Influence of Temperature on the Toxic Effects of Carbamazepine on the Copepod Tigriopus fulvus: A Transgenerational Full Life Cycle Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organisms and Chemicals
2.2. Test Procedures
2.3. Statistical Data Processing
3. Results
3.1. Survival
3.2. Effects in the F0 Generation
3.3. Effects in the F1 Generation
3.4. Transgenerational Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hughes, S.R.; Kay, P.; Brown, L.E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 2013, 47, 661–677. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Union 2000, 1–73. Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 12 March 2024).
- Monteiro, S.C.; Boxall, A.B.A. Occurrence and Fate of Human Pharmaceuticals in the Environment. Rev. Environ. Contam. Toxicol. 2010, 202, 53–154. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, L.; Jauhiainen, A.; Kristiansson, E.; Nerman, O.; Larsson, D.G.J. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ. Sci. Technol. 2008, 42, 5807–5813. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Baena-Nogueras, R.M.; Corada-Fernández, C.; Lara-Martín, P.A. Occurrence, distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ. 2018, 612, 649–659. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, S.; Merino, L.M.; Esteban, S.; López de Alda, M.; Barceló, D.; Durán, J.J.; López-Martínez, J.; Aceña, J.; Pérez, S.; Mastroianni, N.; et al. Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 2017, 229, 241–254. [Google Scholar] [CrossRef]
- EU. COM/2019/128 Final: Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee: European Union Strategic Approach to Pharmaceuticals in the Environment. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0128 (accessed on 12 March 2024).
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of the Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, MA, USA, 2013; p. 1535. ISBN 978-92-9169-138-8. [Google Scholar]
- Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P.; Cabos, N.; William, D.; Cavicchia, L.; Djurdjevic, V.; Li, L.; Sannino, G.; et al. Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 2019, 53, 1371–1392. [Google Scholar] [CrossRef]
- Cabral, H.; Fonseca, V.; Sousa, T.; Costa Leal, M. Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. Int. J. Environ. Res. Public Health 2019, 16, 2737. [Google Scholar] [CrossRef]
- Crain, C.M.; Kroeker, K.; Halpern, B.S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 2008, 11, 1304–1315. [Google Scholar] [CrossRef]
- Hernandez-Delgado, E.A. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull. 2015, 101, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: Linking physiology and ecology in a multi-stressor landscape. J. Exp. Biol. 2021, 224 (Suppl. S1), jeb236802. [Google Scholar] [CrossRef] [PubMed]
- Hemraj, D.A.; Posnett, N.C.; Minuti, J.J.; Firth, L.B.; Russell, B.D. Survived but not safe: Marine heatwave hinders metabolism in two gastropod survivors. Mar. Environ. Res. 2020, 162, 105117. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.W.; Dineshram, R.; Campanati, C.; Chan, V.B.; Havenhand, J.; Thiyagarajan, V. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster. Environ. Sci. Technol. 2014, 48, 10079–10088. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, V.; Ko, G.W.K. Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors. Aquaculture 2012, 370, 90–95. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- Alava, J.J.; Cheung, W.W.L.; Ross, P.S.; Sumaila, U.R. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework. Glob. Chang. Biol. 2017, 23, 3984–4001. [Google Scholar] [CrossRef] [PubMed]
