Applications of RIM-Based Flow Visualization in Fluid-Solid Interaction Problems: A Review of Formulations and Prospects
Abstract
:1. Introduction
2. Applications of RIM
2.1. Hydraulic/Mechanical Engineering: PorousMedia-Fluid(Surface or Pipe Flow) Interaction
2.2. Geotechnical Engineering: Solid Soil Particle-Groundwater Interaction
2.3. Environmental Engineering: Discrete Particle-Flow Interaction
2.4. Solid-Fluid Interaction in Biological Engineering
3. RIM Formulation Summary, Discussion, and Prospects
3.1. RIM Formulation Summary
3.2. Discussion
3.3. Future Research Topics on RIM
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RIM | Refractive Index Match |
LDA | Laser Doppler Velocimetry |
PIV | Particle Image Velocimetry |
PMMA | Polymethyl methacrylate |
DIC | Digital image correlation |
NAPL | Nonaqueous phase liquids |
KSCN | Potassium thiocyanate |
PVA | Polyvinyl acetate |
THV | Tetrafluoroethylene hexafluoropropylene vinylidene fluoride |
RIs | Refractive indices |
PTV | Particle Tracking Velocimetry |
PLIF | Planer Laser Induced Fluorescence |
PAC | Polyacrylamide |
TCS | Transparent cemented soil |
NH4SCN | Ammonium thiocyanate |
FEP | Fluorinated ethylene propylene |
PS | Polystyrene |
Reference
- Rousseau, G.; Ancey, C. Scanning PIV of turbulent flows over and through rough porous beds using refractive index matching. Exp. Fluids 2020, 61, 172. [Google Scholar] [CrossRef]
- Mannheimer, R.; Oswald, C. Development of Transparent Porous Media with Permeabilities and Porosities Comparable to Soils, Aquifers, and Petroleum Reservoirs. Groundwater 1993, 31, 781–788. [Google Scholar] [CrossRef]
- Tang, J.; Wang, C.; Liu, F.; Yang, X.; Wang, R. A Refractive Index- and Density-Matched Liquid–Liquid System Developed Using a Novel Design of Experiments. Processes 2023, 11, 1922. [Google Scholar] [CrossRef]
- McIlroy, H.M., Jr.; McEligot, D.M.; Pink, R.J. Measurement of turbulent flow phenomena for the lower plenum of a prismatic gas-cooled reactor. Nucl. Eng. Des. 2010, 240, 416–428. [Google Scholar] [CrossRef]
- Dietze, G.F.; Al-Sibai, F.; Kneer, R. Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 2009, 637, 73–104. [Google Scholar] [CrossRef]
- Hirsch, D.; Graff, E.C.; Pereira, F.; Gharib, M. Influence of common transparent materials on the accuracy of image-based velocimetry. Meas. Sci. Technol. 2015, 26, 087002. [Google Scholar] [CrossRef]
- Amini, N.; Hassan, Y.A. An investigation of matched index of refraction technique and its application in optical measurements of fluid flow. Exp. Fluids 2012, 53, 2011–2020. [Google Scholar] [CrossRef]
- Tomac, M.N.; Gregory, J.W. Internal jet interactions in a fluidic oscillator at low flow rate. Exp. Fluids 2014, 55, 1730. [Google Scholar] [CrossRef]
- Fort, C.; Fu, C.D.; Weichselbaum, N.A.; Bardet, P.M. Refractive index and solubility control of para-cymene solutions for index-matched fluid–structure interaction studies. Exp. Fluids 2015, 56, 210. [Google Scholar] [CrossRef]
- Zhu, W.; Knapp, Y.; Deplano, V. Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles. Exp. Fluids 2016, 57, 68. [Google Scholar] [CrossRef]
- Buchmann, N.; Atkinson, C.; Jeremy, M.; Soria, J. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 2011, 50, 1131–1151. [Google Scholar] [CrossRef]
- Kefayati, S.; Poepping, T.L. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Med. Eng. Phys. 2013, 35, 898–909. [Google Scholar] [CrossRef]
- Yagi, T.; Sato, A.; Shinke, M.; Takahashi, S.; Tobe, Y.; Takao, H.; Murayama, Y.; Umezu, M. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: Transition from a laminar regime. J. R. Soc. Interface 2013, 10, 20121031. [Google Scholar] [CrossRef]
