Effects of Irrigation Approaches and Mulching on Greenhouse Melon Production and Water Use in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Measurement
2.4. Data Analysis and Statistical Methods
3. Results
3.1. Effects of Irrigation Approach and Mulching on the Growth of Melon
3.2. Effects of Irrigation Approach and Mulching on the Water Consumption of Melon
3.3. Effects of the Irrigation Approach and Mulching on the Yield, Water Use Efficiency, and Net Revenues of Melons
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, N.; Sun, P.; He, W.; Yang, L.; Qiu, Y.; Chen, Y.; Zhao, W. Water Resources Allocation in the Tingjiang River Basin: Construction of an Interval-Fuzzy Two-Stage Chance-Constraints Model and Its Assessment through Pearson Correlation. Water 2022, 14, 2928. [Google Scholar] [CrossRef]
- Ferguson, C.; Pan, M.; Oki, T. The Effect of Global Warming on Future Water Availability: CMIP5 Synthesis. Water Resour. Res. 2018, 54, 7791–7819. [Google Scholar] [CrossRef]
- UN-Water. United Nations World Water Development Report: Water and Climate Change, Paris, UNESCO. 2020. Available online: https://www.unwater.org/publications/un-world-water-development-report-2020 (accessed on 21 March 2020).
- Feng, Y.; Chang, M.; He, Y.; Song, R.; Liu, J. Can Property Rights Reform of China’s Agricultural Water Facilities Improve the Quality of Facility Maintenance and Enhance Farmers’ Water Conservation Behavior?—A Typical Case from Yunnan Province, China. Water 2023, 15, 757. [Google Scholar] [CrossRef]
- Hebei Provincial Water Resources Department. Hebei Province Water Resources Bulletin; Hebei Provincial Water Resources Department: Shijiazhuang, China, 2022; pp. 27–28. [Google Scholar]
- Zheng, B.; Ma, J. Comparative Analysis of Water Use Statistics between China and America. Water Resour. Power 2017, 35, 29–31. [Google Scholar]
- UN-Water. Summary Progress Update 2021–SDG6–Water and Sanitation for All. Geneva, Switzerland. 2021. Available online: https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-all (accessed on 24 February 2021).
- Sanmay, K.P.; Rateneswar, P.; Sanjit, P.; Pintoo, B.; Ahmed, G.; Akbar, H. Growth, yield, water productivity and economics of okra (Abelmoschus esculentus L.) in response to gravity drip irrigation under mulch and without-mulch conditions. Sci. Hortic. 2023, 321, 112327. [Google Scholar]
- Karlberg, L.; Frits, W.T.P.V. Exploring potentials and constraints of low-cost drip irrigation with saline water in sub-Saharan Africa. Phys. Chem. Earth 2004, 29, 1035–1042. [Google Scholar] [CrossRef]
- Wang, R.S.; Kang, Y.H.; Wan, S.Q.; Hu, W.; Liu, S.P.; Liu, S.H. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area. Agric. Water Manag. 2021, 100, 58–69. [Google Scholar] [CrossRef]
- Tarawalie, I.F.; Wengang, X.; Guangcheng, S.; Chunli, H. Effect of water use efficiency on growth and yield of hot pepper under partial root-zone drip irrigation condition. Int. J. Eng. Sci. 2012, 3, 1–13. [Google Scholar]
- Rajurkar, G.; Patel, N.; Rajput, S.B.T.; Varghese, C. Soil water and nitrate dynamics under drip irrigated cabbage. J. Soil Water Conserv. 2012, 11, 196–204. [Google Scholar]
