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Abstract: There has been growing interest in the application of smart technologies for hazard
management. However, very limited studies have reviewed the trends of such technologies in the
context of flash floods. This study reviews innovative technologies such as artificial intelligence
(AI)/machine learning (ML), the Internet of Things (IoT), cloud computing, and robotics used for
flash flood early warnings and susceptibility predictions. Articles published between 2010 and
2023 were manually collected from scientific databases such as Google Scholar, Scopus, and Web
of Science. Based on the review, AI/ML has been applied to flash flood susceptibility and early
warning prediction in 64% of the published papers, followed by the IoT (19%), cloud computing
(6%), and robotics (2%). Among the most common AI/ML methods used in susceptibility and early
warning predictions are random forests and support vector machines. However, further optimization
and emerging technologies, such as computer vision, are required to improve these technologies.
AI/ML algorithms have demonstrated very accurate prediction performance, with receiver operating
characteristics (ROC) and areas under the curve (AUC) greater than 0.90. However, there is a need to
improve on these current models with large test datasets. Through AI/ML, IoT, and cloud computing
technologies, early warnings can be disseminated to targeted communities in real time via electronic
media, such as SMS and social media platforms. In spite of this, these systems have issues with
internet connectivity, as well as data loss. Additionally, Al/ML used a number of topographical
variables (such as slope), geological variables (such as lithology), and hydrological variables (such as
stream density) to predict susceptibility, but the selection of these variables lacks a clear theoretical
basis and has inconsistencies. To generate more reliable flood risk assessment maps, future studies
should also consider sociodemographic, health, and housing data. Considering future climate change
impacts, susceptibility or early warning studies may be projected under different climate change
scenarios to help design long-term adaptation strategies.

Keywords: flash floods; artificial intelligence/machine learning; Internet of Things; cloud computing;
susceptibility predictions; early warnings

1. Introduction

The World Economic Forum (WEF) reports that flash floods are climate-driven disas-
ters capable of destroying infrastructure and properties, especially in arid desert environ-
ments [1]. The impact of floods, including flash floods, is felt in 761 locations around the
world, resulting in more than 47 million deaths. Furthermore, more than 11 million and
4.7 million of these deaths are linked to cardiovascular and respiratory diseases, respec-
tively [2]. According to estimates, 204 flash floods between 2010 and 2016 reduced the gross
domestic product (GDP) by about 0.04%. In addition, they have a long-term impact on

Water 2024, 16, 2069. https://doi.org/10.3390/w16142069 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16142069
https://doi.org/10.3390/w16142069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-3740-4389
https://orcid.org/0000-0002-9105-2804
https://orcid.org/0000-0002-0459-4948
https://doi.org/10.3390/w16142069
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16142069?type=check_update&version=2


Water 2024, 16, 2069 2 of 28

socioeconomics, the environment (e.g., waste generation, water pollution, and the spread
of communicable diseases), and the mental well-being of receiving communities [3–5].

However, given these catastrophic impacts, it is imperative for communities/governments
to have highly effective early warning forecasting and hazard assessment strategies to help
reduce the damages caused by flash floods [6]. Traditional flash flood warning systems rely
mainly on physically based modeling approaches (e.g., rainfall–runoff models, hydrological,
hydrodynamic, and 1D/2D/3D numerical models).

Nevertheless, these approaches face challenges related to data resolution and mapping
a highly complex mountainous topographical area. The inability of these traditional
approaches to predict flow depth, flow velocity, and recurrence levels may also limit
their effectiveness in mitigating future flash flood disasters [7]. This study shows that 1D
hydrodynamic flood models may not accurately predict flash floods in urban areas because
the model considers topographic and urban flow features as having one dimension. Also,
these models are highly computationally and resource intensive (high data requirement),
making it difficult to perform uncertainty analysis [8,9]. In order to optimize the efficiency
of these traditional approaches, emerging technologies such as artificial intelligence (AI),
machine learning (ML), and the Internet of Things (IoT) can be integrated.

There are several studies that analyze the role of these emerging technologies in
predicting hydrological events, including flood management [10–12]. A study evaluated the
effectiveness of machine learning ensemble techniques for flood monitoring and concluded
that these techniques are rapidly increasing in hydrological disasters due to their high
performance [13]. Based on a systematic literature review, it was found that the integration
of machine learning and image processing techniques with flood management has not
been extensively investigated [7]. A review study also assessed emerging technologies’
contributions to flood-resilient built environments (e.g., artificial intelligence). According to
some of the findings of the study, it is necessary for future studies to include comprehensive
flood variables in order for emerging technologies to provide accurate flood prediction
performance [14]. Several other emerging studies have investigated the use of these
technologies in the prediction of flood events (e.g., river floods, coastal floods, urban floods,
etc.) using time series data mining [11].

Flash floods are disastrous due to their short residence times, especially in highly
impervious or impermeable landscapes. In this regard, early warning systems must be very
efficient, and susceptibility maps must be accurate [15]. However, very few comprehensive
reviews have examined the use of emerging technological tools to enhance the efficiency of
flash flood management. The main objective of this study is to critically review the current
innovative technologies used in flash flood management. To overcome this objective, the
review will address the following research questions:

(1) What are the trends and characteristics of studies on smart technologies such as artificial
intelligence (AI), machine learning (ML), the Internet of Things (IoT), cloud computing,
and robotics that have been applied in flash flood early warning predictions?

(2) What are the performance levels of AI/ML algorithms in flash flood susceptibility
predictions?

(3) What are the common indicators and influential factors in flash flood susceptibility
assessment?

(4) What are the strengths and limitations of current studies that could improve future
flash flood early warning and susceptibility predictions?

As a result of this review, technologically based flash flood early warning systems
could be improved. These findings can be applied to future flash flood projects by policy-
makers, engineers, and scientists.

This current review intends to improve the existing literature review studies in terms
of coverage and focus. The major contributions of this study are as follows:

(1) Focusing exclusively on current evidence of these emerging technological tools ap-
plied in flash flood early warning and susceptibility predictions.
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(2) Comprehensive coverage of several emerging technologies used in flash flood man-
agement: artificial intelligence (AI)/machine learning (ML), the Internet of Things
(IoT), cloud computing, and robotics.

(3) Covering several artificial intelligence (AI)/machine learning (ML) internet algorithms
utilized for flash flood warnings and susceptibility predictions.

(4) Including a detailed review of studies that have applied machine learning for flash
flood susceptibility assessment supported by model performance evaluation levels.

(5) Including the temporal trends (from old to most recent papers) of flash flood-related
technological studies.