- Heugens, E.H.; Hendriks, A.J.; Dekker, T.; Van Straalen, N.M.; Admiraal, W. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol. 2001, 31, 247–284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geissen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Zhou, S.; Xia, Y.; Li, T.; Yao, T.; Shi, Z.; Zhu, S.; Gao, N. Degradation of carbamazepine by uv/chlorine advanced oxidation process and formation of disinfection by-products. Environ. Sci. Pollut. Res. 2016, 23, 16448–16455. [Google Scholar] [CrossRef]
- Zhu, S.; Dong, B.; Wu, Y.; Buc, L.; Zhou, S. Degradation of carbamazepine by vacuum-UV oxidation process: Kinetics modeling and energy efficiency. J. Hazard. Mater. 2019, 368, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Mezzelani, M.; Fattorini, D.; Gorbi, S.; Nigro, M.; Regoli, F. Human pharmaceuticals in marine mussels: Evidence of sneaky environmental hazard along Italian coasts. Mar. Environ. Res. 2020, 162, 105137. [Google Scholar] [CrossRef]
- Miller, T.H.; Ng, K.T.; Bury, S.T.; Bury, S.E.; Bury, N.R.; Barron, L.P. Biomonitoring of pesticides, pharmaceuticals and illicit drugs in a freshwater invertebrate to estimate toxic or effect pressure. Environ. Int. 2019, 129, 595–606. [Google Scholar] [CrossRef]
- Alvarez-Munoz, D.; Rodriguez-Mozaz, S.; Maulvault, A.L.; Tediosi, A.; Fernandez-Tejedor, M.; Van den Heuvel, F.; Kotterman, M.; Marques, A.; Barcelo, D. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environ. Res. 2015, 143, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Batley, G.E.; Nidumolu, B.; Hutchinson, T.H. Derivation of water quality guidelines for priority pharmaceuticals. Environ. Toxicol. Chem. 2016, 35, 1815–1824. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.; Mezzelani, M.; Costa, S.; d’Errico, G.; Benedetti, M.; Gorbi, S.; Freitas, R.; Regoli, F. Marine heatwaves hamper neuro-immune and oxidative tolerance toward carbamazepine in Mytilus galloprovincialis. Environ. Pollut. 2022, 300, 118970. [Google Scholar] [CrossRef]
- Mezzelani, M.; Nardi, A.; Bernardini, I.; Mila, M.; Peruzza, L.; d’Errico, G.; Fattorini, D.; Gorbi, S.; Patarnello, T.; Regoli, F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. Environ. Int. 2021, 146, 106269. [Google Scholar] [CrossRef]
- Costa, S.; Coppola, F.; Pretti, C.; Intorre, L.; Meucci, V.; Soares, A.M.V.M.; Freitas, R.; Solé, M. The influence of climate change related factors on the response of two clam species to diclofenac. Ecotoxicol. Environ. Saf. 2020, 189, 109899. [Google Scholar] [CrossRef]
- Almeida, A.; Soares, A.M.V.M.; Esteves, V.I.; Freitas, R. Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: A review. Environ. Toxicol. Pharmacol. 2021, 86, 103661. [Google Scholar] [CrossRef]
- Martin-Diaz, L.; Franzellitti, S.; Buratti, S.; Valbonesi, P.; Capuzzo, A.; Fabbri, E. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2009, 94, 177–185. [Google Scholar] [CrossRef]