- Jadav, K.V.; Mehta, H.M.; Lakkad, L.V. Growth, yield and water economy in eggplant (Solanum melongena L.) as influenced by drip irrigation and biofertilizers. Ann. Arid Zone 1995, 34, 39–42. [Google Scholar]
- Singh, Y.V.; Joshi, N.L.; Singh, D.V.; Saxena, A. Response of chilli to water and nitrogen under drip and check-basin methods of irrigation. Ann. Aird. Zone 1994, 38, 9–13. [Google Scholar]
- Danso, E.O.; Abenney-Mickson, S.; Sabi, E.B.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.O.; Jensen, C.R.; Andersen, M.N. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2014, 147, 34–42. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, R.; Wang, B.; Gao, B.; Ayana, G.; Abera, D.; Ashraf, M.; Li, F. Film mulch with irrigation and rainfed cultivations improves maize production and water use efficiency in Ethiopia. Ann. Appl. Biol. 2019, 175, 215–227. [Google Scholar] [CrossRef]
- Deng, L.; Yu, Y.; Zhang, H.; Wang, Q.; Yu, R. The effects of biodegradable mulch film on the growth, yield, and water use efficiency of cotton and maize in an arid region. Sustainability 2019, 11, 7039. [Google Scholar] [CrossRef]
- Liu, E.; He, E.; Yan, C. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- Rahmah, N.A.; Ibrahim, M.A.; Doaa, S.M.; Ahmed, M.F.; Norah, A.A.; Ibrahim, E.E.; Synan, F.A.; Mohamed, M.G.; Khaled, A.E. Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]. Agric. Water Manag. 2024, 298, 108862. [Google Scholar]
- Bhutia, T.L.; Singh, S.H.; Reddy, K.C.S. Effect of mulching and nitrogen on growth, yield and economics of okra (Abelmoschus esculentus). Ecol. Environ. Conserv. 2017, 23, 826–832. [Google Scholar]
- Wang, Y.; Shi, W.; Jing, B. Optimizing brackish water and nitrogen application regimes for soil salinity, yield, fertilizer and water productivity of a mulched drip irrigated cotton cropping system. Field Crops Res. 2023, 302, 109097. [Google Scholar] [CrossRef]
- Tang, Z.; Lu, J.; Xiang, Y.; Shi, H.; Sun, T.; Zhang, W.; Wang, H.; Zhang, X.; Li, Z.; Zhang, F. Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves. Agric. Water Manag. 2024, 298, 108875. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Yu, S.; Li, S.; Cao, L.; Ren, L. Effect of under mulch-drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high-yield cotton of Xinjiang. J. Exp. Bot. 2003, 54, 38. [Google Scholar]
- Zhang, Z.; Tian, F.; Zhong, R.; Hu, H. Spatial and temporal pattern of soil temperature in cotton field under mulched drip irrigation condition in Xinjiang. Trans. CSAE 2011, 27, 44–51. [Google Scholar]
- Zhang, W.; Dong, A.; Liu, F.; Niu, W.; Kadambot, H.M.S. Effect of film mulching on crop yield and water use efficiency in drip irrigation systems: A meta-analysis. Soil Tillage Res. 2022, 221, 105392. [Google Scholar] [CrossRef]
- Dai, J.; Dong, H. Intensive cotton farming technologies in China: Achievements: Challenges and countermeasures. Field Crops Res. 2014, 155, 99–110. [Google Scholar] [CrossRef]