(6) Synthesizing the findings of the studies and suggesting future research priorities
and strengths.

The current study is organized into five main sections. Section 2 provides an overview
of the study methodology, including the design, search strategies, and eligibility criteria.
Section 3 presents the search results and general bibliographic analysis. Section 4 offers a
comprehensive review of artificial intelligence (AI), machine learning (ML), the Internet of
Things (IoT), cloud computing, and robotics. Section 5 provides a critical analysis of the
findings, and Section 6 summarizes the strengths, limitations, and suggestions for future
research directions. Finally, Section 7 concludes this study.

2. Methods

Through a gray literature search approach, we manually collected articles on flash
flood technologies from different scientific databases, including Google Scholar, Scopus,
and Web of Science. To retrieve the articles from these databases, different search terms
were used (“flash flood” OR “flood technologies” OR “artificial intelligence” OR “machine
learning” OR “internet of things” OR “deep learning” OR “robotics” OR “cloud comput-
ing”). Several studies were retrieved from Google Scholar and by a manual search. As a
whole, the literature search commenced on 15 Sptember 2023 and ended on 10 December
2023 for research articles published between 2010 and 2023. As the purpose of this study
is to review various emerging technologies used in flash floods, the search results were
filtered to exclude studies that did not focus on flash floods (e.g., river floods, coastal
floods, and urban floods). Studies on flash flood susceptibility or prediction without trans-
parent methodologies for training and validating the test datasets were excluded. This
current study included published papers that evaluated the performance of the models
(e.g., artificial intelligence (AI)/machine learning (ML), etc.). Neither the publication year
nor the country of origin was considered when searching for publications. Among the
articles included in this study were only those published in English. Studies published in
languages other than English were not translated and were excluded. The citations of all
the eligible articles were exported into EndNote 20 Software, and their full-length articles
were uploaded for data extraction and bibliographic analysis. Detailed search strings used
in the electronic databases is shown in Table S1, Supplementary Material.

3. Results
3.1. Bibliographic Analysis of Flash Flood Publications and AI/ML Algorithms
3.1.1. Analysis by Year of Publications and Type of Technology

The current study began by conducting a bibliographic analysis to determine how
many publications used AI/ML for flash flood susceptibility analysis and early warning
predictions. Figure 1 shows that flash flood publications over the past decade have been
distributed by year and technology type. Among 50 papers published between 2010 and
2023, 13 (26%) were published in 2021, but the number declined in 2022–2023, partly
because of COVID-19. As can be seen, publication rates were stagnant between 2010
and 2017 but increased dramatically from 2018 to 2023. As a result of the analysis of
flash flood technologies by type, 64% of the papers addressed the application of AI/ML
to predict flash flood susceptibility and early warnings. Other technologies included
storm cell identification, video-based surveillance, interactive voice response, and digital
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image analysis, which accounted for 9% of the publications, followed by the Internet of
Things (19%), cloud computing (6%), robotics (2%), and other papers from different types
of technologies.
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Figure 1. Distribution of articles (50) published in 2010–2023 according to (a) the number of papers
and by year of publication and (b) categories of technologies such as artificial intelligence/machine
learning (AI/ML), the Internet of Things (IoT), cloud computing, robotics, and other technologies (e.g.,
storm cell identification, video-based surveillance, interactive voice response, digital image analysis).

3.1.2. Analysis of Flash Flood Publications by Country

This analysis focused on the distribution of countries that applied AI/ML, the IoT,
cloud computing, and robotics technologies for flash flood susceptibility and early warning
predictions in 2010–2023, as shown in Figure 2. Quite a large number of the publications
came from China, Iran, the United States, and India. In contrast, relatively lower publication
rates were found among some Middle East and North African countries (e.g., United Arab
Emirates, Tunisia, Egypt, etc.).
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3.1.3. Analysis by Flash Flood AI/ML Algorithm Type

This study explored different AI/ML algorithms used for the flash flood susceptibility
analysis and early warning, as shown in Figure 3. The analysis suggests that a total of
51 AI/ML algorithms were used for flash flood susceptibility and warning predictions
between 2010 and 2023. Out of this, the most common methods used in the literature were
random forest (8.05%) and support vector machine (8.05%), followed by artificial neural
networks (6.9%) and logistic regression (6.9%). The majority of the algorithms presented in
Figure 3 increased sharply from 2018 to 2021 and started to decline in 2022, as shown in
Figure 4.
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4. Application of Emerging Technologies for Flash Flood Warnings and Susceptibility
4.1. Artificial Intelligence (AI)/Machine Learning (ML)

As the traditional hydrological models are not capable of accurately predicting flash
flood early warnings, the integration of AI/ML into future early susceptibility assessments
is essential [16]. In general, AI is the ability of computer systems to perform cognitive tasks
or functions that are commonly associated with the intelligence of human beings. ML,
which is a subset of AI, utilizes algorithms (e.g., random forest) to make predictions by
training and validating data [17].

For flash flood assessment, AI/ML can employ a variety of algorithms (e.g., random
forest, logistic regression) with historical flood datasets to predict/validate flood events [8].
A detailed description of various AI/ML algorithms for flash flood forecasting can be found
in Table 1, divided into (A) traditional AI/ML algorithms for flash flood early warning
predictions and (B) AI/ML algorithms for flash flood susceptibility predictions, including
full model performance levels.

4.1.1. AI/ML Algorithms Used for Early Warning Predictions

In a study conducted in Khosf (Iran), three AI/ML algorithms were used to predict
early warnings: support vector machines (SVMs), artificial neural networks (ANNs),
and nearest neighbor classification (NNC), as shown in Table 1. SVM’s coefficient of
determination (r) was 0.88, ANN’s was 0.79, and NNC’s was 0.89. It was suggested that
computer vision can help improve flash flood warning prediction [18].

Another study conducted in Amman city in Jordan evaluated the effectiveness of the
ML-based artificial neural network (ANN) model in predicting flash flood early warning of
street drainage water levels. The results suggested that ANN’s forecasting accuracy was
93.5%, which was better when compared to the conventional forecasting model [19]. To
support this, a study found that the application of a support vector machine (SVM) can
accurately forecast flash flood events (2.5 milliseconds) better than the traditional numerical
models (25 h). This study was conducted in urban areas surrounding the Jindong River
basin located in Hangzhou, China [20]. An artificial neural network (ANN) could forecast
flash flood events by a 2 h lead time. The application could transmit warning information
through the telemetry system/short message services (SMSs) within 10 min for the Garang
River located at Semarang (Indonesia). In Leyte Island in the Philippines, it was found that
a regression algorithm driven by ML could send flash flood warnings, such as water level
and water speed, via SMSs when the flood reached its threshold level [21]. The only issue
identified was that the warning messages sometimes exceed the memory capacity of the
SMS [22].