- Satake, S.I.; Aoyagi, Y.; Unno, N.; Yuki, K.; Seki, Y.; Enoeda, M. Three-dimensional flow measurement of a water flow in a sphere-packed pipe by digital holographic PTV. Fusion Eng. Des. 2015, 98–99, 1864–1867. [Google Scholar] [CrossRef]
- Unno, N.; Nakata, S.; Satake, S.i.; Taniguchi, J. Three-dimensional particle tracking around microstructures in water via total internal reflection fluorescence microscopy and refractive-index-matching method. Exp. Fluids 2016, 57, 120. [Google Scholar] [CrossRef]
- Kang, J.H.; Lee, K.J.; Nam, J.H.; Kim, C.J.; Park, H.S.; Lee, S.; Kwang, I. Visualization of invasion-percolation drainage process in porous media using density-matched immiscible fluids and refractive-index-matched solid structures. J. Power Sources 2010, 195, 2608–2612. [Google Scholar] [CrossRef]
- Byron, M.L.; Variano, E.A. Refractive-index-matched hydrogel materials for measuring flow-structure interactions. Exp. Fluids 2013, 54, 1456. [Google Scholar] [CrossRef]
- Weitzman, J.S.; Samuel, L.C.; Craig, A.E.; Zeller, R.B.; Monismith, S.G.; Koseff, J.R. On the use of refractive-index-matched hydrogel for fluid velocity measurement within and around geometrically complex solid obstructions. Exp. Fluids 2014, 55, 1862. [Google Scholar] [CrossRef]
- Blois, G.; Christensen, K.; Best, J.; Elliott, G.; Austin, J.; Dutton, C.; Bragg, M.; Garcia, M.; Fouke, B. A versatile refractive-index-matched flow facility for studies of complex flow systems across scientific disciplines. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar] [CrossRef]
- Bai, K.; Katz, J. On the refractive index of sodium iodide solutions for index matching in PIV. Exp. Fluids 2014, 55, 1704. [Google Scholar] [CrossRef]
- Reddy, R.K.; Sathe, M.J.; Joshi, J.B.; Nandakumar, K.; Evans, G.M. Recent developments in experimental (PIV) and numerical (DNS) investigation of solid-liquid fluidized beds. Chem. Eng. Sci. 2013, 92, 1–12. [Google Scholar] [CrossRef]
- Khayamyan, S.; Lundström, T.S.; Hellström, J.G.I.; Gren, P.; Lycksam, H. Measurements of Transitional and Turbulent Flow in a Randomly Packed Bed of Spheres with Particle Image Velocimetry. Transp. Porous Media 2017, 116, 413–431. [Google Scholar] [CrossRef]
- Agrawal, Y.K.; Sabbagh, R.; Sanders, S.; Nobes, D.S. Measuring the Refractive Index, Density, Viscosity, pH, and Surface Tension of Potassium Thiocyanate (KSCN) Solutions for Refractive Index Matching in Flow Experiments. J. Chem. Eng. Data 2018, 63, 1275–1285. [Google Scholar] [CrossRef]
- Stephenson, J.; Stewart, W. Optical measurements of porosity and fluid motion in packed beds. Chem. Eng. Sci. 1986, 41, 2161–2170. [Google Scholar] [CrossRef]
- Cui, M.; Adrian, R. Refractive index matching and marking methods for highly concentrated solid-liquid flows. Exp. Fluids 1997, 22, 261–264. [Google Scholar] [CrossRef]
- Huang, A.Y.; Huang, M.Y.; Capart, H.; Chen, R.H. Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed spheres. Exp. Fluids 2008, 45, 309–321. [Google Scholar] [CrossRef]
- Budwig, R. Refractive index matching methods for liquid flow investigations. Exp. Fluids 1994, 17, 350–355. [Google Scholar] [CrossRef]
- Wiederseiner, S.; Andreini, N.; Epely-Chauvin, G.; Ancey, C. Refractive-index and density matching in concentrated particle suspensions: A review. Exp. Fluids 2011, 50, 1183–1206. [Google Scholar] [CrossRef]
- Wright, S.F.; Zadrazil, I.; Markides, C.N. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 2017, 58, 108. [Google Scholar] [CrossRef]
