Hydrochemical and Formation Mechanism Studies of Groundwater in Quaternary Aquifer in a Northern Plain of China: An Example of Beijing Plain
Abstract
:1. Introduction
2. Study Area
2.1. Physical Geography Overview
2.2. Geological and Hydrogeological Overview
2.3. Groundwater Exploitation and Balance
3. Materials and Methods
3.1. Sample Collection and Testing
3.2. Data Analysis Methods
3.3. Hydrogeochemical Inversion Simulation Descriptive Method
3.3.1. Selection of Simulation Pathways
3.3.2. Selection of Possible Mineral Phases
4. Results and Discussion
4.1. Hydrogeochemical Characteristics
4.2. Hydrochemical Types
4.3. Main Control Factors and Sources of Water Chemistry
4.3.1. Gibbs Plots
4.3.2. Ions Ratio Diagram
4.4. Inverse Hydrogeochemical Simulation Results
5. Conclusions
- (1)
- The pH results indicated weakly alkaline groundwater in Beijing Plain aquifers. The order of major cations and anions in the groundwater of the research area were Ca2+ > Na+ > Mg2+ > K+ and HCO3−> SO42−> Cl−, respectively.
- (2)
- Based on the anions and cations distribution in groundwater and Piper’s trilinear diagram study, the dominant water chemistry types were Mg-Ca-Cl-HCO3, Na-Ca- HCO3, Mg-Ca-HCO3 and Mg-Na-HCO3. The majority of samples were Ca-HCO3 type.
- (3)
- The main factors affecting groundwater chemistry are related to the dissolution of minerals and some human activities in the region. Gibbs plots and ion ratios results indicated that silicate and carbonate rock weathering, as well as cation adsorption (Na+, Ca2+ and Mg2+) were the main elements affecting the hydrogeochemical characteristics of the Quaternary aquifer in the research area.
- (4)
- Inverse hydrogeochemical simulation results indicated that changes observed in the research area are consistent with previous results obtained by water geochemistry analysis methods. The hydrogeochemical characteristics of the groundwater of the Beijing Plain were influenced by the dissolution of carbonate minerals (dolomite), sulfate minerals (gypsum, rock salt) and silicate rocks (calcium montmorillonite, sodium feldspar, potassium feldspar). The ion concentrations vary according to the water flow, the path length, and upstream and downstream points.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kılıç, Z. The importance of water and conscious use of water. Int. J. Hydrol. 2020, 4, 239–241. [Google Scholar] [CrossRef]
- Hossain, M. WATER: THE MOST PRECIOUS RESOURCE OF OUR LIFE. Glob. J. Adv. Res. 2015, 2, 1436–1445. [Google Scholar]
- Frappart, F.; Merwade, V.M. Editorial: Groundwater systems worldwide. Front. Earth Sci. 2022, 10, 1097789. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, D.; Zhu, C.; Qu, W.; Zhao, J.; Sun, Y.; Huang, D.; Wu, W.; Liu, S. Rates and patterns of urban expansion in China’s 32 major cities over the past three decades. Landsc. Ecol. 2015, 30, 1541–1559. [Google Scholar] [CrossRef]
- Yang, L.; Tian, F.; Smith, J.A.; Hu, H. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. J. Geophys. Res. Atmos. 2014, 119, 1203–1217. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Savenije, H.H.G. China’s move to higher-meat diet hits water security. Nature 2008, 454, 397. [Google Scholar] [CrossRef]
- Wang, J.; Shang, Y.; Wang, H.; Zhao, Y.; Yin, Y. Beijing’s Water Resources: Challenges and Solutions. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 614–623. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, R.; Hong, M.; Wang, H.; Yang, L. A new multiple integral model for water shortage risk assessment and its application in Beijing, China. Nat. Hazards 2016, 80, 43–67. [Google Scholar] [CrossRef]
- Beijing Water Resource Bulletin (1999–2015); Beijing Water Authority: Beijing, China, 2015.
