.369) (3.422) (4.560)
0.187 *** 0.582 *** 0.770 ***
(InEG)?
(0.0631) (0.157) (0.209)
—0.172 —0.736 —0.908
InGI
(0.187) (0.438) (0.584)
—0.122 —0.257 —0.379
InMED
(0.131) (0.276) (0.358)
Observations 420 420 420
R-squared 0.393 0.393 0.393
Number of id 42 42 42
Note: Figures in () are standard errors. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

From the analysis presented in Table 5, we can obtain several key insights:

Firstly, the spatial lag coefficient p for marine pollution (MP), represented by W* [nMP,
registers at 0.674 with statistical significance at the 1% level. This indicates a substan-
tial spatial spillover effect of MP. Such an outcome is anticipated due to environmental
dynamics like ocean currents, which naturally facilitate the spread of pollutants from
one coastal area to its neighbors. Concurrently, socioeconomic activities, including the
shifting of industries and enhanced regional trade, intensify these spatial connections of
MP across coastal cities [33]. These interdependencies among marine pollution points in
coastal zones underscore the necessity of collaborative and integrated approaches to marine
environmental management to effectively address these complex issues [34].

Secondly, as the central explanatory variable in this analysis, the digital economy’s
development (InDE), demonstrates a substantial suppressive influence on marine pollution
(MP) via both direct (5% significance) and indirect (1% significance) effects, culminating
in a comprehensive impact significant at the 1% level. The pronounced significance of the
indirect effects reveals that the DE exhibits a notable spatial spillover influence; specifically,
a 1% enhancement in the DE level leads to a 2.077% reduction in MP in adjacent cities. This
finding also aligns with expectations, as the evolution of the DE contributes to more efficient
energy usage and the advancement of environmentally friendly technologies, which are
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crucial for diminishing emissions of marine pollutants [35]. As digital infrastructure
and smart technologies evolve, the inter-correlation among cities intensifies, particularly
in terms of technological and resource exchanges, which explains the role of local DE
enhancements in MP in neighboring urban areas. Additionally, diminishing MP in adjacent
regions reciprocally impacts the originating city’s emissions, thereby fostering a beneficial
cycle of pollution reduction.

Moreover, the regression analysis shows that the quadratic term of the DE ((InDE)?)
exhibits a significantly negative impact, particularly through its indirect effects, suggesting
that the DE’s influence on MP is distinctly non-linear. When considered alongside the
linear term, the relationship between the DE and MP adopts an inverted U-shaped curve,
indicating that our analysis falls on the descending side of this curve.

Regarding the control variables, many exhibit no significant impact, a common oc-
currence in spatial econometric analyses [23,36-38]. Nonetheless, certain variables do
demonstrate noteworthy effects on MP. A primary example is urbanization (InUR), which
shows a significantly positive correlation with MP, both directly and indirectly, implying
that urban growth in a city exacerbates MP locally and in nearby regions. Previous studies,
such as the one referenced in Ref. [9], have linked this phenomenon to indiscriminate
urbanization efforts by local governments. The increasing population density and land
usage intensity in coastal cities lead to environmental strain [39], escalating the self-cleaning
burden of coastal waters and consequently heightening marine pollution levels.

Additionally, population density (InPD) emerges as a significant factor, displaying
a positive coefficient with a 5% significance level in its direct effects. This correlation is
logical, as heightened population density intensifies demand, consumption, and industrial
output [40], all of which exacerbate marine pollution. While the positive coefficients for
the indirect effects of population density are observed, they do not achieve statistical
significance, indicating that the spillover effects of population density on marine pollution
are not substantial.

Another pair of significant variables are the economic growth (InEG) and its quadratic
term ((InEG)?). Both variables demonstrate significant impacts at the 1% level across
the direct, indirect, and total effects. The analysis shows that economic growth directly
correlates with a reduction in marine pollution, whereas the quadratic term exhibits a
positive influence. These findings suggest that the relationship between economic growth
and marine pollution forms a U-shaped curve, contradicting the traditional environmental
Kuznets curve (EKC) hypothesis. This indicates that economic growth and marine pollution
have not yet reached a point of disassociation [41].

4.3. Robustness Checks

To verify the impact of the digital economy (DE) on marine pollution (MP), we proceed
with several robustness checks. These are essential in spatial econometric analyses where
the selection of a spatial weight matrix is critical.