- Fan, D.; Li, R.; He, M.; Li, X.; Li, J.; Wen, J.; Hu, Y.; Li, Y.; Li, Y.; Gu, L.; et al. Review of Refractive Index-Matching Techniques of Polymethyl Methacrylate in Flow Field Visualization Experiments. Int. J. Energy Res. 2023, 2023, 3413380. [Google Scholar] [CrossRef]
- Dai, X.; He, L.; Wu, W.; Chen, J. Visualization experiment technology based on transparent geotechnical materials and its engineering application. J. Vis. 2023, 26, 145–159. [Google Scholar] [CrossRef]
- Packman, A.I.; Salehin, M.; Zaramella, M. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. J. Hydraul. Eng. 2004, 130, 647–656. [Google Scholar] [CrossRef]
- Bakhtyar, R.; Brovelli, A.; Barry, D.; Li, L. Wave-induced water table fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments. Coast. Eng. 2011, 58, 103–118. [Google Scholar] [CrossRef]
- Badum, L.; Leizeronok, B.; Cukurel, B. New Insights from Conceptual Design of an Additive Manufactured 300 W Microgas Turbine Toward Unmanned Aerial Vehicle Applications. J. Eng. Gas Turbines Power 2021, 143, 021006. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, Y.; Ren, H.; Wu, M.; Li, G.; Wan, Z.; Shao, J. A metallic gas diffusion layer and porous media flow field for proton exchange membrane fuel cells. J. Power Sources 2022, 543, 231847. [Google Scholar] [CrossRef]
- Reger, D.; Merzari, E.; Balestra, P.; Schunert, S.; Hassan, Y.; Yuan, H.; Lan, Y.H.; Fischer, P.; Min, M. Pressure Drop Correlation Improvement for the Near-Wall Region of Pebble-Bed Reactors. Nucl. Technol. 2023, 209, 90–104. [Google Scholar] [CrossRef]
- Cao, D.; Chiew, Y.M. Suction effects on sediment transport in closed-conduit flows. J. Hydraul. Eng. 2014, 140, 04014008. [Google Scholar] [CrossRef]
- Cao, D.; Chiew, Y.M.; Liu, X. Effect of suction zone length on sediment transport. J. Hydraul. Res. 2015, 53, 49–59. [Google Scholar] [CrossRef]
- Cao, D.; Chiew, Y.M.; Yang, S.Q. Injection Effects on Sediment Transport in Closed-Conduit Flows. Acta Geophys. 2016, 64, 125–148. [Google Scholar] [CrossRef]
- Kumar, V.S.; Shanas, P.; Dora, G.U.; Glejin, J.; Philip, S. Longshore sediment transport in the surf zone based on different formulae: A case study along the central west coast of India. J. Coast. Conserv. 2017, 21, 1–13. [Google Scholar] [CrossRef]
- Cao, D.; Yuan, J.; Chen, H. Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean. Eng. 2021, 239, 109811. [Google Scholar] [CrossRef]
- Harshani, H.; Galindo-Torres, S.; Scheuermann, A.; Muhlhaus, H. Experimental study of porous media flow using hydro-gel beads and LED based PIV. Meas. Sci. Technol. 2017, 28, 015902. [Google Scholar] [CrossRef]
- Nguyen, T.; King, S.; Hassan, Y. Experimental investigation of turbulent characteristics in pore-scale regions of porous media. Exp. Fluids 2021, 62, 72. [Google Scholar] [CrossRef]
- Khayamyan, S.; Lundström, T.S.; Gren, P.; Lycksam, H.; Hellström, J.G.I. Transitional and Turbulent Flow in a Bed of Spheres as Measured with Stereoscopic Particle Image Velocimetry. Transp. Porous Media 2017, 117, 45–67. [Google Scholar] [CrossRef]
- Fan, D.; Peng, T.; Wen, J.; Tang, Y.; Tian, W.; Li, R.; Wang, D.; Gu, L. Study on Refractive Index Matching Liquid of Polymethyl Methacrylate Employed in Flow Field Visualization Experiment. At. Energy Sci. Technol. 2020, 54, 1604–1611. (In Chinese) [Google Scholar] [CrossRef]
- Sabbagh, R.; Ansari, S.; Nobes, D.S. An imaging approach for in-situ measurement of refractive index of a porous medium. Opt. Lasers Eng. 2020, 134, 106175. [Google Scholar] [CrossRef]
- Bai, K.; Katz, J.; Meneveau, C. Turbulent Flow Structure Inside a Canopy with Complex Multi-Scale Elements. Bound.-Layer Meteorol. 2015, 155, 435–457. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Dominguez-Ontiveros, E. Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl. Eng. Des. 2008, 238, 3080–3085. [Google Scholar] [CrossRef]