- Jie, L.; Zheng, C. Towards Integrated Groundwater Management in China. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Zhou, Y.; Zeng, Y.; Ji, Y.; Sun, Y.; Lei, M. Hydrogeochemical characteristics and groundwater quality assessment in the plain area of Yarkant River Basin in Xinjiang, P.R. China. Environ. Sci. Pollut. Res. 2021, 28, 31704–31716. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Wang, L.; Shi, L.; Song, X.; Yeh, T.-C.J.; Zhen, P. Coupling hydrochemistry and stable isotopes to identify the major factors affecting groundwater geochemical evolution in the Heilongdong Spring Basin, North China. J. Geochem. Explor. 2019, 205, 106352. [Google Scholar] [CrossRef]
- Ren, X.; Li, P.; He, X.; Su, F.; Elumalai, V. Hydrogeochemical Processes Affecting Groundwater Chemistry in the Central Part of the Guanzhong Basin, China. Arch. Environ. Contam. Toxicol. 2021, 80, 74–91. [Google Scholar] [CrossRef]
- Sun, H.; Bian, K.; Wang, T.; Jin, Z.; Niu, Z. Hydrogeochemical Characteristics and Genetic Analysis of Karst Groundwater in the Fengfeng Mining Area. Water 2023, 15, 4049. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.; Jiang, W.; Zhang, S.; Jing, R.; Yang, S. Identifying the geochemical evolution and controlling factors of the shallow groundwater in a high fluoride area, Feng County, China. Environ. Sci. Pollut. Res. 2023, 30, 20277–20296. [Google Scholar] [CrossRef] [PubMed]
- Bozdağ, A. Assessment of the hydrogeochemical characteristics of groundwater in two aquifer systems in Çumra Plain, Central Anatolia. Environ. Earth Sci. 2016, 75, 674. [Google Scholar] [CrossRef]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Wang, R.; Bian, J.-M.; Gao, Y. Research on hydrochemical spatio-temporal characteristics of groundwater quality of different aquifer systems in Songhua River Basin, eastern Songnen Plain, Northeast China. Arab. J. Geosci. 2014, 7, 5081–5092. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, Q. Groundwater Chemical Characteristics and Controlling Factors in a Region of Northern China with Intensive Human Activity. Int. J. Environ. Res. Public Health 2020, 17, 9126. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, R.R.; Khanikar, L.; Gogoi, J.; Neog, N.; Deka, D.J.; Sarma, K.P. Geochemical sources, hydrogeochemical behaviour of fluoride release and its health risk assessment in some fluorosis endemic areas of the Brahmaputra valley of Assam, India. Appl. Geochem. 2021, 127, 104911. [Google Scholar] [CrossRef]
- Fuchu, Z.; Bin, W.; Fan, G.; Mingliang, D.; Liantong, X. Hydrochemical characteristics of groundwater and evaluation of water quality in arid area of Northwest China: A case study in the plain area of Kuitun River Basin. Arab. J. Geosci. 2021, 14, 2099. [Google Scholar] [CrossRef]
- Papatheodorou, G.; Demopoulou, G.; Lambrakis, N. A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecol. Model. 2006, 193, 759–776. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In Water-Resources Investigations Report; Report 99-4259; 1999. Available online: https://pubs.usgs.gov/publication/wri994259 (accessed on 23 March 2024).
- Xie, X.; Wang, Y.; Li, J.; Su, C.; Duan, M. Hydrogeochemical and Isotopic Investigations on Groundwater Salinization in the Datong Basin, Northern China. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 402–414. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Z.; Zhou, A.; Bi, J.; Liu, Y. Source and enrichment mechanism of fluoride in groundwater of the Hotan Oasis within the Tarim Basin, Northwestern China. Environ. Pollut. 2022, 300, 118962. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xi, B.; Jiang, Y.; Guo, H.; Yang, Y.; Lian, X.; Han, S. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Sci. Total Environ. 2018, 643, 967–993. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Gong, H.; Zhu, F.; Zhu, L.; Zhang, Z.; Zhou, C.; Gao, M.; Sun, Y. Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China. Remote Sens. 2019, 11, 1170. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xiao, W.; Wang, J.; Zhao, Y.; Huang, Y.; Tian, J.; Chen, Y. Evaluating Spatiotemporal Variation of Groundwater Depth/Level in Beijing Plain, a Groundwater-Fed Area from 2001 to 2010. Adv. Meteorol. 2016, 2016, 8714209. [Google Scholar] [CrossRef]
- Wanshun, W. Beijing Urban Geological Atlas; China Earth Press: Beijing, China, 2008. [Google Scholar]
- Beijing Regional Geological Journal; Beijing Geological Survey Research Institute: Beijing, China, 2018.
