Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. EMC Sludge and Inoculum
2.2. Alkaline Pre-Fermentation Experiment
2.3. Anaerobic Digestion Experiment
2.4. Analysis
2.5. Microbial Community Analysis
3. Results and Discussion
3.1. Alkaline Pre-Fermentation Performance
3.2. Anaerobic Digestion Performance
3.2.1. Sludge Solids Removal and Methane Production
3.2.2. Variations in SCOD, PO43−–P, and pH
3.3. Microbial Community Analysis
3.3.1. Phylum-Level Analysis of Bacterial Community
3.3.2. Genus-Level Analysis of Bacterial Community
3.3.3. Archaeal Community Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guest, J.S.; Skerlos, S.J.; Barnard, J.L.; Beck, M.B.; Daigger, G.T.; Hilger, H.; Jackson, S.J.; Karvazy, K.; Kelly, L.; Macpherson, L.; et al. A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environ. Sci. Technol. 2009, 43, 6126–6130. [Google Scholar] [CrossRef] [PubMed]
- Zohuri, B. Navigating the Global Energy Landscape Balancing Growth, Demand, and Sustainability. J. Mat. Sci. Apl. Eng. 2023, 2, 1–7. [Google Scholar]
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Wang, X.; Wu, J.; Li, F. Energy Self-sufficient Wastewater Treatment Plants: Feasibilities and Challenges. Energy Procedia 2017, 105, 3741–3751. [Google Scholar] [CrossRef]
- Subbarao, P.M.V.; Silva, T.C.D.; Adlak, K.; Kumar, S.; Chandra, R.; Vijay, V.K. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environ. Res. 2023, 234, 116286. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, L.; Huang, Y.; Li, D. Capturing organics from municipal wastewater using a primary sludge-derived polymer. J. Water Process Eng. 2022, 46, 102567. [Google Scholar] [CrossRef]
- Lv, M.; Zhang, Z.; Zeng, J.; Liu, J.; Sun, M.; Yadav, R.S.; Feng, Y. Roles of magnetic particles in magnetic seeding coagulation-flocculation process for surface water treatment. Sep. Purif. Technol. 2019, 212, 337–343. [Google Scholar] [CrossRef]
- Boehnke, B.; Schulze-Rettmer, R.; Zuckut, S. Cost-effective reduction of high-strength wastewater by adsorption-based activated sludge technology. Water Eng. Manag. 1998, 145, 31–34. [Google Scholar]
- Czerwionka, K.; Wilinska, A.; Tuszynska, A. The use of organic coagulants in the primary precipitation process at wastewater treatment plants. Water 2020, 12, 1650. [Google Scholar] [CrossRef]
- Iwuozor, K.O. Prospects and Challenges of Using Coagulation-Flocculation Method in the Treatment of Effluents. Adv. J. Chem. 2019, 2, 105–127. [Google Scholar] [CrossRef]
- Diamantis, V.; Verstraete, W.; Eftaxias, A.; Bundervoet, B.; Siegfried, V.; Melidis, P.; Aivasidis, A. Sewage pre-concentration for maximum recovery and reuse at decentralized level. Water Sci. Technol. 2013, 67, 1188–1193. [Google Scholar] [CrossRef]
- Gidstedt, S.; Betsholtz, A.; Cimbritz, M.; Davidsson, Å.; Hagman, M.; Karlsson, S.; Takman, M.; Svahn, O.; Micolucci, F. Chemically enhanced primary treatment, microsieving, direct membrane filtration and GAC filtration of municipal wastewater: A pilot-scale study. Environ. Technol. 2024, 45, 28–39. [Google Scholar] [CrossRef]
- Xu, G.R.; Yan, Z.C.; Wang, Y.C.; Wang, N. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment. J. Hazard Mater. 2009, 161, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Nan, J.; Ji, X.; Wu, F.; Ye, X.; Ge, Z. Effect of adsorption and coagulation pretreatment sequence on ultrafiltration membrane fouling: Process study and targeted prediction. Desalination 2022, 540, 115967. [Google Scholar] [CrossRef]
- Gong, H.; Jin, Z.; Wang, X.; Wang, K. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration. J. Environ. Sci. 2015, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.H.; Xu, H.; Chang, F.M.; Hu, M.; Li, Y.N.; Wang, P.J.; Wang, K.J. Performance of enhanced membrane-coagulation for rural domestic sewage treatment and its sludge resource utilization potential. China Water Wastewater 2022, 38, 1–7. [Google Scholar]
- Jin, Z.; Gong, H.; Temmink, H.; Nie, H.; Wu, J.; Zuo, J.; Wang, K. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery. Chem. Eng. J. 2016, 292, 130–138. [Google Scholar] [CrossRef]
