Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Column Tests Used in the Modelling with PHREEQC
2.2. Description of the Experimental Batch Tests
2.3. Modelling with PHREEQC
2.3.1. Tracer and LAS Transport
2.3.2. LAS Reactive Transport
3. Results and Discussion
3.1. Transport Modelling in PHREEQC
3.1.1. Tracer Transport
3.1.2. LAS Transport
3.2. Reactive Transport of LAS Modelled in PHREEQC
3.2.1. Sand Column Tests Modelled
3.2.2. Agricultural Soil Column Test Modelling
3.2.3. Experimental Batch Isotherms and Proof to Confirm the Use of Linear Adsorption Model in PHREEQC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Jin, X.; Xie, H.; Ji, X.; Liu, Y.; Guo, C.; Giesy, J.P.; Xu, J. Linear alkylbenzene sulfonate threats to surface waters at the national scale: A neglected traditional pollutant. J. Environ. Manag. 2023, 342, 118344. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Kawase, Y. Effect of solution pH on removal of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from model wastewater using nanoscale zero-valent iron (nZVI). J. Environ. Chem. Eng. 2021, 9, 105928. [Google Scholar] [CrossRef]
- Bradai, M.; Han, J.; El Omri, A.; Funamizu, N.; Sayadi, S.; Isoda, H. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations. Cytotechnology 2016, 68, 1267–1275. [Google Scholar] [CrossRef]
- Krueger, C.J.; Radakovich, K.M.; Sawyer, T.E.; Barber, L.B.; Smith, R.L.; Field, J.A. Biodegradation of the surfactant linear alkylbenznesulfonate in sewage-contaminated groundwater: A comparison of column experiments and field tracer tests. Environ. Sci. Technol. 1998, 32, 3954–3961. [Google Scholar] [CrossRef]
- Das, R.; Hoysall, C.; Rao, L. Unveiling the origin, fate, and remedial approaches for surfactants in sewage-fed foaming urban (Bellandur) Lake. Environ. Pollut. 2023, 339, 122773. [Google Scholar] [CrossRef]
- Corada-Fernández, C.; González-Mazo, E.; Lara-Martín, P.A. Evaluation of the anaerobic biodegradation of linear alkylbenzene sulfonates (LAS) using OECD 308 water/sediment systems. J. Hazard. Mater. 2018, 360, 24–31. [Google Scholar] [CrossRef]
- Hansson, P.-A.; Svensson, S.-E.; Hallefält, F.; Diedrichs, H. Nutrient and cost optimization of fertilizing strategies for Salix including use of organic waste products. Biomass Bioenergy 1999, 17, 377–387. [Google Scholar] [CrossRef]
- Bright, D.A.; Healey, N. Contaminant risks from biosolids land application: Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia. Environ. Pollut. 2003, 126, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Langenkamp, H.; Part, P.; Erhardt, W.; Prüeß, A. EUR 20135 EN: Organic Contaminants in Sewage Sludge for Agricultural Use, Institute for Environment and Sustainability (Joint Research Centre), Italy. 2002. Available online: https://op.europa.eu/en/publication-detail/-/publication/73cc4273-3241-4e99-bda3-e0312355821a/language-en (accessed on 6 May 2024).