- Gao, Z. Introduction to “Geology Cloud 3.0”-National Earth Science Big Data Shared Service Platform. China Geol. 2022, 49, 2. [Google Scholar]
- Zhai, Y.; Wang, J.; Teng, Y.; Zuo, R. Hydrogeochemical and isotopic evidence of groundwater evolution and recharge in aquifers in Beijing Plain, China. Environ. Earth Sci. 2013, 69, 2167–2177. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Lian, X.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Analysis of the impact of the South-to-North water diversion project on water balance and land subsidence in Beijing, China between 2007 and 2020. J. Hydrol. 2021, 603, 126990. [Google Scholar] [CrossRef]
- He, Z.; Han, D.; Song, X.; Yang, L.; Zhang, Y.; Ma, Y.; Bu, H.; Li, B.; Yang, S. Variations of Groundwater Dynamics in Alluvial Aquifers with Reclaimed Water Restoring the Overlying River, Beijing, China. Water 2021, 13, 806. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y. Evaluating the impact of percolated reclaimed water from river-channel reservoir on groundwater using tracers in Beijing, Northern China. Environ. Earth Sci. 2021, 80, 138. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Lin, P.; Liu, J.; Xing, L.; Gao, Z. Restudy of the storage and migration model of the Quaternary groundwater in Beijing Plain area. Sci. China Earth Sci. 2012, 55, 1147–1158. [Google Scholar] [CrossRef]
- Bai, X.; Tian, X.; Li, J.; Wang, X.; Li, Y.; Zhou, Y. Assessment of the Hydrochemical Characteristics and Formation Mechanisms of Groundwater in A Typical Alluvial-Proluvial Plain in China: An Example from Western Yongqing County. Water 2022, 14, 2395. [Google Scholar] [CrossRef]
- Jiang, B.; Gao, J.; Du, K.; Deng, X.; Zhang, K. Insight into the water–rock interaction process and purification mechanism of mine water in underground reservoir of Daliuta coal mine in China. Environ. Sci. Pollut. Res. 2022, 29, 28538–28551. [Google Scholar] [CrossRef] [PubMed]
- Standard for Groundwater Quality GB/T 14848-2017, China, 2017. Available online: https://www.hhtz.gov.cn/art/2023/6/12/art_1229731480_4172921.html (accessed on 12 February 2024).
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar]
- Li, C.; Gao, Z.; Chen, H.; Wang, J.; Liu, J.; Li, C.; Teng, Y.; Liu, C.; Xu, C. Hydrochemical analysis and quality assessment of groundwater in southeast North China Plain using hydrochemical, entropy-weight water quality index, and GIS techniques. Environ. Earth Sci. 2021, 80, 523. [Google Scholar] [CrossRef]
- Gao, Z.; Han, C.; Yuan, S.; Liu, J.; Peng, Y.; Li, C. Assessment of the hydrochemistry, water quality, and human health risk of groundwater in the northwest of Nansi Lake Catchment, north China. Environ. Geochem. Health 2022, 44, 961–977. [Google Scholar] [CrossRef]
Supply Items | Excretory Item | ||
---|---|---|---|
Precipitation infiltration amount | 10.21 | Evaporation | Negligible |
River infiltration amount | 3.69 | Artificial mining | 14.78 |
Irrigation replenishment amount | 1.07 |
Possible Mineral Phases | Chemical Formulas | Reaction Equations |
---|---|---|
Calcite | CaCO3 | CaCO3 = Ca2+ + CO32− |
Dolomite | CaMg(CO3)2 | CaMg(CO3)2 = Ca2+ + Mg2+ + 2CO32− |
Gypsum | CaSO4:2H2O | CaSO4:2H2O = Ca2+ + SO42− + 2H2O |