- Gercek, S.; Demirkaya, M. Effects of coloured water pillows on yield and water productivity of eggplant. Irrig. Drain. 2020, 69, 658–667. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.H.; Baker, G.A.; Ali, M.M.; Abd El-Fattah, F.A. Effect of drip deficit irrigation and soil mulching on growth of common bean plant, water use efficiency and soil salinity. Sci. Hortic. 2017, 225, 235–242. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, X.; Zhu, J.; Zhou, M.; Peng, Q. Response of hot pepper (Capsicum annuum L.) to mulching practices under planted greenhouse condition. Agric. Water Manag. 2011, 99, 111–120. [Google Scholar] [CrossRef]
- Kashyap, S.; Phookan, D.B.; Baruah, P.; Bhuyan, P. Effect of drip irrigation and polythene mulch on yield, quality, water-use efficiency and economics of broccoli production. Indian J. Hortic. 2009, 66, 323–325. [Google Scholar]
- Shi, W.; Wang, J.; Zhang, Z.; Cheng, M.; Yang, X.; An, S. Effect of Irrigation Methods on Plastic Greenhouse Cucumber Yield, Economic Benefits and Water Use Efficiency. North. Hortic. 2016, 05, 56–59. [Google Scholar]
- Yang, Z.; Qiu, Y.; Liu, Z.; Chen, Y. Effects of soil water stress on root and shoot growth of tomato in greenhouse. Chin. J. Ecol. 2016, 36, 748–757. [Google Scholar]
- Jin, J.; Liu, X.; Wang, G.; Han, X.; Li, Y.; Wang, G. Effect of Water and Fertilization Coupling on Population Leaf Area and Yield of Spring Wheat. J. Jilin Agric. Univ. 2005, 27, 241–244. [Google Scholar]
- Guo, B.; Mo, Y.; Wu, Z.; Zhang, Q.; Gong, Y.; Gong, S.; Wang, J.; Li, L. Combined effects of film mulching and water-controlled drip irrigation on yield and quality of facility-cultivated tomato in Ningxia. J. Irrig. Drain. Eng. 2021, 40, 48–55. [Google Scholar]
- Chartzoulakis, K.; Drosos, N. Water use and yield of greenhouse grown eggplant under drip irrigation. Agric. Water Manag. 1995, 28, 113–120. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, Z.Z.; Li, L.; Gao, C.S.; SHAO, L.W. Selecting traits to improve the yield and water use efficiency of winter wheat under limited water supply. Agric. Water Manag. 2020, 242, 106410. [Google Scholar] [CrossRef]
- Srinivas, K.; Hegde, D.M.; Havanagi, G.V. Irrigation studies of watermelon (Citrullus lanatus (Thunb) Matsum et Nakai). Irrig. Sci. 1989, 10, 293–301. [Google Scholar] [CrossRef]
- Rizza, F.; Ghashghaie, J.; Meyer, S.; Matteu, L.; Mastrangelo, A.M.; Badeck, F.W. Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crop. Res. 2012, 125, 49–60. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Zhang, Y. Study on soil evaporation by using micro-lysimeter. J. Hydraul. Eng. 2004, 35, 114–118. [Google Scholar]
- Unlu, M.; Kanber, R.; Senyigit, U.; Onaran, H.; Diker, K. Trickle and sprinkler irrigation of potato (Solanum tuberosum L.) in Middle Anatolian Region in Turkey. Agric. Water Manag. 2006, 79, 43–71. [Google Scholar] [CrossRef]
- Yuan, B.-Z.; Sun, J.; Kang, Y.; Nishiyama, S. Response of cucumber to drip irrigation water under a rainshelter. Agric. Water Manag. 2006, 81, 145–158. [Google Scholar] [CrossRef]
- Antony, E.; Singandhupe, R.B. Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.). Agric. Water Manag. 2004, 65, 121–132. [Google Scholar] [CrossRef]