The application of the regression algorithm, a neural network autoregressive model
with an exogenous output (NNARX), was able to improve prediction of flash flood water
level, velocity, and ocean bottom pressure with a high accuracy of >80%. However, false
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alarm rates and communication challenges were the main issues faced by the study [23].
Forecasting of a one-hour lead time of the water level of a watershed located in Campos do
Jordão, Brazil, was performed with a neural network (NN) using 3-year rainfall/water level
data collected from 11 hydrometeorological stations. The study found 100% correctness
in the classification of true positives for training and test sets, indicating that the NN can
reliably be integrated to improve the accuracy of early warning systems. However, false
positives were detected, indicating improvement in the NN algorithm [24].

Another study based on the long short-term memory (LSTM) approach predicted
accurate one-day flash flood warnings with a false alarm rate of 0.09 and two-day warnings
with a false alarm rate of 0.21. The LSTM approach gave the best predictions and had
a critical success index of 0.75 [25]. The issue of false alarms can be addressed using an
intelligent sensor network (ISN), as evidence shows that the ISN can reduce false alarms
for flash flood events and can diagnose the health data of affected populations through
alerts [26]. In Uttarakhand, India, gradient boosting (GBT) and recurrent neural network
(RNN)-simulated warnings were based on varying degrees of alerts (e.g., danger, warnings,
no alert). The accuracy of flash flood predictions according to the coefficient of regression
value (R2) for the RNN and GBT was 0.98 and 0.92, respectively. This study concluded
that these methods have challenges in predicting water discharge levels due to frequent
changes in the hydrogeological features of the area [27]. A study employed the LSTM
method in Daqin (China) and found improved flash flood prediction levels with a reduced
flood peak flow and volume error within a range of 3.02–57.4% and 6.3–39.3%, respectively,
when coupled with hydrological models (Table 1) [28].

4.1.2. Application of AI/ML Algorithms for Flash Flood Susceptibility Predictions

Despite AI/ML’s ability to predict flood susceptibility of an area, the performance
of the algorithms must be evaluated with test data in order to understand their reliabil-
ity/accuracy [29]. It is common practice to use receiver operating characteristics (ROC) in
flood prediction. In order to assess the performance of different ML algorithms, the area
under the curve (AUC) of the ROC is calculated by plotting the true positive rate against
the false positive rate. The AUC is a measure of model performance that ranges from 0 to 1,
with a high AUC value indicating high model accuracy [30,31].

Table 1 summarizes the flash flood susceptibility prediction performance measures
for the various AL/ML methods. A study based on historical flash flood data across
226 locations in Gabes (Tunisia) suggested that the artificial neural network (ANN) tech-
nique could reliably predict 14% of the locations as very high flash flood susceptibil-
ity/prone areas. The ROC predicted an AUC value for the ANN of 0.86, indicating the
reliability of the ANN. It should be noted that this approach could not determine the
frequency of occurrence and timing of the flash flood events [32]. A comparative analysis
between the convolutional neural network (CNN) and the recurrent neural network (RNN)
was performed for flash flood historical data from Golestan, Iran. Evidence suggested
that the CNN (RMSE = 0.83) slightly performed better than the RNN (RMSE = 0.81) in
predicting flash flood susceptibility. In conclusion, both methods successfully captured
spatial heterogeneities of flash flood vulnerabilities in the area [33]. In Tafresh, Iran, several
AI/ML methods, including alternating decision tree (ADT), functional tree (FT), kernel
logistic regression (KLR), MLP, and quadratic discriminant analysis (QDA), were used.
Flash flood susceptibility predictions were very high for ADT (AUC = 0.97) compared to
FT, KLR, MLP, and QDA, whose AUC values were >0.95. More than 80% of the area shows
very high susceptibility to flash floods. It was recommended that computational highly
efficient data mining methods could be employed to improve future studies [34]. Similar
to Gorgan (Iran), the application of the bagging functional tree (BFT), dagging functional
tree (DFT), and rotational forest functional tree (RFT) methods yielded AUC values of BFT
(0.95), followed by RFT (0.94), with DFT (0.93) being the worst performing AL/ML model.
About 1.99% and 5.41% of flash flood susceptibility areas were classified as very high and
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high, respectively, according to the BFT model. The study suggested the need to include
hybrid models to reduce the uncertainties and improve prediction accuracy [35].

When the light gradient boosting machine (Light GBM) and categorical boosting
(Catboost) were assessed using data from 445 flash flood locations in Hurghada (Egypt),
AUC values showed that both the Light GBM (0.98) and Catboost (0.97) methods predicted
the flood risk zones of the area with high accuracy. In addition, the two models predicted
42% and 44% of the areas as very high flash flood-susceptible zones [36]. In the same
region (Central Eastern region, Egypt), extreme gradient boost (XGBoost) exhibited higher
prediction accuracy (AUC = 90.2%) than the k-nearest neighbor (KNN), with an AUC
value of 80.7% [37]. Least square support vector machine (LSSVM) and logistic regression
(LR) were both evaluated to understand the warning predictive performance levels in
Yunnan province, China. The prediction accuracy of LSSVM (0.79) was higher than LR
(0.75). About 32% of the areas were classified as having a high flash flood risk. The AUC for
LSSVM and LR were 0.8 and 0.78, respectively. However, the approach was considered data
driven [38]. Another study in the same region (Yunnan) also found that extreme gradient
boost (XGBoost) can reliably predict flash flood vulnerability areas with an AUC accuracy
of 0.84. This time, larger areas (40.3%) were considered the high and highest susceptibility
zones [39].

In Longnan County (China), multilayer perceptron (MLP), logistic regression (LR),
a support vector machine (SVM), and random forest (RF) were used to identify flash
flood vulnerability areas in the county. It was found that the order of AUC performance
levels was the same for MLP (AUC = 0.97) and FR (AUC = 0.97) but higher than the SVM
(AUC = 0.96) and LR (AUC = 0.88). The study concluded that the differences in prediction
performance may be due to the differences in the weights of the input variables [40]. The
support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and logistic
regression (LR) were also used in Jiangxi, China. The prediction accuracy was higher in RF
(84.1%) than in the SVM (73.1%), KNN (72.8), and LR (70.3%). AUC values were found to be
0.89, 0.78, 0.78, and 0.76, respectively. High-risk zones of the areas based on RF predictions
were 55.1%. However, there was an issue with the lack of high-resolution spatiotemporal
data, as the study relied heavily on low-resolution satellite data [41]. Several types of ML
methods, such as the naïve Bayes tree (NBT), reduced error pruning tree (REPT), logistic
model tree (LMT), Bayesian logistic regression (BLR), and alternating decision tree (ADT),
were used in watershed areas in Haraz, Iran. It was revealed that the prediction accuracy
according to the AUC was higher in DBN (0.98) than in LR (0.88), NBT (0.97), REPT (0.81),
LMT (0.93), BLR (0.93), and ADT (0.97) [42]. In the Islands of Rhodes (Greece) when the
random forest (RF) and artificial neural network (ANN) methods were compared, flash
flood susceptibility accuracy and the AUC were found to be 84% and 0.87 for RF and 81%
and 0.77 for the ANN [43].