- Chen, H.; Zha, J.; Liang, X.; Li, J.; Wang, Z. Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea. Aquat. Toxicol. 2014, 155, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Almeida, A.; Pires, A.; Velez, C.; Calisto, V.; Schneider, R.J.; Esteves, V.I.; Wrona, F.J.; Figueira, E.; Soares, A.M. The effects of carbamazepine on macroinvertebrate species: Comparing bivalves and polychaetes biochemical responses. Water Res. 2015, 85, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Rivetti, C.; Campos, B.; Barata, C. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat. Toxicol. 2016, 170, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Calisto, V.; Domingues, M.R.; Esteves, V.I.; Schneider, R.J.; Soares, A.M.; Figueira, E.; Freitas, R. Comparison of the toxicological impacts of carbamazepine and a mixture of its photodegradation products in Scrobicularia plana. J. Hazard. Mater. 2017, 323, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Wang, M.; Zha, J.; Zhu, L.; Li, W.; Luo, Q.; Sun, J.; Wang, Z. Environmentally relevant concentrations of carbamazepine caused endocrine-disrupting effects on nontarget organisms, Chinese rare minnows (Gobiocypris rarus). Environ. Sci. Technol. 2018, 52, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Martínez, G.; Del Valls, T.; Martín-Díaz, M. Early responses measured in the brachyuran crab Carcinus maenas exposed to carbamazepine and novobiocin: Application of a 2-tier approach. Ecotoxicol. Environ. Saf. 2013, 97, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gu, X.; Zeng, Q.; Mao, Z.; Liang, X.; Martyniuk, C.J. Carbamazepine disrupts molting hormone signaling and inhibits molting and growth of Eriocheir sinensis at environmentally relevant concentrations. Aquat. Toxicol. 2019, 208, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Biandolino, F.; Grattagliano, A.; Ruscito, A.; Lofrano, G.; Libralato, G.; Trifuoggi, M.; Albarano, L.; Parlapiano, I. Individual and combined effects of amoxicillin and carbamazepine to the marine copepod Tigriopus fulvus. Environ. Sci. Pollut. Res. 2023, 30, 61672–61681. [Google Scholar] [CrossRef]
- Faraponova, O.; Giacco, E.; Biandolino, F.; Prato, E.; Del Prete, F.; Valenti, A.; Sarcina, S.; Pasteris, A.; Montecavalli, A.; Comin, S.; et al. Tigriopus fulvus: The interlaboratory comparison of the acute toxicity test. Ecotoxicol. Environ. Saf. 2016, 124, 309–314. [Google Scholar] [CrossRef]
- Biandolino, F.; Parlapiano, I.; Faraponova, O.; Prato, E. Effects of short-and long-term exposures to copper on lethal and reproductive endpoints of the harpacticoid copepod Tigriopus fulvus. Ecotoxicol. Environ. Saf. 2018, 147, 327–333. [Google Scholar] [CrossRef]
- Parlapiano, I.; Biandolino, F.; Grattagliano, A.; Ruscito, A.; Libralato, G.; Prato, E. Effects of commercial formulations of glyphosate on marine crustaceans and implications for risk assessment under temperature changes. Ecotoxicol. Environ. Saf. 2021, 213, 112068. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Biandolino, F.; Bisci, A.P.; Caroppo, C. Preliminary assessment of Ostreopsis cfr. ovata acute toxicity by using a battery bioassay. Chem. Ecol. 2011, 27, 117–125. [Google Scholar] [CrossRef]
- Prato, E.; Parlapiano, I.; Biandolino, F. Assessment of individual and combined toxicities of three metals (Cu, Cd and Hg) by using Tigriopus fulvus. Chem. Ecol. 2013, 29, 635642. [Google Scholar] [CrossRef]
- Prato, E.; Parlapiano, I.; Biandolino, F.; Rotini, A.; Manfra, L.; Berducci, M.T.; Maggi, C.; Libralato, G.; Paduano, L.; Carraturo, F.; et al. Chronic sublethal effects of ZnO nanoparticles on Tigriopus fulvus (Copepoda, Harpacticoida). Environ. Sci. Pollut. Res. 2020, 27, 30957–30968. [Google Scholar] [CrossRef] [PubMed]