- Rajput, T.B.S.; Patel, N. Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric. Water Manag. 2006, 79, 293–311. [Google Scholar] [CrossRef]
- Qiu, R.; Kang, S.; Li, F.; Du, T.; Tong, L.; Wang, F.; Chen, R.; Liu, J.; Li, S. Energy partitioning and evapotranspiration of hot pepper grown in greenhouse with furrow and drip irrigation methods. Sci. Hortic. 2011, 129, 790–797. [Google Scholar] [CrossRef]
- Shrivastava, P.K.; Parikh, M.M.; Sawani, N.G.; Raman, S. Effect of drip irrigation and mulching on tomato yield. Agric. Water Manag. 1994, 25, 179–184. [Google Scholar] [CrossRef]
- Jayakumar, M.; Bosu, S.S.; Kantamaneni, K.; Rathnayake, U.; Surendran, U. Drip irrigation on productivity, water use efficiency and profitability of turmeric (Curcuma longa) grown under mulched and non-mulched conditions. Results Eng. 2024, 22, 102018. [Google Scholar]
- Guo, Z.; Yang, D.; Yang, X. Water Consumption and Water Use Efficiency of Soybean Are Impacted by Irrigation Method. J. Irrig. Drain. 2023, 42, 14–25. [Google Scholar]
- Jiu, G.; Wang, D.; Ma, J. Effect of Water and Nitrogen Transport on Sweet Potato Quality, Yield and Soil Water and Nitrogen Distribution under Drip Irrigation with Plastic Mulch. J. Irrig. Drain. 2023, 42, 63–72. [Google Scholar]
- Han, Y.; Yang, F.; Yue, H.; Huang, Y.; Zhang, Z.; Zhang, S. Analysis of Tomato Quality and Water Use Efficiency of Facilities Under the Control of Submembrane Drip Irrigation Water. North. Hortic. 2023, 18, 43–53. [Google Scholar]
- Wang, C.; Wang, J.; Zhang, Y.; Qin, S.; Zhang, Y.; Liu, C. Effects of Different Mulching Materials on the Grain Yield and Water Use Efficiency of Maize in the North China Plain. Agriculture 2022, 12, 1112. [Google Scholar] [CrossRef]
- Ning, S.; Zhou, B.; Shi, J.; Wang, Q. Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang. Agric. Water Manag. 2021, 245, 106651. [Google Scholar] [CrossRef]
- Meng, J.; Liu, S.Y.; Fan, F.C.; Nie, L.C.; Yan, L.; Hou, D.S.; Wang, J.; Han, J.W. The Effects of Root-zone Restriction on Water Consumption and Fruit Quality of Greenhouse Muskmelon under Mulched Drip Irrigation. J. Irrig. Drain. 2021, 40, 55–62. [Google Scholar]
- Hou, Y.; Xu, X.; Kong, L.; Zhang, Y.; Zhang, L.; Wang, L. Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China. Eur. J. Agron. 2023, 146, 126819. [Google Scholar] [CrossRef]
- Poonam, B.; Dillip, K.S.; Madan, K.J. Straw mulch with limited drip irrigation influenced soil microclimate in improving tuber yield and water productivity of potato in subtropical India. Soil Tillage Res. 2022, 223, 105484. [Google Scholar]
Soil Texture | Bulk Density (g·cm−3) | Field Moisture Capacity (%) | pHe | Organic Matter (g·kg−1) | Alkaline N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) |
---|---|---|---|---|---|---|---|
clay loam | 1.63 | 21.2 | 7.74 | 19.6 | 86.1 | 32.7 | 185.4 |
Treatments | Irrigation Amount (mm) | Thetotal Irrigation Amount (mm) | |||||
---|---|---|---|---|---|---|---|
16 March | 27 March | 22 April | 5 May | 17 May | 26 May | ||
FI (CK) | 20.7 | 39.06 | 3.51 | 43.51 | 50.64 | 22.50 | 179.92 |
MFI | 20.7 | 39.06 | 3.51 | 43.51 | 50.64 | 22.50 | 179.92 |
