Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Collection
2.2. Laboratory Procedures
2.3. Concentration Calculations
3. Results
3.1. Siloxanes
3.2. PAHs
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maa, J.P.-Y. Sediment erosion characteristics in the Anacostia River. J. Hydraul. Eng. 2008, 134, 1102–1109. [Google Scholar] [CrossRef]
- Hawkins, G.S. Anacostia 2032: Plan for a Fishable and Swimmable Anacostia River; Report to the District Department of the Environment; District Department of the Environment: Washington, DC, USA, 2008. [Google Scholar]
- DC Water. Northeast Boundary Tunnel Project. 2023. Available online: https://www.dcwater.com/projects/northeast-boundary-tunnel-project-0 (accessed on 5 June 2024).
- AWS. 2022 State of the Anacostia River Full Report. 2022. Available online: https://www.anacostiaws.org/what-we-do/public-policy-advocacy/state-of-the-river-report-card/2022-state-of-the-anacostia-river-full-report.html (accessed on 5 June 2024).
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Connor, N.P.; Sarraino, S.; Frantz, D.E.; Bushaw-Newton, K.; MacAvoy, S.E. Geochemical characteristics of an urban river: Influences of an anthropogenic landscape. Appl. Geochem. 2014, 47, 209–216. [Google Scholar] [CrossRef]
- MacAvoy, S.E.; Lunine, A. Anthropogenic influences on an urban river: Differences in cations and nutrients along an urban/suburban transect. Water 2022, 14, 1330. [Google Scholar] [CrossRef]
- Foster, G.D.; Roberts, E.C.; Gruessner, B.; Velinsky, D.J. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Appl. Geochem. 2000, 15, 901–915. [Google Scholar] [CrossRef]
- Wade, T.L.; Velinsky, D.J.; Reinharz, E.; Schlekat, C.E. Tidal river sediments in the Washington, D.C. area. II. Distribution and sources of organic contaminants. Estuaries 1994, 17, 321–333. [Google Scholar] [CrossRef]
- Velinsky, D.J.; Riedel, G.F.; Ashley, J.T.F.; Cornwell, J.C. Historical contamination of the Anacostia River, Washington, D.C. Environ. Monit. Assess. 2011, 183, 307–328. [Google Scholar] [CrossRef]
- Foster, G.D.; Walls, C.; McEachern, P.R.; Huff, T.B.; McBride, R. Sedimentary profiles of pollution marker chemicals along a large tributary of Chesapeake Bay (mid-Atlantic USA). J. Soils Sediments 2019, 19, 1511–1526. [Google Scholar] [CrossRef]
- Wilken, R.L.; Imanalieva, A.; MacAvoy, S.E.; Connaughton, V.P. Anatomical and behavioral assessment of larval zebrafish (Danio rerio) reared in Anacostia River water samples. Arch. Environ. Contam. Toxicol. 2020, 78, 525–535. [Google Scholar] [CrossRef]
- Jessup, W.H.; Wiegand, J.; Delbridge-Perry, M.; MacAvoy, S.E.; Connaughton, V.P. Developmental effects of siloxane exposure in zebrafish: A comparison study using laboratory-mixed and environmental water samples. J. Appl. Toxicol. 2022, 42, 1986–2004. [Google Scholar] [CrossRef] [PubMed]
- Hogue, C. EU proposes to restrict some siloxanes, formaldehyde, and microplastics. Chem. Eng. News 2019, 97, 17. [Google Scholar]
- Nicholas, K. Comparative Analysis of Fluoranthene, Napthalene, Pyrene, Decamethylcyclopentasiloxane (D5), and 2,4,6,8-Tetramethylcyclotetrasiloxane (2468) in Anacostia and Potomac Watershed Locations. Master’s Thesis, American University, Washington, DC, USA, 2022. [Google Scholar]
- MDE. Total Maximum Daily Load of Sediment in the Potomac River Montgomery County Watershed, Montgomery and Frederick Counties, Maryland; Maryland Department of the Environment Final Report; Maryland Department of the Environment: Baltimore, MD, USA, 2011. [Google Scholar]
- Barnes, P.J.; Brassell, S.C.; Comet, P.; Eglinton, G.; McEvoy, J.; Maxwell, J.R.; Wardoper, A.M.K.; Volkman, J.K. Preliminary lipid analyses of core sections 18, 24, and 30 from hole 402A. In Initial Reports of the Deep Sea Drilling Project; Montadert, L., Roberts, D.G., Eds.; United States Government Printing Office: Washington, DC, USA, 1979; Volume 48, pp. 965–976. [Google Scholar]
- MacAvoy, S.E.; Macko, S.A.; Carney, R.S. Links between chemosynthetic production and mobile predators on the Louisiana continental slope: Stable carbon isotopes of specific fatty acids. Chem. Geol. 2003, 201, 229–237. [Google Scholar] [CrossRef]