- Fort, C.; Bardet, P.M. Refractive-index-matched polymer for experimental fluid dynamics in water. Exp. Fluids 2021, 62. [Google Scholar] [CrossRef]
- Huang, F.; Chen, P.; Wang, J.; Li, Z.; Gao, Z.; Derksen, J.J. Refractive Index-Matched PIV Experiments and CFD Simulations of Mixing in a Complex Dynamic Geometry. Ind. Eng. Chem. Res. 2020, 59, 7982–7992. [Google Scholar] [CrossRef]
- Bathurst, R.J.; Ezzein, F.M. Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech. Test. J. 2015, 38, 673–685. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Zornberg, J.G. A transparent pullout testing device for 3D evaluation of soil–geogrid interaction. Geotech. Test. J. 2015, 38, 686–707. [Google Scholar] [CrossRef]
- Liu, J.; Iskander, M.G. Modelling capacity of transparent soil. Can. Geotech. J. 2010, 47, 451–460. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Zhao, Z.; Ni, H.; Su, Z.; Li, Z. Experimental study of displacement field of layered soils surrounding laterally loaded pile based on transparent soil. J. Soils Sediments 2021, 21, 3072–3083. [Google Scholar] [CrossRef]
- Wei, L.; Xu, Q.; Wang, S.; Wang, C.; Chen, J. Development of transparent cemented soil for geotechnical laboratory modelling. Eng. Geol. 2019, 262, 105354. [Google Scholar] [CrossRef]
- Leng, X.; Wang, C.; Pang, R.; Sheng, Q.; Chen, J. Material Preparation and Geotechnical Properties of Transparent Cemented Soil for Physical Modeling. Front. Mater. 2021, 8, 740388. [Google Scholar] [CrossRef]
- Song, Z.; Hu, Y.; O’Loughlin, C.; Randolph, M.F. Loss in anchor embedment during plate anchor keying in clay. J. Geotech. Geoenviron. Eng. 2009, 135, 1475–1485. [Google Scholar] [CrossRef]
- Wallace, J.F.; Rutherford, C.J. Geotechnical properties of LAPONITE RD®. Geotech. Test. J. 2015, 38, 574–587. [Google Scholar] [CrossRef]
- Guzman, I.L.; Iskander, M.; Suescun-Florez, E.; Omidvar, M. A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotech. 2014, 9, 187–206. [Google Scholar] [CrossRef]
- Kong, G.Q.; Cao, Z.H.; Zhou, H.; Sun, X.J. Analysis of piles under oblique pullout load using transparent-soil models. Geotech. Test. J. 2015, 38, 725–738. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Sui, W. Visualization of Grout Permeation inside Transparent Soil; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Kashuk, S.; Mercurio, S.R.; Iskander, M. Methodology for optical imaging of NAPL 3D distribution in transparent porous media. Geotech. Test. J. 2015, 38, 603–619. [Google Scholar] [CrossRef]
- Wu, Y.; Han, Y.; Tang, X.; Chen, M.; Chen, T. Transparent Soil Test on Factors Affecting Transport of High-pressure Jet Contaminated Soil. J. Tongji Univ. 2020, 48, 1305–1311. (In Chinese) [Google Scholar] [CrossRef]
- Lo, H.C.; Tabe, K.; Iskander, M.; Yoon, S.H. Modeling of Multi-Phase Flow and Surfactant Flushing Using Transparent Aquabeads; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2008; Volume 179, pp. 846–853. [Google Scholar] [CrossRef]
- Brovelli, A.; Carranza-Diaz, O.; Rossi, L.; Barry, D. Design methodology accounting for the effects of porous medium heterogeneity on hydraulic residence time and biodegradation in horizontal subsurface flow constructed wetlands. Ecol. Eng. 2011, 37, 758–770. [Google Scholar] [CrossRef]
- Ni, W.J.; Capart, H. Cross-sectional imaging of refractive-index-matched liquid-granular flows. Exp. Fluids 2015, 56, 163. [Google Scholar] [CrossRef]
- Dijksman, J.A.; Rietz, F.; Lorincz, K.A.; Van Hecke, M.; Losert, W. Invited Article: Refractive index matched scanning of dense granular materials. Rev. Sci. Instrum. 2012, 83, 011301. [Google Scholar] [CrossRef]