In Middle Eastern regions, such as the northern region of the United Arab Emirates
(UAE), the boosted regression tree (BRT), classification and regression tree (CART), and
naïve Bayes tree (NBT) methods were assessed. The AUC values show that BRT (0.92)
achieved higher flash flood prediction accuracy than CART (0.90) and NBT (0.79). About
19.3% of the areas were considered very high flood-prone areas, and it was recommended
that high-resolution remote sensing data could improve future prediction with better
accuracy [44]. A study determined susceptibility with 860 flash flood events data and
421 non-flash flood events data in Tetouan city (Morroco) using an artificial neural network
(ANN), a support vector machine (SVM), and random forest (RF). The flash flood suscep-
tibility was accurately predicted in the order of RF (AUC = 0.99) > ANN (AUC = 0.98) >
SVM > (AUC = 0.97) using 30% of test data [45]. Another study in Markazi (Iran) also
applied boosted regression tree (BRT), parallel random forest (PRF), random forest (RF),
regularized random forest (RRF), and extremely randomized tree (ERT) and found that the
AUC values were higher in ERT (0.82) compared to RRF (0.8), PRF (0.79), RF (0.78), and
BRT (0.75). The model found that 28.3% of the area is highly susceptible to flash floods [46].
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Two different catchment-based studies in Romania showed similar prediction accura-
cies. The first study in Basca Chiojdului, Romania, used the deep learning neural network
frequency ratio (DLNN-FR), the deep learning neural network weights of evidence (DLNN-
WOE), alternating decision tree (ADT-FR), and alternating decision tree (ADT-WOE). The
study reported the order of increasing prediction accuracy (AUC) as DLNN-WOE (0.92)
> DLNN-FR (0.90) > ADT-WOE (0.89) > ADT-FR (0.87). Nearly 59.4% of the areas were
classified as having a very high flash flood susceptibility [47]. The second study in Zabala,
Romania, applied weights of evidence (WOEs), logistic regression (LR), classification and
regression tree (CART), and radial basis function neural network–WOE (RBFN-WOE) algo-
rithms. LR predictions were the most accurate (AUC = 0.92), whereas all the remaining
models equally performed well, with an AUC > 0.85. About 55% of the areas were also
found within high–very high susceptibility zones [48].

Two studies have conducted a nationwide flash flood susceptibility assessment in the
United States. The first study focused on watershed areas in the United States’ Southeast
region using random forest (RF) methods. The study identified areas with a higher risk
of flash flood events with high accuracy (AUC = 0.87) [49]. The second study in Alabama
instead compared different methods. They include random forest (RF), extreme gradient
boost (XGBoost), adaptive boosting (AdaBoost), and extra tree (ET), which identified 9.35%
of the area as having high risk. The overall prediction precision was similar for all the
methods: RF (0.975), XGBoost (0.976), Adaboost (0.974), and ET (0.975), whereas the AUC
values were 0.845, 0.842, 0.790, and 0.834, respectively [50].

A study applied a deep learning neural network (DL), correlation-based feature weighted
naïve Bayes (CFWNB), and correlation-based feature-weighted Adaboost (CFWNB-AB) for
susceptibility analysis in Hanoi (Vietnam). It was revealed that DL (AUC = 0.97) predicted
hilly terrain flash flood susceptibility better than CFWNB and CFWNB-AB, both with an
AUC > 0.8. About 38.1% of the areas were classified as highly susceptible zones. According
to the researchers, there was a lack of rainfall data time series for the analysis, which was
the main limitation of the study. They also recommended that new ensemble ML models
could help enhance model performance in the future [51]. In Bac Ha, Bao Yen, Vietnam,
multivariant adaptive regression splines (MARSs), support vector machines (SVMs), back-
propagation artificial neural networks (BPANNs), and classification trees (CTrees) found
flash flood susceptivity performance levels (AUC) to be 0.96, 0.92, and 0.9, respectively,
indicating relatively equal performance levels of all the three models [52]. Similar to Tran
Yen (Vietnam), the support vector machine (SVM), classification and regression tree (CART),
logistic regression (LR), and best first tree (BFTree) were applied for the susceptivity analy-
sis. The performance of these AI/ML methods according to AUC values were SVM = 0.93,
CART = 0.81, LR = 0.90, and BFTree = 0.88. The susceptibility areas were classified as very
high (5%) and high (5%) [53].

Table 1. Summary of studies on artificial intelligence (AI)/machine learning (ML) and specific
methods used for the prediction of flash flood warnings and susceptibility categorized according
to (A) the traditional LM methods applied in flash flood warnings, without model evaluation,
and (B) the ML methods used in flash flood susceptibility assessment with full model evaluation
performance levels.

Location AI/ML Method Performance Levels Conclusions Reference

(A) Early Warning Prediction Studies

Khosf, Iran

Support vector machine
(SVM), artificial neural
network (ANN), Nearest
neighbor classification
(NNC)

Flash flood risk was predicted by
the three AI methods. The model
performance through the
coefficient of determination (r)
for the three AI methods was
SVM = 0.88, ANN = 0.79, and
NNC = 0.89

An alternate
application of
computer vision can
help improve the
prediction of
flash floods

[18]
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Table 1. Cont.