Calcium montmorillonite | Ca0.17Al2.33Si3.67O10(OH)2 | 6Ca0.17Al2.33Si3.67O10(OH)2 + 60H2O + 12OH− = Ca2+ +14Al(OH)4− + 22H4SiO4 |
Rock salt | NaCl | NaCl = Na+ + Cl− |
Kaolinite | Al2Si2O5(OH)4 | Al2Si2O5(OH)4 + 6H+ = H2O + 2H4SiO4 + 2Al3+ |
Sodium feldspar | NaAlSi3O8 | NaAlSi3O8 + 8H2O = Na+ + Al(OH)4− + 3H4SiO4 |
Potassium feldspar | KAlSi3O8 | CaAl2Si2O8 + 8H2O = Ca2+ + 2Al(OH)4− + 3H4SiO4 |
Cation exchange | CaX2 | Ca2+ + 2NaX = 2Na+ + CaX2 |
MgX2 | Mg2+ + 2NaX = 2Na+ + MgX | |
NaX |
Parameters | Minimum (mg/L) | Median (mg/L) | Maximum (mg/L) | Mean (mg/L) | Standard Deviation (mg/L) |
---|---|---|---|---|---|
pH | 6.760 | 7.970 | 8.650 | 7.919 | 0.358 |
K+ | 0.110 | 1.250 | 5.420 | 1.806 | 1.410 |
Na+ | 7.000 | 50.000 | 112.000 | 50.579 | 30.921 |
Ca2+ | 13.800 | 54.700 | 171.000 | 66.537 | 39.567 |
Mg2+ | 3.400 | 18.750 | 62.200 | 23.777 | 15.842 |
NH4+ | 0.020 | 0.185 | 2.380 | 0.351 | 0.482 |
HCO3− | 25.600 | 273.000 | 503.000 | 284.887 | 116.764 |
Cl− | 0.800 | 13.800 | 148.000 | 35.497 | 42.076 |
SO42− | 1.500 | 38.350 | 154.000 | 52.101 | 40.488 |
NO3− | 0.037 | 13.300 | 157.000 | 39.067 | 48.391 |
NO2− | 0.001 | 0.022 | 3.980 | 0.216 | 0.669 |
TH | 51.000 | 215.500 | 677.000 | 264.065 | 159.589 |
TDS | 235.000 | 438.500 | 1200.000 | 539.522 | 281.933 |
Possible Mineral Phases | Chemical Formulas | Reaction Paths Results | |||
---|---|---|---|---|---|
Path I | Path II | Path III | Path IV | ||
Calcite | CaCO3 | - | - | - | - |
Calcium montmorillonite | CaMg(CO3)2 | 6.59 × 10−3 | −5.72 × 10−3 | 1.19 × 10−2 | 7.86 × 10−3 |
Dolomite | CaSO4:2H2O | 9.84 × 10−3 | −7.87 × 10−4 | 9.26 × 10−4 | 1.30 × 10−3 |
Gypsum | Ca0.17Al2.33Si3.67O10(OH)2 | 9.25 × 10−5 | 3.94 × 10−4 | 4.73 × 10−4 | 3.56 × 10−6 |
Rock salt, Halite | NaCl | 3.98 × 10−4 | 9.87 × 10−4 | 6.23 × 10−4 | −3.31 × 10−4 |
Kaolinite | Al2Si2O5(OH)4 | −5.47 × 10−3 | 4.45 × 10−3 | −9.85 × 10−3 | −6.52 × 10−3 |
Potassium feldspar | NaAlSi3O8 | −2.10 × 10−5 | 3.87 × 10−5 | −2.68 × 10−5 | −3.32 × 10−5 |
Sodium feldspar | KAlSi3O8 | −4.40 × 10−3 | 3.80 × 10−3 | −7.93 × 10−3 | −5.23 × 10−3 |
Cation exchange | CaX2 | −2.38 × 10−3 | 1.58 × 10−3 | −3.59 × 10−3 | −2.67 × 10−3 |
MgX2 | −7.17 × 10−4 | 1.60 × 10−3 | −1.12 × 10−3 | −1.31 × 10−3 | |
NaX | 6.19 × 10−3 | −6.35 × 10−3 | 9.43 × 10−3 | 7.95 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camara, S.F.; Zhou, J.; Zhang, Y. Hydrochemical and Formation Mechanism Studies of Groundwater in Quaternary Aquifer in a Northern Plain of China: An Example of Beijing Plain. Water 2024, 16, 2060. https://doi.org/10.3390/w16142060
Camara SF, Zhou J, Zhang Y. Hydrochemical and Formation Mechanism Studies of Groundwater in Quaternary Aquifer in a Northern Plain of China: An Example of Beijing Plain. Water. 2024; 16(14):2060. https://doi.org/10.3390/w16142060
Chicago/Turabian StyleCamara, Sarah Fatim, Jinjun Zhou, and Yongxiang Zhang. 2024. "Hydrochemical and Formation Mechanism Studies of Groundwater in Quaternary Aquifer in a Northern Plain of China: An Example of Beijing Plain" Water 16, no. 14: 2060. https://doi.org/10.3390/w16142060
APA StyleCamara, S. F., Zhou, J., & Zhang, Y. (2024). Hydrochemical and Formation Mechanism Studies of Groundwater in Quaternary Aquifer in a Northern Plain of China: An Example of Beijing Plain. Water, 16(14), 2060. https://doi.org/10.3390/w16142060