- Prato, E.; Biandolino, F.; Parlapiano, I.; Grattagliano, A.; Rotolo, F.; Buttino, I. Historical control data of ecotoxicological test with the copepod Tigriopus fulvus. Chem. Ecol. 2023, 39, 881–893. [Google Scholar] [CrossRef]
- Bonello, G.; Angelini, C.; Pane, L. Effects of environmental factors on Tigriopus fulvus, Fischer 1860, a Mediterranean harpacticoid copepod. J. Biol. Res. 2018, 91, 7113. [Google Scholar] [CrossRef]
- Raisuddin, S.; Kwok, K.W.H.; Leung, K.M.Y.; Schlenk, D.; Lee, J.S. The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquat. Toxicol. 2007, 83, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.Y.; Foley, H.B.; Handschumacher, L.; Suzuki, A.; Karamanukyan, T.; Edmands, S. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus. Chemosphere 2014, 112, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L. Multigenerational effects of arsenate on development and reproduction in marine copepod Tigriopus japonicus. Chemosphere 2023, 342, 140158. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, D.; Lin, Q.; Zhou, X. Seawater warming intensifies nickel toxicity to a marine copepod: A multigenerational perspective. Aquat. Toxicol. 2023, 264, 106730. [Google Scholar] [CrossRef]
- Donelson, J.M.; Munday, P.L.; McCormick, M.I.; Pitcher, C.R. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Chang. 2012, 2, 30–32. [Google Scholar] [CrossRef]
- Kimberly, D.A.; Salice, C.J. Complex interactions between climate change and toxicants: Evidence that temperature variability increases sensitivity to cadmium. Ecotoxicology 2014, 23, 809–817. [Google Scholar] [CrossRef]
- Tran, T.T.; Janssens, L.; Dinh, K.V.; Stoks, R. Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evol. Appl. 2018, 11, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Dinh, K.V.; Nguyen, Q.T.T.; Vo, T.M.; Bui, T.B.; Dao, T.S.; Tran, D.M.; Doan, N.X.; Truong, T.S.H.; Wisz, M.S.; Nielsen, T.G.; et al. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations. Mar. Pollut. Bull. 2020, 159, 111509. [Google Scholar] [CrossRef] [PubMed]
- Estaque, T.; Richaume, J.; Bianchimani, O.; Schull, Q.; Mérigot, B.; Bensoussan, N.; Bonhomme, P.; Vouriot, P.; Sartoretto, S.; Monfort, T.; et al. Marine heatwaves on the rise: One of the strongest ever observed mass mortality event in temperate gorgonians. Glob. Chang. Biol. 2023, 29, 6159–6162. [Google Scholar] [CrossRef] [PubMed]
- UNICHIM 2396: 2014. Qualità dell’acqua—Determinazione della Tossicità Letale a 24h, 48h e 96h di Esposizione con Naupli di Tigriopus fulvus (Fischer, 1860). (Crustacea:Copepoda). 2014. Available online: https://pubblicazioni.unichim.it/metodi) (accessed on 12 March 2024).
- Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 2003, 50, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Dinh, K.V.; Konestabo, H.S.; Borgå, K.; Hylland, K.; Macaulay, S.; Jackson, M.; Verheyen, J.; Stoks, R. Interactive effects of warming and pollutants on marine and freshwater invertebrates. Curr. Pollut. Rep. 2022, 8, 341–359. [Google Scholar] [CrossRef]
- Oropesa, A.L.; Floro, A.M.; Palma, P. Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ. Sci. Pollut. Res. 2016, 23, 17311–17321. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gu, X.; Zeng, Q.; Mao, Z. Acute and chronic toxicity of carbamazepine on the release of chitobiase, molting, and reproduction in Daphnia similis. Int. J. Environ. Res. Public Health 2019, 16, 209. [Google Scholar] [CrossRef]