Location AI/ML Method Performance Levels Conclusions Reference

Amman, Jordan Artificial neural networks
(ANNs)

The ANN improved flash flood
warning forecasting by 93.5%
when compared with the
conventional forecasting model

High computation cost [19]

Leyte Island,
Philippines Regression algorithm

Able to send flash flood
warnings (water level and water
speed) via SMS upon reaching
the threshold

Warning messages
sometimes exceed the
memory capacity of
the SMS

[22]

-

Adaptive neuro fuzzy
interference system
(ANFIS), meural metwork
autoregressive model with
exogenous output
(NNARX)

It was found that NNARX
accurately predicted flash flood
water level, velocity, and ocean
bottom pressure with
>80% accuracy

- [23]

Campos do Jordão,
Brazil Neural network (NN)

There is 100% correctness in the
classification of true positives for
training and test sets, indicating
that the NN is reliably integrated
to improve the accuracy of early
warning systems

False positives were
detected, indicating
improvement in
the NN

[24]

Golestan, Iran
Convolutional neural
network (CNN), recurrent
neural network (RNN)

The CNN (RMSE = 0.83)
performed slightly better than
the RNN (RMSE = 0.81) in
predicting flash flood events.
Both technologies successfully
captured spatial heterogeneities
of flash flood probabilities in
the area

Hyper-parameter
tunning could improve
the accuracy of these
DL networks

[33]

Hangzhou, China Support vector machine
(SVM)

The SVM (2.5 milliseconds)
accurately forecasted flash flood
events compared to traditional
numerical models (25 h)

- [20]

Semarang, Indonesia Artificial neural network
(ANN)

The ANN could forecast flash
flood events by a 2 h lead time.
The application could transmit
information to the telemetry
system/SMS in 10 min

- [21]

- Intelligent sensor network
(ISN)

The system is fully automated.
Reduces false alarms for flash
flood events and can diagnose
the health data of the affected
population to issue alerts

- [26]

China Long short-term memory
(LSTM)

The LSTM approach predicted
accurate one-day flash flood
warnings with a false alarm rate
of 0.09 and two-day warnings
with a false alarm rate of 0.21.
The LSTM approach gave the
best predictions with a critical
success index of 0.75

The lack of a high
resolution made
predicting flash flood
early warnings in
complex geographies,
such as mountainous
areas, difficult

[25]

Uttarakhand, India
Gradient boosting (GBT),
recurrent neural network
(RNN)

The flash prediction accuracy
according to the coefficient of the
regression value (R2) for the
RNN and GBT were 0.98 and
0.92, respectively

Using high-resolution
remote sensing data
may improve future
predictions

[27]
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Table 1. Cont.

Location AI/ML Method Performance Levels Conclusions Reference

Daqin, China Long short-term memory
(LSTM)

LSTM improved flash flood
prediction by reducing flood
peak flow and volume error by
3.02–57.4% and 6.3–39.3%,
respectively, when coupled with
hydrological models (e.g.,
WRF/WRF–hydro models)

- [28]

(B) Susceptibility Assessment-Based ML Studies

Gabes, Tunisia Artificial neural network
(ANN)

The ANN technique could
reliably reveal 14% very high
flash flood susceptibility/prone
areas. The receiver operating
characteristics (ROCs) predicted
an area under the curve (AUC)
value for the ANN of 0.86,
indicating the reliability of the
ANN risk predictions

The approach could not
determine the
frequency of
occurrence and timing
of the flash flood events

[32]

Golestan, Iran

The convolutional neural
network (CNN) and
recurrent neural network
(RNN)

The deep learning neural
network technique was able to
predict heterogeneities in spatial
patterns of flash flood risks. The
area under the curve (AUC)
values for the CNN (0.83) were
slightly better than the RNN
(0.81). About 40% of the area
was considered to have very
high susceptibility

There is a need to
optimize the CNN and
RNN algorithms

[33]

Tafresh, Iran

Alternating decision tree
(ADT), functional tree (FT),
kernel logistic regression
(KLR), multilayer
perceptron (MLP),
quadratic discriminant
analysis (QDA)

Flash flood susceptibility
predictions were very high in
ADT (AUC = 0.97) compared to
FT, KLR, MLP, and QDA, whose
AUC values were >0.95. More
than 80% of the area is highly
susceptible to flash floods

Computational, highly
efficient data mining
methods could be
employed to improve
future studies

[34]

Gorgan, Iran

Bagging functional tree
(BFT), dagging functional
tree (DFT), and rotational
forest functional tree (RFT)

The three AI methods predicted
flash flood susceptibility. The
AUC values were BFT = 0.95,
DFT = 0.93, and RFT = 0.94.
About 1.99% and 5.41% of flood
susceptibility areas were
classified as very high and high,
respectively, according to the
BFT model

Introducing hybrid
models to reduce
uncertainties and
improve prediction
accuracy is important
This approach could be
used for flash flood
vulnerability
assessment

[35]

Hurghada, Egypt

Light gradient boosting
machine (Light GBM) and
categorical boosting
(Catboost)

AUC values showed that both
the Light GBM (0.98) and
Catboost (0.97) methods
accurately predicted flood-risk
zones. The above models
predicted 42% and 44% of the
areas as very high flash
flood-susceptible zones,
respectively

- [36]

Central Eastern region,
Egypt

Extreme gradient boost
(XGBoost) and k-nearest
neighbor (KNN)

XGBoost (AUC = 90.2%)
exhibited higher prediction
accuracy than KNN
(AUC = 80.7%)

Applying different
optimization
techniques can improve
model performance

[37]
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Table 1. Cont.

Location AI/ML Method Performance Levels Conclusions Reference

Yunnan, China
Least square support
vector machine (LSSVM)
and logistic regression (LR)

The prediction accuracy of
LSSVM (0.79) was higher than
and LR (0.75). A total of 32% of
the areas were classified as high
flash flood-risk areas. The AUC
for LSSVM = 0.8 and LR = 0.78

These methods are data
driven and lack the
mechanisms causing
the flash flood risk in
the area

[38]

Yunnan, China Extreme gradient boost
(XGBoost)

Flash flood risk predictions were
conducted. The prediction
accuracy was 0.84. The high- and
highest-risk areas were 40.3%

Long-term flash flood
data should be
considered in future
studies

[39]

Longnan County,
China

Multilayer perceptron
(MLP), logistic regression
(LR), support vector
machine (SVM, and
random forest (RF)

The MLP (AUC = 0.97) and FR
(AUC = 0.97) techniques
accurately predicted flash flood
vulnerability areas compared to
the SVM (AUC = 0.96) and LR
(AUC = 0.88)

Differences in
prediction performance
may be due to the
differences in the
weights of the
input variables

[40]

Jiangxi, China

Support vector machine
(SVM), k-nearest neighbor
(KNN), random forest (RF),
and logistic Regression
(LR)

The prediction accuracy was
higher in RF (84.1%) than the
SVM (73.1%), KNN (72.8), and
LR (70.3%). AUC values were
0.89, 0.78, 0.78, and 0.76,
respectively. High-risk zones
were 55.1%

Lack of high-resolution
spatiotemporal data
could affect the
reliability of the results