- Leis, A.P.; Schlicher, S.; Franke, H.; Strathmann, M. Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl. Environ. Microbiol. 2005, 71, 4801–4808. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.; Tshimanga, I.; Ngoepe, M.; Jermy, M.; Geoghegan, P. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms. Cardiovasc. Eng. Technol. 2020, 11, 14–23. [Google Scholar] [CrossRef]
- Le, T.B.; Troolin, D.R.; Amatya, D.; Longmire, E.K.; Sotiropoulos, F. Vortex phenomena in sidewall aneurysm hemodynamics: Experiment and numerical simulation. Ann. Biomed. Eng. 2013, 41, 2157–2170. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Wang, Y.; Donarski, E.; Gahlmann, A. Optically Accessible Microfluidic Flow Channels for Noninvasive High-Resolution Biofilm Imaging Using Lattice Light Sheet Microscopy. J. Phys. Chem. B 2021, 125, 12187–12196. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.A.; Liburdy, J.A. Flow characterization using PIV measurements in a low aspect ratio randomly packed porous bed. Exp. Fluids 2013, 54, 1497. [Google Scholar] [CrossRef]
- Dramé, A.S.; Wang, L.; Zhang, Y. Destabilization of Immersed Dense Granular Material Submitted to Localized Fluidization: An Experimental and Numerical Study. J. Spectrosc. 2021, 2021, 5542835. [Google Scholar] [CrossRef]
- Butscher, D.; Hutter, C.; Kuhn, S.; Von Rohr, P.R. Particle image velocimetry in a foam-like porous structure using refractive index matching: A method to characterize the hydrodynamic performance of porous structures. Exp. Fluids 2012, 53, 1123–1132. [Google Scholar] [CrossRef]
- Aussillous, P.; Chauchat, J.; Pailha, M.; Medale, M.; Guazzelli, E. Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 2013, 736, 594–615. [Google Scholar] [CrossRef]
- Hilliard, B.; Reeder, W.J.; Skifton, R.S.; Budwig, R.; Basham, W.; Tonina, D. A Biologically Friendly, Low-Cost, and Scalable Method to Map Permeable Media Architecture and Interstitial Flow. Geophys. Res. Lett. 2021, 48, e2020GL090462. [Google Scholar] [CrossRef]
- Kim, T.; Blois, G.; Best, J.L.; Christensen, K.T. Experimental evidence of amplitude modulation in permeable-wall turbulence. J. Fluid Mech. 2020, 887, A3. [Google Scholar] [CrossRef]
- Lo, H.C.; Tabe, K.; Iskander, M.; Yoon, S.H. A transparent water-based polymer for simulating multiphase flow. Geotech. Test. J. 2010, 33, 1–13. [Google Scholar] [CrossRef]
Topic | Solid | Liquid | References |
---|---|---|---|
1. Turbulent flows over and through rough porous beds | Borosilicate beads | A mixture of 40% ethanol and 60% benzyl alcohol by volume | [1] |
2. In-situ measurement of the refractive index of a porous medium in RIM experiments | Borosilicate glass beads (Sigma-Aldrich, Z273619) | (1) KSCN solutions (2) mixtures of Drakeol and soybean oil with different mass fractions | [46] |
3. Flow characterization of low aspect ratio randomly packed porous bed | Beads 15 mm diameter (Pyrex®) | Aqueous solution of NH4SCN | [72] |
4. Measuring porous flow characteristics | Hydrogel beads | Water | [42] |
5. Destabilization by localized fluidization of a dense granular material | Hydrogel beads | Water | [73] |
6. Pore-scale turbulent characteristics in porous media | Polymethyl methacrylate (acrylic) | p-cymene | [43] |
7. Foam-like porous structure; 3-D print | Epoxy resin (WaterShed® XC 11122) | Anisole (Sigma-Aldrich) | [74] |
8. Mobile granular layer for the sediment transport of spherical particles | Borosilicate; PMMA | Water (15 wt%)+Triton X-100; Triton X-100 | [75] |
9. Inertia dominated, transitional and turbulent flow | PMMA | an aqueous solution of NH4SCN | [44] |