- Jensen, J. Fate and effects of linear alkylbenzene sulfonates (LAS) in the terrestrial environment. Sci. Total Environ. 1999, 226, 93–111. [Google Scholar] [CrossRef]
- Paria, S. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interface Sci. 2008, 138, 24–58. [Google Scholar] [CrossRef]
- Boluda-Botella, N.; León, V.M.; Cases, V.; Gomis, V.; Prats, D. Fate of linear alkylbenzene sulfonate in agricultural soil columns during inflow of surfactant pulses. J. Hydrol. 2010, 395, 141–152. [Google Scholar] [CrossRef]
- Samper, J.; Ayora, C. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones químicas. Estud. Geol. 1993, 49, 233–251. [Google Scholar] [CrossRef]
- Deng, H.; Navarre-Sitchler, A.; Heil, E.; Peters, C. Addressing water and energy challenges with reactive transport modeling. Environ. Eng. Sci. 2021, 38, 109–114. [Google Scholar] [CrossRef]
- Mohammed, G.; Trolard, F.; Gillon, M.; Cognard-Plancq, A.-L.; Chanzy, A.; Bourrié, G. Combination of a crop model and a geochemical model as a new approach to evaluate the sustainability of an intensive agriculture system. Sci. Total Environ. 2017, 595, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Ma, W.; Chen, C.; Wang, Q.; Guo, S.; Ma, J. Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soils. Clean-Soil Air Water 2015, 44, 984–991. [Google Scholar] [CrossRef]
- Alcolea, A.; Ayora, C.; Bernet, O.; Bolzicco, J.; Carrera, J.; Cortina, J.L.; Coscera, G.; de Pablo, J.; Domènech, C.; Galache, J.; et al. Barrera Geoquímica. Bol. Geol. Min. 2001, Especial Vol., 229–256. [Google Scholar]
- Almendro Candel, M.B.; Navarro-Pedreño, J.; Jordán Vidal, M.M.; García Sánchez, E.; Mataix Solera, J. Ensayos de movilidad de compuestos nitrogenados en zona no saturada. In Investigación, Gestión y Recuperación de Acuíferos Contaminados; Ballester Rodríguez, A., Grima Olmedo, J., López Geta, J.A., Rodríguez Hernández, L., Eds.; Instituto Geológico y Minero de España: Madrid, Spain, 2001; pp. 23–34. ISBN 84-607-3216-9. [Google Scholar]
- Grolimund, D.; Borkovec, M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: Mathematical modeling and laboratory column experiments. Environ. Sci. Technol. 2005, 39, 6378–6386. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Yagües, V.; Boluda-Botella, N.; Ruiz-Beviá, F. Gypsum precipitation as an explanation of the decrease of sulphate concentration during seawater intrusion. J. Hydrol. 2000, 228, 48–55. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (v2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport and Inverse Geochemical Calculations; Water-Resources Investigations Report 99-4259; US Geological Survey: Reston, VA, USA, 1999; p. 312. [Google Scholar] [CrossRef]
- ORCHESTRA: Geochemical and Transport Modelling. Available online: https://orchestra.meeussen.nl/ (accessed on 22 May 2024).
- MODFLOW 6: USGS Modular Hydrologic Model. Available online: https://www.usgs.gov/software/modflow-6-usgs-modular-hydrologic-model (accessed on 22 May 2024).
- Boluda-Botella, N.; Cases López, V.; Gomis-Yagües, V.; León, V.M.; Soriano, R. Experimental study and modelling of the desorption of linear alkylbenzene sulphonates in sand and soil. In Proceedings of the 11th Mediterranean Congress of Chemical Engineering, Barcelona, Spain, 21–24 October 2008; Available online: https://rua.ua.es/dspace/bitstream/10045/8706/6/Boluda_LAS_%20Expoquimia%202008.pdf (accessed on 22 May 2024).
- AcuaIntrusion Transport (version 1.00): Transport Modelling. Available online: https://rua.ua.es/dspace/handle/10045/2691 (accessed on 22 May 2024).
- Drever, J.I. The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2002; p. 436. ISBN 978-013-272-790-7. [Google Scholar]
- Cases López, V.P. Estudio de Procesos de Transporte del Alquilbenceno Sulfonato Lineal en la Zona Saturada Mediante Columnas de Laboratorio. Master’s Thesis, University of Alicante, Alicante, Spain, July 2009. Available online: https://rua.ua.es/dspace/bitstream/10045/143120/1/000_DEA_VicenteCases2009.pdf (accessed on 22 May 2024).