[41]

Haraz, Iran

Deep believed network
(DBN), logistic regression
(LR), naïve Bayes tree
(NBT), reduced error
pruning tree (REPT),
logistic model tree (LMT),
Bayesian logistic regression
(BLR), alternating decision
tree (ADT)

The prediction accuracy
according to the AUC was
higher in DBN (0.98) than LR
(0.88), NBT (0.97), REPT (0.81),
LMT (0.93), BLR (0.93), and
ADT (0.97)

- [42]

Islands of Rhodes,
Greece

Random forest (RF),
artificial neural network
(ANN)

The flash flood prediction
accuracy and the AUC was 84%
and 0.87 for RF and 81% and 0.77
for the ANN

- [43]

Northern regions, UAE

Boosted regression tree
(BRT), classification and
regression tree (CART),
and naïve Bayes tree (NBT)

The AUC shows that BRT (0.92)
achieved a higher flash flood
prediction accuracy than CART
(0.90) and NBT (0.79). About
19.3% of the areas were
considered very high
flood-prone areas

High-resolution remote
sensing data could
improve future flash
flood risk predictions

[44]

Tetouan, Morroco

Artificial neural network
(ANN), support vector
machine (SVM), and
random forest (RF)

Flash flood susceptibility was
accurately predicted by RF
(AUC = 0.99), the ANN
(AUC = 0.98), and the SVM
(AUC = 0.97)

- [45]

Markazi, Iran

Boosted regression tree
(BRT), parallel random
forest (PRF), random Forest
(RF), regularized random
forest (RRF), extremely
randomized tree (ERT)

AUC values were higher in ERT
(0.82) compared to RRF (0.8),
PRF (0.79), RF (0.78), and BRT
(0.75). The model found 28.3% of
the area to be highly susceptible
to flash floods

- [46]
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Table 1. Cont.

Location AI/ML Method Performance Levels Conclusions Reference

Basca Chiojdului,
Romania

Deep learning neural
network frequency ratio
(DLNN-FR), deep learning
neural network weights of
evidence (DLNN-WOE),
alternating decision tree
(ADT-FR), and alternating
decision tree (ADT-WOE)

The prediction accuracy based
on AUC values was higher in
DLNN-WOE (0.92) than in
DLNN-FR (0.90), ADT-WOE
(0.89), and ADT-FR (0.87).
Nearly 59.4% of the areas were
classified as having a very high
flash flood susceptibility

- [47]

Zabala, Romania

Weights of evidence
(WOEs), logistic regression
(LR), classification and
regression tree (CART),
and radial basis function
neural network–WOE
(RBFN-WOE)

LR predictions were the most
accurate (AUC = 0.92), whereas
all the remaining models
performed equally well, with an
AUC > 0.85. A total of 55% of the
areas fall within the high–very
high susceptible zones

- [48]

Southeast region,
United States Random forest (RF)

The RF approach accurately
predicted damaged regions due
to flash floods with 81%
accuracy. The AUC = 0.87

Additional watershed
predictor variables
could improve future
predictions

[49]

Alabama, United States

Random forest (RF),
extreme gradient boost
(XGBoost), adaptive
boosting (Adaboost), extra
tree (ET)

About 9.35% of the area was
classified as high risk. The
overall prediction precision was
RF = 0.975, XGBoost = 0.976,
Adaboost = 0.974, and
ET = 0.975. Also, AUC values
were RF = 0.845, XGBoost =
0.842, Adaboost = 0.790, and
ET = 0.834

- [50]

Hanoi, Vietnam

Deep learning neural
network (DL),
correlation-based feature
weighted naïve Bayes
(CFWNB), and correlation
based feature weighted
Adaboost (CFWNB-AB)

DL (AUC = 0.97) better
predicted hilly terrain flash flood
susceptibility than CFWNB and
CFWNB-AB, which both had an
AUC > 0.8. About 38.1% of the
areas were classified as very
highly susceptible zones

There was a lack of
time series rainfall data
for the analysis, and
new ensemble ML
models could enhance
model performance in
the future

[51]

Bac Ha, Bao Yen,
Vietnam

Support vector machine
(SVM), backpropagation
artificial neural network
(BPANN), classification
tree (CTree)

Performance for flash flood
susceptivity according to the
AUC value was 0.96. A total of
10% of the areas were described
as very high and high risk
according to the
MARS-PSO model

- [52]

Tran Yen, Vietnam

Support vector machine
(SVM), classification and
regression tree (CART),
logistic regression (LR),
best first tree (BFTree)

The performance of these AI
methods according to AUC
values are SVM = 0.93,
CART = 0.81, LR = 0.90, and
BFTree = 0.88. The susceptibility
areas were classified as very
high (5%) and high (5%)

- [53]

4.1.3. Flash Flood Susceptibility Indicators and Influential Factors

In order for AI/ML to reliably predict flash flood susceptibility, it will need a wide
range of indicators/variables such as topographical (e.g., slope), geological (e.g., lithology),
hydrological (e.g., rainfall), environmental (e.g., land use/cover features), and demographic
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(e.g., population) indicators [41,42]. It is important to note that the choice of indicators
heavily depends on the features and characteristics of the area (e.g., watershed area). Based
on AI/ML, Table 2 depicts a group of the most important variables that drive/control
flood susceptibility.

For example, a study used a combination of different indicators (such as the topo-
graphic wetness index, altitude, plan curvature, proximity to roads, slope aspect, elevation,
slope, land use, lithology, and rainfall) to conduct susceptibility mapping in the Golestan
Province of Iran. Thus, the study focused on an urbanized area characterized by moun-
tains, forests, industrial and residential facilities. It was concluded that low elevations
and gentle slopes were the main predictors of flash flood events in the area [33]. Another
study also used elevation slope, drainage density, land use, soil type, lithology, and rainfall
and reported that increasing land use/cover, such as urbanization and drainage systems,
increased the risk of flash floods [32]. Others have also identified elevation, distance to
streams, and greenery, such as the normalized difference vegetation index (NDVI), as the
main predictors of flash floods [35]. A study also found that flat terrain, low elevations,
mountainous streams, and population are the main risk factors for flood susceptibility [39].
As indicated in Table 2, several other studies have also applied different susceptibility
indicators and identified the most influential factors driving susceptibility, depending on
the geographical characteristics of each area [34,36,37,40–53].

Table 2. Most common indicators/variables used by AI/ML for flash flood susceptibility predictions
and influential factors causing susceptibility.