- Nkoom, M.; Lu, G.; Liu, J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: A comparative two-generational study. Environ. Sci. Pollut. Res. 2022, 29, 58963–58979. [Google Scholar] [CrossRef]
- Nieto, E.; Hampel, M.; González-Ortegón, E.; Drake, P.; Blasco, J. Influence of temperature on toxicity of single pharmaceuticals and mixtures, in the crustacean A. desmarestii. J. Hazard. Mater. 2016, 313, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Vernouillet, G.; Eullaffroy, P.; Lajeunesse, A.; Blaise, C.; Gagné, F.; Juneau, P. Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 2010, 80, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.N.; Foster, M.; Constantine, L.A.; Huggett, D.B. Field and laboratory fish tissue accumulation of the anti-convulsant drug carbamazepine. Ecotoxicol. Environ. Saf. 2012, 84, 207–211. [Google Scholar] [CrossRef]
- Freitas, R.; Almeida, A.; Calisto, V.; Velez, C.; Moreira, A.; Schneider, R.J.; Esteves, V.I.; Wrona, F.J.; Figueira, E.; Soares, A.M. The impacts of pharmaceutical drugs under ocean acid cation: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana. Sci. Total Environ. 2016, 541, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Lu, G.; Yan, Z.; Jiang, R.; Bao, X. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. Sci. Total Environ. 2020, 732, 139222. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Ban, S.; Ikeda, T.; Matsuishi, T. Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J. Plankton Res. 2003, 25, 261–271. [Google Scholar] [CrossRef]
- Matias-Peralta, H.; Yusoff, F.M.; Shariff, M.; Arshad, A. Effects of some environmental parameters on the reproduction and development of a tropical marine harpacticoid copepod Nitocra affinis f. californica Lang. Mar. Pollut. Bull. 2005, 51, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, K.; Puiac, S.; Winder, M. Life-history responses to changing temperature and salinity of the Baltic Sea copepod Eurytemora affinis. Mar. Biol. 2018, 165, 30. [Google Scholar] [CrossRef]
- Weydmann, A.; Walczowski, W.; Carstensen, J.; Kwaśniewski, S. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Glob. Chang. Biol. 2018, 24, 172–183. [Google Scholar] [CrossRef]
- Li, A.J.; Lai, R.W.S.; Zhou, G.J.; Leung, P.T.Y.; Zeng, E.Y.; Leung, K.M.Y. Joint effects of temperature and copper exposure on developmental and gene-expression responses of the marine copepod Tigriopus japonicus. Ecotoxicology 2023, 32, 336–343. [Google Scholar] [CrossRef]
- Thistle, D.; Eckman, J.E. What is the sex ratio of harpacticoid copepods in the deep sea? Mar. Biol. 1990, 107, 443–447. [Google Scholar] [CrossRef]
- Shimanaga, M.; Shirayama, Y. Sex ratio and reproductive activity of benthic copepods in bathyal Sagami Bay (1430 m), central Japan. Prog. Oceanogr. 2003, 57, 97–107. [Google Scholar] [CrossRef]
- Shimanaga, M.; Lee, W.; Nomaki, H.; Iijima, K. Sex ratio and gut contents of the deep-sea harpacticoid Neocervinia itoi and other Cerviniids: A possibility of reduced foraging among males. J. Crustace Biol. 2009, 29, 183–191. [Google Scholar] [CrossRef]