DI | 20.7 | 16.5 | 3.51 | 18.00 | 24.00 | 7.35 | 90.06 |
MDI | 20.7 | 16.5 | 3.51 | 18.00 | 24.00 | 7.35 | 90.06 |
Treatments | Seedling Stage | Spreading Stage | Fruiting Stage | ||||||
---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Stem Diameter (cm) | LAI | Plant Height (cm) | Stem Diameter (cm) | LAI | Plant Height (cm) | Stem Diameter (cm) | LAI | |
MDI | 26.00 ± 1.00 a | 8.44 ± 0.30 a | 0.30 ± 0.0062 a | 74.00 ± 5.29 a | 10.65 ± 0.51 ab | 0.45 ± 0.010 a | 202.67 ± 15.37 a | 11.55 ± 0.47 a | 0.80 ± 0.050 a |
MFI | 28.67 ± 1.53 a | 8.34 ± 0.10 a | 0.29 ± 0.0029 a | 75.00 ± 5.00 a | 11.37 ± 1.39 a | 0.44 ± 0.0100 a | 192.67 ± 2.52 ab | 11.21 ± 0.73 ab | 0.71 ± 0.020 ab |
DI | 22.67 ± 0.58 b | 7.16 ± 0.16 b | 0.25 ± 0.033 b | 61.33 ± 1.15 b | 8.40 ± 0.68 b | 0.39 ± 0.012 b | 194.75 ± 11.20 ab | 11.11 ± 0.22 ab | 0.63 ± 0.010 b |
FI (CK) | 23.00 ± 1.73 b | 7.46 ± 0.28 b | 0.23 ± 0.036 b | 58.33 ± 2.89 b | 7.91 ± 0.86 b | 0.37 ± 0.030 b | 171.30 ± 3.21 b | 10.38 ± 0.85 b | 0.60 ± 0.076 b |
F values | |||||||||
M | ** | ** | ** | ** | ** | ** | * | * | ** |
I | ns | ns | ns | ns | ns | ns | ns | ns | ns |
M × I | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Fruit Weight (g/plant) | Plant Weight (g/plant) | The Total Aboveground Biomass (g/plant) | Harvest Index |
---|---|---|---|---|
MDI | 5042.84 ± 23.46 a | 2866.33 ± 11.09 a | 7978.85 ± 14.31 a | 0.63 ± 0.0019 a |
MFI | 4887.61 ± 80.84 a | 3039.60 ± 50.37 a | 7927.21 ± 131.12 a | 0.62 ± 0.00029 b |
DI | 4173.66 ± 16.50 b | 2775.47 ± 50.57 ab | 6949.13 ± 65.20 b | 0.60 ± 0.0036 c |
FI (CK) | 3974.54 ± 92.22 b | 2453.20 ± 40.90 c | 6427.74 ± 125.86 c | 0.62 ± 0.0036 b |
F values | ||||
M | ** | ** | ** | ns |
I | ns | ** | ** | ns |
M × I | ns | ** | ** | ns |
Stage | Last Days | Index | Treatments | F values | |||||
---|---|---|---|---|---|---|---|---|---|
MDI | MFI | DI | FI (CK) | M | I | M × I | |||
Spreading stage | 37 | Irrigation (mm) | 40.71 | 63.27 | 40.71 | 63.27 | - | - | - |
Water consumption (mm) | 42.08 ± 0.53 d | 61.69 ± 0.11 b | 51.48 ± 0.36 c | 66.85 ± 0.64 a | ** | ** | ** | ||
Water consumption intensity (mm·d−1) | 1.14 ± 0.014 d | 1.67 ± 0.0029 b | 1.39 ± 0.0098 c | 1.81 ± 0.017 a | ** | ** | ** | ||
Fruit seedling stage | 12 | Irrigation (mm) | 0.00 | 0.00 | 0.00 | 0.00 | - | - | - |
Water consumption (mm) | 13.61 ± 1.45 b | 14.97 ± 2.19 b | 28.70 ± 2.69 a | 31.57 ± 1.08 a | ** | ** | ns | ||
Water consumption intensity (mm·d−1) | 1.13 ± 0.12 b | 1.25 ± 0.18 b | 2.39 ± 0.22 a | 2.63 ± 0.090 a | ** | ** | ns | ||
Fruit development stage | 21 | Irrigation (mm) | 42 | 94.15 | 42 | 94.15 | - | - | - |
Water consumption (mm) | 43.43 ± 0.26 c | 93.74 ± 0.16 a | 26.07 ± 1.60 d | 76.62 ± 1.34 b | ** | ** | ns | ||
Water consumption intensity (mm·d−1) | 2.07 ± 0.013 c | 4.46 ± 0.0077 a | 1.24 ± 0.076 d | 3.65 ± 0.063 b | ** | ** | ns | ||
Fruit maturing stage | 13 | Irrigation (mm) | 7.35 | 22.5 | 7.35 | 22.5 | - | - | - |
Water consumption (mm) | 15.95 ± 0.57 c | 26.25 ± 1.50 b | 25.96 ± 0.92 b | 37.25 ± 2.14 a | ** | ** | ns | ||
Water consumption intensity (mm·d−1) | 1.22 ± 0.044 c | 2.02 ± 0.12 b | 2.00 ± 0.070 b | 2.87 ± 0.16 a | ** | ** | ns | ||