Location Susceptibility Variables Influential Factors Reference

Tunisia Elevation slope, drainage density, land use, soil
type, lithology, rainfall

Land use, such as increasing urbanization,
affects drainage systems [32]

Iran
The topographic wetness index, altitude, plan
curvature, proximity to roads, slope aspect,
elevation, slope, land use, lithology, rainfall

Low elevation and gentle slopes have a strong
association with flood events [33]

Iran Elevation, soil type, distance from rivers, slope
aspect, slope, land use, lithology, rainfall

Land use features (residential areas, orchards)
strongly influence flood occurrence [34]

Iran

The topographic wetness index, the topography
position index, the terrain ruggedness index, the
convergence index, drainage density, the NDVI,
soil type, distance to streams, altitude, plan
curvature, land use, elevation, slope, land use,
lithology, rainfall

Elevation, distance to streams, and greenery
(NDVI) have a stronger impact on floods [35]

Egypt

The topographic wetness index, flow
accumulation, the sediment transport index, the
NDVI, vertical flow distance, aspect, altitude, plan
curvature, land use, elevation, slope, land use,
lithology, rainfall

Land use, such as coastal areas, is prone to floods [36]

Egypt
The topographic wetness index, distance from
stream, stream density, plan curvature, elevation,
slope aspect, slope, lithology

Elevation, slope, and stream density are the most
influential floods to flood events [37]

China

The topographic wetness index, rainfall, digital
elevation model, slope, river density, vegetation
coverage, curve number, soil moisture, population,
gross domestic product, flash flood
prevention efforts

Flat terrain, low elevation, mountainous streams,
and population are risk factors for
flood susceptibility

[39]

China

Elevation, slope, aspect, lithology, the NDVI, plan
curvature, profile curvature, the topographic
wetness index, surface radiation, gully density,
rainfall, highway density, population density,
the MNDWI

Elevation, gully density, and population density
are the main contributors to floods [40]
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Table 2. Cont.

Location Susceptibility Variables Influential Factors Reference

China

Slope, elevation, shape factor, concentration
gradient, the topographic wetness index, the
NDVI, distance to rivers, rainfall, peak discharge
per unit area, and time of concentration

River distribution is associated with
flood occurrence [41]

Iran

Slope angle, elevation, curvature, rainfall, the
topographic wetness index, distance to rivers, the
NDVI, land use, river density, lithology, the
sediment power index

Distance to rivers and river density are the major
contributors to flood occurrence [42]

Greece

Slope angle, elevation, aspect, curvature, land use,
soil type, plan curvature, profile curvature, rainfall,
the topographic wetness index, distance to rivers,
the sediment transport index, sediment power
index, lithology

Lithology, land use, slope, elevation, and the
topographic wetness index were the main
predictors of floods

[43]

UAE Slope, altitude, land use, plan curvature, relief,
distance to streams, stream density, lithology

Land use, such as mountainous areas and wider
plains, has an elevated risk of floods [44]

Morrocco

Elevation, aspect, slope, land use, the stream
power index, plan curvature, profile curvature, the
topographic power index, the topographic
wetness index

Not given [45]

Iran

Altitude, slope, aspect, plan curvature, profile
curvature, distance to rivers, distance from roads,
land use, lithology, soil type, rainfall, the
topographic power index, the topographic
wetness index

Altitude, rainfall, and distance to the river are
the main predictors of flood occurrence [46]

Romania

Slope, the topographic power index, the
topographic wetness index, land use, profile
curvature, lithology, the aspect, convergence index,
the sediment power index, hydrological soil group

Slope angle and land use are the predictors of
flood occurrence [47]

Romania

Slope, rainfall, land use, hydrological soil group,
lithology, plan curvature, profile curvature, the
convergence index, aspect, the topographic
wetness index, the modified Fournier index

Not given [48]

United
States

Population, home value, household composition
and disability, intensity, slope, duration, latitude,
longitude, onset time, month

Not given [49]

United
States

Elevation, slope, aspect, plan curvature, profile
curvature, drainage density, distance to streams,
curve number, rainfall, the NDVI, the sediment
transport index, the topographic roughness index,
the topographic wetness index, the stream
power index

Curve number, the NDVI, slope, and drainage
are the main factors influencing flood occurrence [50]

Vietnam

Elevation, elevation difference, slope, aspect,
curvature, the topographic wetness index, the
sediment power index, drainage density, land use,
geomorphology, structural zone, lithology,
weathering crust, rainfall

Hilly areas are at an elevated risk of floods [51]

Vietnam

Elevation, slope, curvature, toposhade, the
topographic wetness index, the stream power
index, stream density, the NDVI, soil type,
lithology, and rainfall

Not given [52]

Vietnam
Slope, aspect, curvature, elevation, the
topographic wetness index, land use, river density,
soil type, lithology, rainfall

Slope, land use, curvature, the and topographic
wetness index are the most influential factors of
flood occurrence

[53]

Note: MNDWI: modified normalized difference water index.
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4.2. Internet of Things (IoT)

The Internet of Things (IoT) has led to rapid advances in flash flood management.
Essentially, the IoT is a network of technology (e.g., electronic devices) connected to the
internet that provides services based on sensor-based data [54]. In brief, the IoT is defined as
a network of devices consisting of sensors, software, and computing systems that function
together by gathering, processing, and transmitting data in real time to help improve the
quality of human life. For example, the IoT can be used to provide early warnings for
real-time flash floods in communities [55].

Through the integration of the IoT into flash flood management systems, the public
can easily monitor flood-related early warnings in villages and cities in real time [56]. In
spite of the fact that IoT integration into flash flood warning/monitoring systems is still in
its infancy, several recent studies demonstrate the importance of these new emerging smart
applications. Table 3 provides a summary of studies applying the IoT to monitoring flash
floods and predicting early warnings.

A study developed an intelligent flash flood IoT system through a network of water
sensor flows, rain gauge sensors, long-range radios (LoRas), subscriber identity modules
(SIMs), warning systems, monitoring systems, and mobile applications (apps). This system
helped communities living in flood-prone mountainous areas to receive continuous flash
flood early warning notifications through short message service (SMS). The only challenge
identified was fluctuations in steeper slopes and water levels in the area, making it difficult
for the IoT system to read and transmit warning information effectively. A study assessed
fault tolerance by applying a SENDI (System for dEtecting and Forecasting Natural Disas-
ters based on the IoT) system and an ns-3 simulator. It was found that the overall accuracy
of flash flood alerts for the system exceeded 65%, with 80% for red and 61% for yellow
alerts. A high degree of accuracy was achieved, even under unfavorable conditions [57]. It
recommended that this technology needs to be tested under system failure [58].