- Kadam, R.; Khanthong, K.; Park, B.; Jun, H.; Park, J. Realizable wastewater treatment process for carbon neutrality and energy sustainability: A review. J. Environ. Sci. 2023, 328, 116927. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, W.; Wang, X.; Shen, N.; Bian, B.; Wang, G.; He, F.; Chen, Y. A long aging time had severely inhibited methane production from Fe-chemically enhanced primary sedimentation sludge during anaerobic digestion. J. Clean. Prod. 2024, 434, 140293. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Devlin, D.C.; Esteves, S.R.R.; Dinsdale, R.M.; Guwy, A.J. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 2011, 102, 4076–4082. [Google Scholar] [CrossRef]
- Yan, W.; Chen, Y.; Shen, N.; Wang, G.; Wan, J.; Huang, J. The influence of a stepwise pH increase on volatile fatty acids production and phosphorus release during Al-waste activated sludge fermentation. Bioresour. Technol. 2021, 320, 124276. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Dagnew, M. Enhancing biomethane production and phosphorus recovery from CEPT sludge through a low temperature thermal alkali and ozonation pretreatment processes. Case Stud. Chem. Environ. Eng. 2022, 5, 100178. [Google Scholar] [CrossRef]
- Lin, L.; Li, X.-Y. Effects of pH adjustment on the hydrolysis of Al-enhanced primary sedimentation sludge for volatile fatty acid production. Chem. Eng. J. 2018, 346, 50–56. [Google Scholar] [CrossRef]
- Walter, W.G. Standard Methods for the Examination of Water and Wastewater, 11th ed.; American Public Health Association, American Water Works Association, and Water Pollution Control Federation: New York, NY, USA, 1961; p. 940. [Google Scholar]
- Rice, E.W.; Baird, R.B. Standard Methods for the Examination of Water and Wastewater; Eaton, A.D., Ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Xu, H.; Wang, C.; Yan, K.; Wu, J.; Zuo, J.; Wang, K. Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles. Bioresour. Technol. 2016, 216, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Miao, J.; Wang, J.; Deng, J.; Zhang, J.; Kou, Q.; Xiong, X.; Holmes, D.E. Integrated CO2 capture and conversion via H2-driven CO2 biomethanation: Cyclic performance and microbial community response. Bioresour. Technol. 2024, 393, 130055. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, K.; Zhang, X.; Gong, H.; Xia, Y.; Holmes, D.E. Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment. Bioresour. Technol. 2020, 299, 122598. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhu, N. Progress of improving waste activated sludge dewaterability: Influence factors, conditioning technologies and implications and perspectives. Sci. Total Environ. 2024, 912, 168605. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, S.; Lu, Q.; Liao, Y.; Li, H.; Sun, L.; Wang, H.; Zhang, Y. Development of an alkaline/acid pre-treatment and anaerobic digestion (APAD) process for methane generation from waste activated sludge. Sci. Total Environ. 2020, 708, 134564. [Google Scholar] [CrossRef]
- Kim, J.; Yu, Y.; Lee, C. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: Effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 2013, 144, 194–201. [Google Scholar] [CrossRef]
- Gong, H.; Wang, Z.; Zhang, X.; Jin, Z.; Wang, C.; Zhang, L.; Wang, K. Organics and nitrogen recovery from sewage via membrane-based pre-concentration combined with ion exchange process. Chem. Eng. J. 2017, 311, 13–19. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Zhang, Z.; Nghiem, L.D.; Gao, L.; Batstone, D.J.; Wang, Q. Achieving expanded sludge treatment capacity with additional benefits for an anaerobic digester using free ammonia pretreatment. Chem. Eng. J. 2023, 465, 142846. [Google Scholar] [CrossRef]
- Carrere, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenes, J.P.; Motte, C. Improving methane production during the codigestion of waste-activated sludge and fatty wastewater: Impact of thermo-alkaline pretreatment on batch and semi-continuous processes. Chem. Eng. J. 2012, 210, 404–409. [Google Scholar] [CrossRef]