Whole growth stage | 83 | Irrigation (mm) | 90.06 | 179.92 | 90.06 | 179.92 | - | - | - |
Water consumption (mm) | 115.07 ± 1.87 d | 196.65 ± 2.56 b | 132.21 ± 1.80 c | 212.29 ± 1.62 a | ** | ** | ns | ||
Water consumption intensity (mm·d−1) | 1.39 ± 0.023 d | 2.37 ± 0.030 b | 1.59 ± 0.021 c | 2.56 ± 0.019 a | ** | ** | ns |
Spreading Stage | Index | Treatments | F values | |||||
---|---|---|---|---|---|---|---|---|
MDI | MFI | DI | FI (CK) | M | I | M × IB | ||
Fruit setting | Daily evaporation (mm/d) | 0.16 ± 0.015 b | 0.15 ± 0.010 b | 0.69 ± 0.091 a | 0.59 ± 0.040 a | ** | ns | ns |
E/ET/% | 14.36 ± 1.26 c | 9.00 ± 0.60 c | 49.57 ± 6.36 a | 32.84 ± 2.30 b | ** | ** | * | |
Fruit development | Daily evaporation (mm/d) | 0.14 ± 0.011 b | 0.18 ± 0.011 b | 0.54 ± 0.015 a | 0.57 ± 0.025 a | ** | ns | ns |
E/ET/% | 12.39 ± 0.85 b | 14.67 ± 2.53 b | 35.29 ± 4.43 a | 31.55 ± 1.33 a | ** | ns | ns | |
Fruit maturing | Daily evaporation (mm/d) | 0.14 ± 0.012 c | 0.14 ± 0.020 c | 0.65 ± 0.055 b | 0.82 ± 0.066 a | ** | * | * |
E/ET/% | 6.77 ± 0.49 c | 3.14 ± 0.44 c | 38.17 ± 4.85 a | 19.98 ± 1.88 b | ** | ** | * | |
Whole growth | Daily evaporation (mm/d) | 0.11 ± 0.014 c | 0.15 ± 0.009 c | 0.91 ± 0.045 b | 1.05 ± 0.043 a | ** | ** | * |
E/ET/% | 8.97 ± 0.79 c | 7.44 ± 0.48 c | 45.47 ± 3.37 a | 36.68 ± 1.38 b | ** | ** | * | |
Spreading | Daily evaporation (mm/d) | 0.15 ± 0.011 b | 0.15 ± 0.003 b | 0.69 ± 0.023 a | 0.72 ± 0.0094 a | ** | ns | ns |
E/ET/% | 10.50 ± 0.61 c | 6.41 ± 0.060 d | 43.55 ± 1.82 a | 28.12 ± 0.24 b | ** | ** | ** |
Treatments | Output (CNY/ha) | Input Values (CNY/ha) | Net Revenues (CNY/ha) | ||||
---|---|---|---|---|---|---|---|
Seedling | Fertilizer | Material | Irrigation | Total | |||
MDI | 17,320.5 | 2250.0 | 1500.0 | 525.0 | 75.0 | 43,500.0 | 12,970.5 |
MFI | 16,789.5 | 2250.0 | 1500.0 | 75.0 | 105.0 | 3930.0 | 12,859.5 |
DI | 14,562.0 | 2250.0 | 1500.0 | 450.0 | 75.0 | 4275.0 | 10,287.0 |
FI (CK) | 13,653.0 | 2250.0 | 1500.0 | 0.0 | 105.0 | 3855.0 | 9798.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, J.; Jia, S.; Dai, Z.; Du, F.; Zhao, N.; Fan, F.; Liu, Z.; Zhao, S. Effects of Irrigation Approaches and Mulching on Greenhouse Melon Production and Water Use in Northern China. Water 2024, 16, 2013. https://doi.org/10.3390/w16142013
Liu S, Li J, Jia S, Dai Z, Du F, Zhao N, Fan F, Liu Z, Zhao S. Effects of Irrigation Approaches and Mulching on Greenhouse Melon Production and Water Use in Northern China. Water. 2024; 16(14):2013. https://doi.org/10.3390/w16142013
Chicago/Turabian StyleLiu, Shengyao, Jingsong Li, Songnan Jia, Zhihong Dai, Fenghuan Du, Nan Zhao, Fengcui Fan, Zehao Liu, and Sheng Zhao. 2024. "Effects of Irrigation Approaches and Mulching on Greenhouse Melon Production and Water Use in Northern China" Water 16, no. 14: 2013. https://doi.org/10.3390/w16142013
APA StyleLiu, S., Li, J., Jia, S., Dai, Z., Du, F., Zhao, N., Fan, F., Liu, Z., & Zhao, S. (2024). Effects of Irrigation Approaches and Mulching on Greenhouse Melon Production and Water Use in Northern China. Water, 16(14), 2013. https://doi.org/10.3390/w16142013