10. Map interstitial flow | THV(manufactured by 3M (Maplewood, MN, USA)) | Deionized water mixed with 24.2% glycerin by weight | [76] |
11. Turbulent flow inside a complex canopy | UOPTIC (manufactured by Forecast 3D) | An aqueous NaI solution | [47] |
12.The dynamic interplay between surface and subsurface flow in the presence of a permeable boundary | acrylic resin (Crystal Clear 204) | An aqueous NaI solution | [77] |
Topic | Solid | Liquid | References |
---|---|---|---|
1. Displacement field of the soil around the laterally loaded pile | Glass sand | Mixing n-dodecane and No. 15 white oil with the transparent pore solution with a mass ratio of 1:12 | [54] |
2. Observation of square anchor rotation | Fumed silica | A mix of 70% paraffin and 30% white spirit by volume | [57] |
3. Geotechnical properties | A synthetic smectite clay (LAPONITE RD®) | Distilled water | [58] |
4. Internal displacement field during pile-soil interaction | Fused quartz | Mixture of Norpar 12 and white mineral oil | [60] |
5. Sand surrogate for use in physical modeling | Fused quartz | Waterbased sucrose solution | [59] |
6. Surrogate soil for geotechnical laboratory modelling | Fused quartz | A mixture of hydrophobic fumed silica powder and mineral oil | [55] |
7. Transparent cemented soil for physical modeling | Fused quartz (purchased from Xinyi Wanhe Mining Co., Ltd.) | A mixture of n-dodecane and 15# white oil at a mass ratio of 1:3.5 to 1:8 (both purchased from Guangdong Wengjiang Chemical Reagent Co., Ltd.) | [56] |
Topic | Solid | Liquid | References |
---|---|---|---|
1. Surfactant flushing in remediation of contaminated soils | Aquabeads (produced by Kuraray Chemical Co.) | White mineral oil and motor oil | [78] |
2. Remediation of soil contamination | Amorphous silicon powder | Mineral oil solution | [63] |
3. NAPL 3D distribution | Fused quartz | A mineral oil blend; low color sucrose (LCS) | [62] |
4. Grout permeation | fused silica | Calcium bromide solution | [61] |
5. Groundwater contamination by non-aqueous phase liquids | Aquabeads | Mineral oil and motor oil | [64] |
Topic | Solid | Liquid | References |
---|---|---|---|
1. Visualization of microbial biofilm architecture and transport dynamics | Nafion (Sigma-Aldrich 495786) | Water | [68] |
2. Biomedical fluid dynamics using optical flow visualization | Clear photopolymer resin (FLGPCLXX) | A fluid composed of 66% NH4SCN and 34% deionised water | [69] |
3. Vortex phenomena in sidewall aneurysm hemodynamics | Urethane rubber | A solution of sodium iodide, glycerin, and water by weight percentages of 54.3%, 20.8%, and 24.9% | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Cao, D.; Chen, H.; Chai, Q.; Lu, T. Applications of RIM-Based Flow Visualization in Fluid-Solid Interaction Problems: A Review of Formulations and Prospects. Water 2024, 16, 2055. https://doi.org/10.3390/w16142055
Zeng H, Cao D, Chen H, Chai Q, Lu T. Applications of RIM-Based Flow Visualization in Fluid-Solid Interaction Problems: A Review of Formulations and Prospects. Water. 2024; 16(14):2055. https://doi.org/10.3390/w16142055
Chicago/Turabian StyleZeng, Hanqi, Deping Cao, Hao Chen, Qi Chai, and Tianze Lu. 2024. "Applications of RIM-Based Flow Visualization in Fluid-Solid Interaction Problems: A Review of Formulations and Prospects" Water 16, no. 14: 2055. https://doi.org/10.3390/w16142055
APA StyleZeng, H., Cao, D., Chen, H., Chai, Q., & Lu, T. (2024). Applications of RIM-Based Flow Visualization in Fluid-Solid Interaction Problems: A Review of Formulations and Prospects. Water, 16(14), 2055. https://doi.org/10.3390/w16142055