- Davey, E.; Meiller, J.; MacAvoy, S.; Fox, D.; Fontana, K.; Landaverde, N.; Balestra, B. Microplastics and polycyclic aromatic hydrocarbons: Abundance, distribution, and chemical analyses in the Nash Run, an urban tributary to the Anacostia River (Washington, DC, USA). Water Air Soil Pollut. 2023, 234, 493. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Honda, M.; Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.D.; Elanjickal, A.I.; Mankar, J.S.; Krupadam, R.J. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2020, 398, 122994. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Liu, N.; Xu, L.; Cai, Y. Review of recent findings on occurrence and fates of siloxanes in environmental compartments. Ecotoxicol. Environ. Saf. 2021, 224, 112631. [Google Scholar] [CrossRef]
- TemaNort. Siloxanes in the Nordic Environment; Nordic Council of Ministers: Copenhagen, Denmark, 2005; ISBN 92-893-1268-8. [Google Scholar]
- Borgå, K.; Fjeld, E.; Kierkegaard, A.; McLachlan, M.S. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout. Environ. Sci. Technol. 2013, 47, 14394–14402. [Google Scholar] [CrossRef]
- Kim, D.; Cho, H.; Won, E.; Kim, H.; Lee, S.; An, K.; Moon, H.; Shin, K. Environmental fate and trophic transfer of synthetic musk compounds and siloxanes in Geum River, Korea: Compound specific nitrogen isotope analysis of amino acids for accurate trophic position estimation. Environ. Int. 2022, 161, 107123. [Google Scholar] [CrossRef]
- Chen, W.; Kang, Y.; Lee, H.; Lim, J.; Lee, M.; Moon, H. Spatial distribution and temporal trends of cyclic and linear siloxanes in sediment from semi-enclosed and industrialized bays of Korea, in 2013 and 2021. Front. Mar. Sci. 2023, 10, 1185314. [Google Scholar] [CrossRef]
D5 (mg/g) | D6 (mg/g) | |
---|---|---|
Anacostia Water Park | 0.06 ± 0.03 (3) | ND |
Kenilworth | 0.23 ± 0.51 (12) | ND |
Bladensburg | 0.14 ± 0.23 (11) | 0.0001 ± 0.001 (3) |
Northeast Branch | 0.11 ± 0.06 (5) | 0.0166 ± 0.031 (4) |
Long Branch | 0.05 ± 0.12 (6) | 0.0006 (1) |
Still Creek | 0.08 ± 0.4 (3) | 0.002 (1) |
Paint Branch | 0.07 ± 0.05 (4) | ND |
Swain’s Lock (Potomac) | ND | 0.029 ± 0.034 (4) |
Riley’s Lock (Potomac) | 0.05 ± 0.02 (3) | 0.0003 ± 0.00004 (2) |
D5 | 0.130 ± 0.294 (48) |
D6 | 0.006 ± 0.017 (12) |
Pyrene (mg/g) | Fluoranthene (mg/g) | Bibenzyl (mg/g) | Phenanthrene (mg/g) | |
---|---|---|---|---|
Anacostia Water Park | 77.7 ± 53.7 (7) | 4.42 ± 3.79 (5) | ND | ND |
Kenilworth | 18.0 ± 30.7 (13) | 1.51 ± 2.10 (11) | 0.05 (1) | ND |
Bladensburg | 3.3 ± 5.1 (11) | 0.26 ± 0.32 (13) | 0.06 ± 0.009 (2) | ND |
Northeast Branch | 1.5 ± 2.0 (9) | 0.19 ± 0.14 (11) | 0.05 ± 000 (2) | 0.07 (1) |
Long Branch | 0.7 ± 0.5 (7) | 0.24 ± 0.29 (9) | 0.06 (1) | 0.11 (1) |
Still Creek | 0.40 ± 0.24 (3) | 0.11 ± 0.06 (6) | 0.06 (1) | ND |
Paint Branch | ND | 0.10 (1) | ND | 0.04 (1) |
Swain’s Lock | ND | ND | 0.06 (1) | 0.12 (1) |
Riley’s Lock | ND | 0.70 (1) | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ventresca, O.; Acevedo, A.; Nicholas, K.; Craig, J.; Carpenter, S.; Fisher, C.; Danzberger, M.; Williams, C.; Balestra, B.; MacAvoy, S. Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA. Water 2024, 16, 2059. https://doi.org/10.3390/w16142059
Ventresca O, Acevedo A, Nicholas K, Craig J, Carpenter S, Fisher C, Danzberger M, Williams C, Balestra B, MacAvoy S. Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA. Water. 2024; 16(14):2059. https://doi.org/10.3390/w16142059
Chicago/Turabian StyleVentresca, Olivia, Ashley Acevedo, Kristina Nicholas, Jonathan Craig, Sophia Carpenter, Christia Fisher, Madeleine Danzberger, Cassidy Williams, Barbara Balestra, and Stephen MacAvoy. 2024. "Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA" Water 16, no. 14: 2059. https://doi.org/10.3390/w16142059
APA StyleVentresca, O., Acevedo, A., Nicholas, K., Craig, J., Carpenter, S., Fisher, C., Danzberger, M., Williams, C., Balestra, B., & MacAvoy, S. (2024). Concentration and Distribution of Specific Siloxanes (D5 and D6) and PAHs in the Anacostia and Potomac Rivers, USA. Water, 16(14), 2059. https://doi.org/10.3390/w16142059