- Tripathi, S.; Brown, D.G. Effects of linear alkylbenzene sulfonate on the sorption of brij 30 and brij 35 onto aquifer sand. Environ. Sci. Technol. 2008, 42, 1492–1498. [Google Scholar] [CrossRef]
- Tebes-Stevens, C.; Valocchi, A.J.; VanBriesen, J.M.; Rittmann, B.E. Multicomponent transport with coupled geochemical and microbiological reactions: Model description and example simulations. J. Hydrol. 1998, 209, 8–26. [Google Scholar] [CrossRef]
- Valdes-Abellan, J.; Jiménez-Martínez, J.; Candela, L.; Jacques, D.; Kohfahl, C.; Tamoh, K. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation. J. Hydrol. 2017, 549, 114–124. [Google Scholar] [CrossRef]
Test | Porous Medium | Sediment (g) | LAS (mg/L) |
---|---|---|---|
T0 | 100% sea sand | 163.3 | 91 |
T25 | 75% sea sand + 25% soil | 152.0 | 98 |
T50 | 50% sea sand + 50% soil | 129.6 | 110 |
Ion Concentration (mg/L) | |||||||
---|---|---|---|---|---|---|---|
Test | Ca2+ | Na+ | K+ | Mg2+ | Cl− | SO42− | HCO3− |
T0 | 35 | 70 | 2.0 | 35 | 115 | 55 | 180 |
T25 | 138 | 116 | 2.9 | 45 | 240 | 100 | 320 |
T50 | 70 | 70 | 2.8 | 38 | 150 | 80 | 220 |
Test | Flow (mL/min) | Length (cm) | tm (h) | Pe (νL/DL) | Effective ε | ν (cm/h) | DL (cm2/h) | α (cm) |
---|---|---|---|---|---|---|---|---|
T0 | 0.479 | 22.4 | 1.77 | 315 | 0.46 | 12.66 | 0.90 | 0.071 |
T25 | 0.458 | 22.4 | 1.89 | 67 | 0.47 | 11.86 | 3.94 | 0.332 |
T50 | 0.473 | 20.2 | 1.79 | 103 | 0.51 | 11.26 | 2.20 | 0.196 |
PHREEQC Parameters | T0 |
---|---|
Time step (s) | 124 |
Cell length (m) | 4.48 × 10−3 |
Shifts (input LAS) | 145 |
Shifts (input-free LAS) | 3036 |
Cell dispersivity (m) (input LAS) | 0.71 × 10−3 |
Cell dispersivity (m) (input-free LAS) | 0.71 × 10−3 |
kd 103 (L/g) | km (h−1) | ||||||
---|---|---|---|---|---|---|---|
Homologues | Ads. Batch | Pulse | Ads. Step | Des. Step | Pulse | Ads. Step | Des. Step |
C10LAS | 1.00 | 0.10 | 0.10 | 0.10 | 0.40 | 0.25 | 0.25 |
C11LAS | 1.93 | 0.35 | 0.36 | 0.36 | 2 | 1 | 1 |
C12LAS | 3.76 | 1.50 | 1.80 | 1.30 | 2 | 4 | 4 |
C13LAS | 9.80 | 4.90 | 3.50 | 4.90 | 8 | 8 | 4 |
PHREEQC Parameters | T25 | T50 |
---|---|---|
Time step (s) | 135 | 130 |
Cell length (m) | 4.48 × 10−3 | 4.04 × 10−3 |
Shifts (input LAS) | 133 | 138 |
Shifts (input-free LAS) | 5000 | 8000 |
Cell dispersivity (m) (input LAS) | 3.32 × 10−3 | 1.96 × 10−3 |
Cell dispersivity (m) (input-free LAS) | 33.2 × 10−3 | 19.6 × 10−3 |
T0 | T25 | T50 | |||||||
---|---|---|---|---|---|---|---|---|---|