- Chen, H.; Yi, H.; Li, H.; Guo, X.; Xiao, B. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism. Renew. Energy 2020, 147, 2409–2416. [Google Scholar] [CrossRef]
- Ansari, M.; Farzadkia, M. Chemically enhanced primary treatment of municipal wastewater; Comparative evaluation, optimization, modelling, and energy analysis. Bioresour. Technol. Rep. 2022, 18, 101042. [Google Scholar]
- Lin, L.; Li, R.-H.; Li, Y.; Xu, J.; Li, X.-Y. Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process Biochem. 2017, 54, 135–139. [Google Scholar] [CrossRef]
- Zheng, X.; Su, Y.; Li, X.; Xiao, N.; Wang, D.; Chen, Y. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Energy Environ. Sci. 2013, 47, 4262–4268. [Google Scholar] [CrossRef]
- Fang, F.; Yang, J.; Chen, L.-L.; Xu, R.-Z.; Luo, J.-Y.; Ni, B.-J.; Cao, J.-S. Mixotrophic denitrification of waste activated sludge fermentation liquid as an alternative carbon source for nitrogen removal: Reducing N2O emissions and costs. J. Environ. Sci. 2024, 362, 121348. [Google Scholar] [CrossRef]
- Li, D.; Yin, F.; Ma, X. Achieving valorization of fermented activated sludge using pretreated waste wood feedstock for volatile fatty acids accumulation. Bioresour. Technol. 2019, 290, 121791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, Y.; Luo, J.; Cao, J.; Kang, C.; Wang, S.; Li, K.; Zhao, J.; Aleem, M.; Wang, D. Enhanced volatile fatty acids production from waste activated sludge with synchronous phosphorus fixation and pathogens inactivation by calcium hypochlorite stimulation. Sci. Total Environ. 2020, 712, 136500. [Google Scholar] [CrossRef]
- Luo, J.; Wu, L.; Zhang, Q.; Fang, F.; Feng, Q.; Xue, Z.; Cao, M.; Peng, Z.; Li, C.; Cao, J. How do biocides that occur in waste activated sludge affect the resource recovery for short-chain fatty acids production. ACS Sustain. Chem. Eng. 2018, 7, 1648–1657. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Inoue, M.; Omae, K.; Yoshida, T.; Sako, Y. Chapter Three—Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. Adv. Appl. Microbiol. 2020, 10, 99–148. [Google Scholar]
- Zhang, H.; Zhang, H.; Lv, Y.; Zhang, T.; Zhang, L.; Ma, X.; Liu, X.; Lian, S. Characteristics of groundwater microbial community composition and environmental response in the Yimuquan Aquifer, North China Plain. Water 2024, 16, 459. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhou, J.; Lin, Z.; Wang, Y.; Zhao, P.; Zhou, J.; Liu, S.; He, X. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 2020, 301, 122726. [Google Scholar] [CrossRef] [PubMed]
- Riviere, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 2009, 3, 700–714. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Jiang, H.; Chen, R.; Wang, X.; Li, Y.-Y. Characterization of microbial evolution in high-solids methanogenic co-digestion of canned coffee processing wastewater and waste activated sludge by an anaerobic membrane bioreactor. J. Clean. Prod. 2019, 232, 1442–1451. [Google Scholar] [CrossRef]
- Saha, S.; Xiong, J.-Q.; Patil, S.M.; Ha, G.-S.; Hoh, J.-K.; Park, H.-K.; Chung, W.; Chang, S.W.; Khan, M.A.; Park, H.B.; et al. Dissemination of sulfonamide resistance genes in digester microbiome during anaerobic digestion of food waste leachate. J. Hazard Mater. 2023, 452, 131200. [Google Scholar] [CrossRef]
- Bordoloi, N.K.; Bhagowati, P.; Chaudhuri, M.K.; Mukherjee, A.K. Proteomics and metabolomics analyses to elucidate the desulfurization pathway of Chelatococcus sp. PLoS ONE 2016, 11, e0153547. [Google Scholar] [CrossRef] [PubMed]
- Vasmara, C.; Pindo, M.; Micheletti, D.; Marchetti, R. Initial pH influences microbial communities composition in dark fermentation of scotta permeate. Int. J. Hydrogen Energy 2018, 43, 8707–8717. [Google Scholar] [CrossRef]
- Feng, K.; Li, H.; Zheng, C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour. Technol. 2018, 270, 180–188. [Google Scholar] [CrossRef]