First of all, we substitute the general MP index with the specific pollutant, the inorganic
nitrogen, due to its prevalence and impact on water quality in China’s coastal regions,
as noted in prior research [18]. This pollutant serves as the single benchmark for MP
in several studies. Next, we reconstruct the DE index using the TOPSIS method, which
offers a comprehensive approach by considering the interplay among the various DE
components. Lastly, we switch from the basic binary spatial weight matrix to a more
complex matrix based on geometric and economic distances, enhancing the representation
of spatial interactions significantly.

The outcomes of the SDM regression for the three robustness tests are presented in
Table 6. The findings demonstrate that, consistently across all the tests, the coefficients
for the DE and its quadratic term remain negative, consistent with the findings of the
earlier analysis. In the first robustness test, where the explained variable is changed, the
significance levels for both terms in the direct effects surpass those of the original model.
The significance levels in the subsequent tests largely mirror those of the initial regression,
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with the exception being the quadratic term in the direct effects. These findings reinforce
our earlier conclusion that the digital economy contributes to the reduction of marine
pollution. Notably, the significance levels for the indirect effects are generally higher than
those for the direct effects, mirroring the pattern observed in the benchmark SDM results
shown in Table 5, which further confirms the spatial spillover effects of the DE.

Table 6. SDM regression results from robustness checks.

. . . . . . Replacing Core
Replacing Weight Matrix Replacing Explained Variable Explanatory Variable
Variables - : - ; : ;

Direct Indirect Total Direct Indirect Total Direct Indirect Total

Effects Effects Effects Effects Effects Effects Effects Effects Effects
11DE —0.381 % —5.645 ***  —6.025 ***  —(0.779 ** 3448 *** 4226 ** —0.443 **  —2.509 *** 2951 ***
n

(0.205) (1.460) (1.608) (0.251) (0.644) (0.868) (0.213) (0.454) (0.630)

(nDE)? —0.042 —0.806 **  —0.848 ***  —0.090 ** —0.495*  —0.585 *** —0.0559 —0.411 ***  —0.467 ***

n

(0.033) (0.235) (0.258) (0.040) (0.105) (0.141) (0.042) (0.090) (0.124)

Note: Figures in () are standard errors. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,
respectively.

5. Conclusions

China’s economic expansion and swift urbanization have exposed significant en-
vironmental challenges, particularly in the realm of escalating pollution. The marine
environment is especially critical within this context, given its essential contribution to
human welfare. Concurrently, the rapid growth of the digital economy (DE) has moti-
vated technological innovations and eco-friendly technologies, which have substantially
improved both industrial processes and energy consumption patterns, thereby aiding
in the reduction of environmental pollutants. While the beneficial impact of the DE on
terrestrial and atmospheric environments has been extensively explored, this study—for
the first time—extends this examination to the marine context, with the method of spatial
econometric models. Utilizing panel data from 42 coastal cities in China, we developed
composite indices to quantify the DE and MP and analyzed their relationship using the
spatial Durbin model (SDM). The key conclusions of this study are as follows:

(1) There is a pronounced spatial spillover effect among MP in China’s coastal cities,
whereby an increase in MP in one area tends to precipitate rises in neighboring areas, a
phenomenon exacerbated by natural factors such as ocean currents. (2) The DE significantly
mitigates MP, with its influence being more pronounced indirectly, reflecting the inherent
spatial spillover characteristics of marine ecosystems. (3) The quadratic relationship of the
DE indicates a significant non-linear impact on MP, illustrating that the effect of the DE on
MP characteristically follows an inverted U-shaped trajectory.

Our study extends the digital economy’s environmental benefits to the marine context,
which is actually not surprising since digital technology can offer several solutions to exist-
ing coastal problems [42]. For instance, enhanced monitoring and management through
digital technologies like remote sensing, IoT devices, and data analytics can improve the
oversight of coastal environments. These technologies enable real-time data collection and
analysis, facilitating better decision-making and rapid responses to environmental issues.
Improved waste management is another benefit, where digital platforms optimize waste
management systems by enhancing the efficiency of waste collection, sorting, and recycling
processes, thereby reducing marine pollution, particularly from plastic waste and other
debris. Additionally, the digital economy promotes the adoption of sustainable practices
through innovations such as smart grids, precision agriculture, and sustainable supply
chains, mitigating the adverse impacts of human activities on coastal ecosystems. Further-
more, digital platforms can increase public awareness and participation in environmental
conservation efforts by engaging communities through social media, mobile apps, and
online platforms.
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6. Discussion