- de Juan, C.; Griffell, K.; Calbet, A.; Saiz, E. Multigenerational physiological compensation and body size reduction dampen the effects of warming on copepods. Limnol. Oceanogr. 2023, 68, 1037–1047. [Google Scholar] [CrossRef]
- Voordouw, M.J.; Anholt, B. Environmental sex determination in a splash pool copepod. Biol. J. Linn. Soc. 2002, 76, 511–520. [Google Scholar] [CrossRef]
- Koch, J.; Bui, T.T.; Lundström Belleza, E.; Brinkmann, M.; Hollert, H.; Breitholtz, M. Temperature and food quantity effects on the harpacticoid copepod Nitocra spinipes: Combining in vivo bioassays with population modeling. PLoS ONE 2017, 12, e0174384. [Google Scholar] [CrossRef]
- Bulmer, M.G.; Bull, J.J. Models of Polygenic Sex Determination and Sex Ratio Control. Evolution 1982, 36, 13–26. [Google Scholar] [CrossRef]
- Horne, C.R.; Hirst, A.G.; Atkinson, D.; Neves, A.; Kiørboe, T. A global synthesis of seasonal temperature–size responses in copepods. Glob. Ecol. Biogeogr. 2016, 25, 988–999. [Google Scholar] [CrossRef]
- Moore, M.V.; Folt, C.F.; Stemberger, R.S. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Arch. Hydrobiol. 1996, 135, 289–319. [Google Scholar] [CrossRef]
- Garzke, J.; Ismar, S.M.H.; Sommer, U. Climate change affects low trophic level marine consumers: Warming decreases copepod size and abundance. Oecologia 2015, 177, 849–860. [Google Scholar] [CrossRef]
- Doan, N.X.; Vu, M.T.T.; Pham, H.Q.; Wisz, M.S.; Nielsen, T.G.; Dinh, K.V. Extreme temperature impairs growth and productivity in a common tropical marine copepod. Sci. Rep. 2019, 9, 4550. [Google Scholar] [CrossRef]
- Rice, E.; Dam, H.G.; Stewart, G. Impact of climate change on estuarine zooplankton: Surface water warming in Long Island Sound is associated with changes in copepod size and community Structure. Estuaries Coasts 2015, 38, 13–23. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yu, S.; Jeong, T.Y.; Kim, S.D. Relationship between trans-generational effects of tetracycline on Daphnia magna at the physiological and whole organism level. Environ. Pollut. 2014, 191, 111–118. [Google Scholar] [CrossRef]
- Im, H.; Na, J.; Jung, J. The effect of food availability on thermal stress in Daphnia magna: Trade-offs among oxidative stress, somatic growth, and reproduction. Aquat. Ecol. 2020, 54, 1201–1210. [Google Scholar] [CrossRef]
- Lürling, M.; Sargant, E.; Roessink, I. Life-history consequences for Daphnia pulex exposed to pharmaceutical carbamazepine. Environ. Toxicol. 2006, 21, 172–180. [Google Scholar] [CrossRef]
- Lamichhane, K.; Garcia, S.N.; Huggett, D.B.; DeAngelis, D.L.; La Point, T.W. Chronic effects of carbamazepine on life-history strategies of Ceriodaphnia dubia in three successive generations. Arch. Environ. Contam. Toxicol. 2013, 64, 427–438. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Zhou, W.; Freitas, R.; Zhang, Y.; Zhang, Y. Combined exposure of polystyrene microplastics and carbamazepine induced transgenerational effects on the reproduction of Daphnia magna. Environ. Sci. Pollut. Res. 2023, 30, 67596–67607. [Google Scholar] [CrossRef]
- Schiedek, D.; Sundelin, B.; Readman, J.W.; Macdonald, R.W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 2007, 54, 1845–1856. [Google Scholar] [CrossRef]
- Meng, S.; Delnat, V.; Stoks, R. Multigenerational effects modify the tolerance of mosquito larvaes to chlorpyrifos but not to a heat spike and do not change their synergism. Environ. Pollut. 2022, 292, 118333. [Google Scholar] [CrossRef]