- Yang, W.; Fang, W.; Chang, J.; Zhang, R.; Zhang, Y.; Wang, M.; Zhang, P. Enhancing propionic acid production in the anaerobic fermentation of high-strength starch wastewater facilitated by hydraulic retention time and FeCl3 under alkaline pH. J. Water Process Eng. 2024, 64, 105615. [Google Scholar] [CrossRef]
- Du, S.; Yu, D.; Zhao, J.; Wang, X.; Bi, C.; Zhen, J.; Yuan, M. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor. Bioresour. Technol. 2019, 289, 121690. [Google Scholar] [CrossRef] [PubMed]
- Gerritsen, J. The Genus Romboutsia: Genomic and Functional Characterization of Novel Bacteria Dedicated to Life in the Intestinal Tract. Ph.D. Thesis, Wageningen University, Wageningen, NL, USA, 2015. [Google Scholar]
- He, X.; Deng, C.; Li, P.; Yu, W.; Chen, H.; Lin, R.; Shen, D.; Baroutian, S. The impact of salinity on biomethane production and microbial community in the anaerobic digestion of food waste components. Energy 2024, 294, 130736. [Google Scholar] [CrossRef]
- Wang, R.; Li, C.; Lv, N.; Pan, X.; Cai, G.; Ning, J.; Zhu, G. Deeper insights into effect of activated carbon and nano-zero-valent iron addition on acidogenesis and whole anaerobic digestion. Bioresour. Technol. 2021, 324, 124671. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Geng, H.; Chen, R.; Liu, R.; Dai, X. Enhancing methanogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from interfacial thermodynamics, electron transfer and microbial community. Water Res. 2021, 19, 117072. [Google Scholar] [CrossRef] [PubMed]
- Keyser, M.; Witthuhn, R.C.; Lamprecht, C.; Coetzee, M.P.A.; Britz, T.J. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 2006, 24, 77–84. [Google Scholar] [CrossRef]
- Sun, R.; Xing, D.; Jia, J.; Zhou, A.; Zhang, L.; Ren, N. Methane production and microbial community structure for alkaline pretreated waste activated sludge. Bioresour. Technol. 2014, 169, 496–501. [Google Scholar] [CrossRef]
- Seo, H.; Joicy, A.; Lee, M.E.; Rhee, C.; Shin, S.G.; Cho, S.-K.; Ahn, Y. Development of a Primary Sewage Sludge Pretreatment Strategy Using a Combined Alkaline–Ultrasound Pretreatment for Enhancing Microbial Electrolysis Cell Performance. Energies 2023, 16, 3986. [Google Scholar] [CrossRef]
- Nobu, M.K.; Narihiro, T.; Kuroda, K.; Mei, R.; Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: Genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 2016, 10, 2478–2487. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, F.; Wang, B.; Zhang, Y.; Lovley, D.R. Methanobacterium capable of direct interspecies electron transfer. Environ. Sci. Technol. 2020, 54, 15347–15354. [Google Scholar] [CrossRef]
- Whitman, W.B.; Rainey, F.; Kämpfer, P.; Trujillo, M.; Chun, J.; Paul, D.V. Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.B., Ed.; Wiley: Hoboken, NJ, USA, 2015; p. 410. [Google Scholar]
Properties | EMC Sludge | Inoculum |
---|---|---|
pH | 7.2 ± 0.0 | 7.60 ± 0.0 |
TS/(g·L−1) | 25.4 ± 0.9 | 26.3 ± 1.2 |
VS/(g·L−1) | 13.2 ± 2.3 | 14.5 ± 2.3 |
COD/(mg·L−1) | 26,645.6 ± 7116.1 | 31,815 ± 895 |
SCOD/(mg·L−1) | 124.3 ± 48.1 | 1164.6 ± 3.0 |
TP/(mg·L−1) | 480.9 ± 238.2 | 718.0 ± 3.0 |
PO43−–P/(mg·L−1) | 1.2 ± 0.4 | 1.2 ± 0.4 |
NH4+–N/(mg·L−1) | 62.9 ± 40.4 | 62.9 ± 40.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, Q.; Yuan, Q.; Chen, S.; Xu, H.; Wei, S.; Wang, K. Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response. Water 2024, 16, 2057. https://doi.org/10.3390/w16142057
Kou Q, Yuan Q, Chen S, Xu H, Wei S, Wang K. Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response. Water. 2024; 16(14):2057. https://doi.org/10.3390/w16142057
Chicago/Turabian StyleKou, Qingshuang, Quan Yuan, Song Chen, Heng Xu, Shanghui Wei, and Kaijun Wang. 2024. "Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response" Water 16, no. 14: 2057. https://doi.org/10.3390/w16142057
APA StyleKou, Q., Yuan, Q., Chen, S., Xu, H., Wei, S., & Wang, K. (2024). Alkaline Pre-Fermentation Promotes Anaerobic Digestion of Enhanced Membrane Coagulation (EMC) Sludge: Performance and Microbial Community Response. Water, 16(14), 2057. https://doi.org/10.3390/w16142057