Based on the findings of this research, we propose several policy recommendations.
First and foremost, it is crucial for coastal cities to enhance their collaborative efforts in terms
of marine conservation and management. Given the widespread nature of marine pollution
(MP) and its significant spatial spillover effects, a unified approach to crafting regulations
and policies for MP control is essential—isolated efforts by individual local governments
will likely prove inadequate. It is important to note that our results indicate that while
the digital economy (DE) and green technology play a significant role in managing the
spillover or transfer of MP, they do not substantially diminish or control MP at the primary
source. Therefore, policies should also focus on addressing the root causes of MP alongside
managing its spread. Secondly, it is imperative for local authorities to recognize and support
the vital role of the DE in mitigating MP. This support should include, but not be limited to,
increased policy incentives for innovative enterprises, greater investment in DE initiatives,
and expedited dissemination of digital and green technologies. Lastly, considering the
substantial indirect effects of the DE on MP, fostering inter-regional cooperation is critical.
This could be facilitated through synchronized efforts in building digital infrastructure like
5G networks that benefit multiple regions. Effective regional collaboration that leverages
the strengths of different cities can maximize the potential of the DE to foster a positive
cycle of environmental improvement.

It is important to emphasize that because MP is dynamic and complex, effective
management involves both temporal and spatial considerations. Our findings underscore
the necessity of integrated strategies that address the temporal evolution and spatial
distribution of MP to achieve sustainable environmental outcomes.

In this study, we mainly focus on China, while it is beneficial to compare our findings
with similar studies conducted in other countries to provide a more global perspective.
For instance, research conducted in the United States and Canada has demonstrated the
significant role of digital technologies in promoting marine environmental sustainability
by understanding and monitoring marine pollution [8]. In Japan, digital advancements
have been shown to positively influence marine environmental protection by monitoring
microplastic pollution [43]. Similarly, Australia has highlighted the positive influence
of digital solutions on environmental protection through better data collection and deci-
sions [44]. These international cases align with our findings, underscoring the potential
of the digital economy in driving environmental improvements. Our study contributes
to this growing body of literature by providing empirical evidence from China, thereby
enriching the global understanding of the interplay between digital development and
environmental sustainability.

Our study serves as the first spatial econometric study that explores the DE’s impact
on MP, although one major limitation is the timeliness of the MP data, which are primarily
sourced from the China Coastal Environmental Quality Bulletin. The content of these
reports underwent a significant change in 2016. Prior to this, data on four major pollutants
were consistently collected; after 2016, the reports included only a subset of these pollutants,
and the newer data volume is insufficient for a comprehensive econometric study. For
this reason, we restrict ourselves to the data in time range 2006-2015, and we note similar
situations also take place in recent studies such as Refs. [19,22]. At this stage, our work
serves as exploratory research that focuses on two sets of public datasets (the MP and
the DE) whose relation has not been studied before, which is a preliminary effort in this
direction. It is imperative to collect newer data to perform a more up-to-date study, where
a proper new index should be constructed once the new data volume is sufficient. This will
be the direction for a future study.
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Appendix A

The indices and names of the 42 chosen cities, as shown in Figure 1, and the corre-

sponding provinces are listed as below.

City Index City Province
1 Dandong Liaoning
2 Dalian Liaoning
3 Yingkou Liaoning
4 Panjin Liaoning
5 Jinzhou Liaoning
6 Huludao Liaoning
7 Qinhuangdao Heibei
8 Tangshan Hebei
9 Tianjin Tianjin
10 Cangzhou Hebei
11 Dongying Shandong
12 Weifang Shandong
13 Qingdao Shandong
14 Weihai Shandong
15 Rizhao Shandong
16 Lianyungang Jiangsu
17 Yancheng Jiangsu
18 Nantong Jiangsu
19 Shanghai Shanghai
20 Jiaxing Zhejiang
21 Ningbo Zhejiang
22 Taizhou Zhejiang
23 Wenzhou Zhejiang
24 Ningde Fujian
25 Fuzhou Fujian
26 Putian Fujian
27 Quanzhou Fujian
28 Xiamen Fujian
29 Zhangzhou Fujian
30 Shantou Guangdong
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City Index City Province
31 Shanwei Guangdong
32 Huizhou Guangdong
33 Shenzhen Guangdong
34 Zhuhai Guangdong
35 Jiangmen Guangdong
36 Yangjiang Guangdong
37 Maoming Guangdong
38 Fangchenggang Guangxi
39 Beihai Guangxi
40 Zhanjiang Guangdong
41 Haikou Hainan
42 Sanya Hainan
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