Homologues | km (h−1) | kd 103 (L/g) | kd Ads. Batch 103 (L/g) | km (h−1) | kd 103 (L/g) | kd Ads. Batch 103 (L/g) | km (h−1) | kd 103 (L/g) | kd Ads. Batch 103 (L/g) |
C10LAS | 0.4 | 0.10 | 0.995 | 20 | 1.00 | 1.86 | 20 | 1.12 | 4.27 |
C11LAS | 2 | 0.35 | 1.93 | 20 | 3.4 | 5.64 | 20 | 3.70 | 10.9 |
C12LAS | 2 | 1.50 | 3.76 | 20 | 14 | 16.1 | 20 | 17.0 | 29.2 |
C13LAS | 8 | 4.90 | 9.80 | 40 | 40 | 47.4 | 40 | 70.0 | 81.8 |
C10LAS | C11LAS | C12LAS | C13LAS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
103 | r2 | n | r2 | n | r2 | n | r2 | n | MAPE | |||||
T0 | kd | 0.995 | 0.982 | 1.0 | 1.93 | 0.989 | 1.0 | 3.76 | 0.994 | 1.0 | 9.80 | 0.996 | 1.0 | 0.190 |
kF | 1.23 | 0.999 | 1.4 | 2.91 | 0.999 | 1.3 | 4.75 | 0.982 | 1.2 | 9.90 | 0.980 | 1.1 | 0.161 | |
T25 | kd | 1.86 | 0.982 | 1.0 | 5.64 | 0.993 | 1.0 | 16.1 | 0.997 | 1.0 | 47.4 | 0.991 | 1.0 | 0.032 |
kF | 1.74 | 0.996 | 1.5 | 6.41 | 0.996 | 1.2 | 15.4 | 0.989 | 1.2 | 66.5 | 0.979 | 0.7 | 0.012 | |
T50 | kd | 4.27 | 0.970 | 1.0 | 12.7 | 0.970 | 1.0 | 29.2 | 0.986 | 1.0 | 81.8 | 0.990 | 1.0 | 0.094 |
kF | 3.95 | 0.981 | 1.3 | 12.7 | 0.993 | 1.3 | 30.4 | 0.996 | 1.2 | 140 | 0.993 | 0.6 | 0.063 |
Homologues | T0 | T25 | T50 | ||||||
---|---|---|---|---|---|---|---|---|---|
km (h−1) | kF 103 | n | km (h−1) | kF 103 | n | km (h−1) | kF 103 | n | |
C10LAS | 0.4 | 0.10 | 1.0 | 8.0 | 0.043 | 1.5 | 6.2 | 0.019 | 1.7 |
C11LAS | 2.0 | 0.35 | 1.0 | 6.0 | 0.12 | 1.5 | 7.0 | 0.059 | 1.7 |
C12LAS | 2.0 | 1.50 | 1.0 | 6.0 | 0.28 | 1.5 | 10.5 | 0.13 | 1.7 |
C13LAS | 8.0 | 4.90 | 1.0 | 8.0 | 31.3 | 1.5 | 8.0 | 31.3 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saquete, M.D.; Boluda-Botella, N.; Cases, V.; Egea, E. Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters. Water 2024, 16, 2068. https://doi.org/10.3390/w16142068
Saquete MD, Boluda-Botella N, Cases V, Egea E. Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters. Water. 2024; 16(14):2068. https://doi.org/10.3390/w16142068
Chicago/Turabian StyleSaquete, María Dolores, Nuria Boluda-Botella, Vicente Cases, and Ester Egea. 2024. "Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters" Water 16, no. 14: 2068. https://doi.org/10.3390/w16142068
APA StyleSaquete, M. D., Boluda-Botella, N., Cases, V., & Egea, E. (2024). Modelling the Fate of Linear Alkylbenzene Sulfonate in Agricultural Soil Columns during Inflow of Surfactant Pulses from Domestic Wastewaters. Water, 16(14), 2068. https://doi.org/10.3390/w16142068