- Pham, H.T.; Dinh, K.V.; Nguyen, C.C.; Quoc, L.B. Changes in the magnitude of the individual and combined effects of contaminants, warming, and predators on tropical cladocerans across 11 generations. Environ. Sci. Technol. 2020, 54, 15287–15295. [Google Scholar] [CrossRef]
- Dinh, K.V.; Doan, K.L.U.; Doan, N.X.; Pham, H.Q.; Le, T.H.O.; Le, M.H.; Vu, M.T.T.; Dahms, H.U.; Truong, K.N. Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave. Environ. Pollut. 2021, 287, 117603. [Google Scholar] [CrossRef]
Endpoint | 20 °C | |||
Generation | F0 | F1 | ||
CBZ (μg L−1) | 0 | 10 | 10 | |
N-C * (days) | 5.46 a ± 0.56 | 5.66 b ± 0.28 | 5.46 a ± 0.56 | 5.66 c ± 0.28 |
N-Fov * (days) | 14.11 a ± 0.68 | 14.50 a ± 0.71 | 14.56 a± 0.51 | 15.39 b ± 0.71 |
Sex ratio (F/M) | 1.37 ± 0.27 | 1.41 ± 0.28 | 1.11 ± 1.18 | 1.16 ± 0.16 |
Female length (μm) | 823.65 ± 90.33 | 889.83 ± 64.35 | 870.69 ± 113.02 | 891.82 ± 43.74 |
Male length (μm) | 843.39 ± 97.29 | 807.10 ± 80.00 | 853.80 ± 74.53 | 831.04 ± 49.10 |
Hatching time (days) | 2.49 a ± 0.23 | 2.77 b ± 0.42 | 2.52 a± 0.21 | 2.76 b ± 0.23 |
Nauplii/Fov | 117.22 ± 21.63 | 109.11 ± 23.92 | 107.06 ± 26.05 | 101.83 ± 26.91 |
Nauplii/brood | 21.78 ± 3.45 | 22.62 ± 4.24 | 21.30 ± 3.35 | 22.91 ± 5.29 |
Brood/Fov | 5.39 a ± 0.61 | 4.83 b,c ± 0.62 | 5.00 a,b ± 0.69 | 4.44 c ± 0.51 |
Unhatched broods | 0.06 ± 0.23 | 0.06 ± 0.23 | 0.00 ± 0.00 | 0.22 ± 0.43 |
27 °C | ||||
Generation | F0 | F1 | ||
CBZ (μg L−1) | 0 | 10 | 0 | 10 |
N-C * (days) | 4.16 a ± 0.37 | 4.14 a ± 0.37 | 4.35 b ± 0.37 | 4.40 b ± 0.37 |
N-Fov * (days) | 10.94 ± 1.35 | 10.78 ± 1.52 | 10.83 ± 0.92 | 11.33 ± 0.84 |
Sex ratio (F/M) | 2.23 ± 0.76 | 3.48 ± 0.86 | 2.31 ± 0.52 | 2.65 ± 0.44 |
Female length (μm) | 859.43 a ± 67.00 | 876.83 a ± 30.53 | 814.73 a ± 91.61 | 698.04 b ± 25.02 |
Male length (μm) | 795.13 ± 102.55 | 810.97 ± 108.99 | 848.40 ± 71.40 | 798.53 ± 51.47 |
Hatching time (days) | 2.41 a ± 0.26 | 2.70 b ± 0.20 | 2.54 a ± 0.23 | 3.03 b ± 0.39 |
Nauplii/Fov * | 119.33 a ± 38.27 | 86.44 b ± 37.85 | 126.28 a ± 36.82 | 78.78 b ± 33.94 |
Nauplii/brood | 19.51 ± 5.60 | 15.76 ± 6.61 | 19.31 ± 5.46 | 16.10 ± 6.00 |
Brood/Fov * | 6.11 a ± 0.76 | 5.56 b ± 0.70 | 6.56 a ± 0.70 | 4.94 b ± 0.94 |
Unhatched broods | 0.22 a ± 0.43 | 1.00 b ± 0.77 | 0.11 a ± 0.32 | 0.67 a ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parlapiano, I.; Prato, E.; Denti, G.; Biandolino, F. Influence of Temperature on the Toxic Effects of Carbamazepine on the Copepod Tigriopus fulvus: A Transgenerational Full Life Cycle Study. Water 2024, 16, 2051. https://doi.org/10.3390/w16142051
Parlapiano I, Prato E, Denti G, Biandolino F. Influence of Temperature on the Toxic Effects of Carbamazepine on the Copepod Tigriopus fulvus: A Transgenerational Full Life Cycle Study. Water. 2024; 16(14):2051. https://doi.org/10.3390/w16142051
Chicago/Turabian StyleParlapiano, Isabella, Ermelinda Prato, Giuseppe Denti, and Francesca Biandolino. 2024. "Influence of Temperature on the Toxic Effects of Carbamazepine on the Copepod Tigriopus fulvus: A Transgenerational Full Life Cycle Study" Water 16, no. 14: 2051. https://doi.org/10.3390/w16142051
APA StyleParlapiano, I., Prato, E., Denti, G., & Biandolino, F. (2024). Influence of Temperature on the Toxic Effects of Carbamazepine on the Copepod Tigriopus fulvus: A Transgenerational Full Life Cycle Study. Water, 16(14), 2051. https://doi.org/10.3390/w16142051