An innovative flash food IoT system (Gen1 On-Prem IoT: 3G Network protocol, flood
level sensor, Linux, Apache, my structured query language (MySQL), Hypertext Prepro-
cessor (PHP), Just Another Virtual Processor (JAVA), and email trigger) demonstrated
high reliability in issuing flash flood warnings to the targeted communities. The early
warning system was successful despite internet problems, except for some issues relating
to performance and support for multiple users [59]. With an IoT-integrated early warning
system (including Arduino microcontrollers, Raspberry Pis, a database server, a web server,
and a smartphone), users were able to receive real-time flood status and alerts [60].

An IoT consisting of a network of distance measurement ultrasonic sensors, rain
sensors, message queuing telemetry transport (MQTT), Arduino microcontrollers, ThingsS-
peak, and WiFi was developed to enhance the effectiveness of flash flood early warnings.
Although the system can effectively transmit flash flood alert messages (i.e., type of flash
flood alert) to users, it was recommended that integration cameras and drones could im-
prove system monitoring capabilities [61]. Others have also suggested the need to couple
the IoT system (network of sensors, drainage data, flood data) with Al/ML to optimize
its operation [62]. The current IoT system (Arduino microcontroller, mobile phone, cloud,
water flow sensor, distance measurement ultrasonic sensor) can effectively transmit real-
time flash flood alert messages but can be combined with remote sensing and geographical
information systems (GISs) to improve its spatial–temporal performance levels [27]. How-
ever, it was concluded that the system successfully communicated flash flood alerts every
5 min [63].

A more sophisticated IoT system (TensorFlow, Raspberry Pi, Telegram Channel, cam-
era, and a soft design document [SDD]) was developed and was able to successfully
disseminate flash flood alerts via a Telegram Channel [64]. Another system (Raspberry
Pi, Synology Network Access Storage, modem, web server, Android mobile phone, web
browser (e.g., Google Chrome)) was able to perform multiple functions. This includes the
ability to effectively provide useful information, such as lighting locations, rainfall levels,
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and locations of flash floods, as well as generate flash flood alert messages to the residents
through mobile phone applications [65].

Table 3. Summary of Internet of Things (IoT) studies to predict early flash flood warning systems.

Location Activity Composition The Study Outcome Challenges Reference

- Early Warning
Alert

Water Senser Flows,
Rain Gauge Senser,
Long-Range Radio
(LoRa), Subscriber
Identity Module (SIM),
Warning System,
Monitoring
System, App

Communities living
within mountain areas
were able to receive
continuous flash flood
early warning
notifications via short
message service (SMS)
through long-range
(LoRa) systems due to
internet issues in
mountainous areas

Fluctuations in
steeper slopes and
water levels make
it challenging for
the IoT system to
read and provide
outputs

[57]

São Carlos, Brazil Fault Tolerance
Predictions

SENDI (System for
dEtecting and
Forecasting Natural
Disasters Based on the
IoT), ns-3 Simulator

The overall accuracy of
flash flood alerts of the
system exceeded 65%,
with 80% for red and
61% for yellow alerts. A
high degree of accuracy
was achieved, even
under unfavorable
conditions

The performance
of the technology
needs to be tested
under system
failure and ensure
readings from
several nodes

[58]

Maryland, United
States Flood Prediction

Gen1 On-Prem IoT: 3G
Network Protocol,
Flood Level Sensor.
Linus, Apache,
MySQL, Hypertext
Preprocessor (PHP),
Just Another Virtual
Processor (JAVA),
Email Trigger

The system had high
reliability and
availability. However, it
showed low
performance. It
successfully deployed
information despite
internet problems

There were
challenges in
supporting
multiple users

[59]

Johor Bahru,
Malaysia

Early Warning
Alert

Arduino
Microcontroller,
Raspberry Pi,
Database Server, Web
Server, Smartphone

The system enabled
users to receive real-time
flash flood status
(whether it will occur or
not) and alerts

- [60]

Kigali, Rwanda Early Warning
Alert

Distance Measurement
Ultrasonic Sensor,
Rain Sensor, Message
Queuing Telemetry
Transport (MQTT),
Arduino
Microcontroller,
ThingsSpeak, WiFi

The system was able to
effectively transmit flash
flood alert messages
(containing flash flood
alert type and the state
of the flash flood)
to users

Future studies
could integrate
cameras and
drones to improve
monitoring

[61]

India Early Warning
Alert

IoT Sensors, Drainage
Data, Flood Data

The system offered
real-time information to
users. The process was
able to continue until the
flash flood came
under control

The current system
can be coupled
with ML in
the future

[62]
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Table 3. Cont.

Location Activity Composition The Study Outcome Challenges Reference

Uttarakhand, India Early Warning
Alert

Arduino
Microcontroller,
Mobile Phone, IoT
Cloud, Water Flow
Sensor, Distance
Measurement
Ultrasonic Sensor

The system was able to
effectively transmit
real-time flash flood
alert messages

The current system
can be integrated
with remote
sensing and
geographical
information
systems to
improve its
performance

[27]

Uttarakhand, India Early Warning
Alert

Arduino
Microcontroller,
Mobile phone,
Android App, Google
Cloud, Water Flow
Sensor, Distance
Measurement
Ultrasonic Sensor

Users were able to
effectively receive
real-time flash flood
alert messages through
mobile applications and
updated alerts every
5 min

The current system
can be integrated
with remote
sensing and
geographical
information
systems

[63]

Kuala Lumpur,
Malaysia

Early Warning
Alert

TensorFlow, Raspberry
Pi, Telegram Channel,
Camera,
SDDMobileNetV1

The system successfully
provided flash flood
alerts on flash flood
levels and normal levels
via the Telegram
Channel

- [64]

Melaka, Malaysia
Flood Prediction,
Early Warning
Alert

Raspberry Pi,
Synology Network
Access Storage,
Modem, Web Server,
Android Mobile
Phone, Web Browser
(e.g., Google Chrome)

The system effectively
predicts (e.g., lighting
locations, rainfall levels,
and locations of flash
floods) and generates
flash flood alert
messages to the
residents through
mobile phone
applications

- [65]

4.3. Cloud Computing

The application of cloud computing technology for flood disaster management has
gained a great deal of attention [66]. Cloud computing, or simply “Cloud”, is interconnected
computer grids or networks of sensors that can store, access, manage, secure, and organize
data [67]. Because cloud computing offers unlimited data storage capacity, the ability to
share data safely and integrate them into emerging computer technologies, such as high-
performance computing (HPC) systems, is indispensable for flash flood management [68].
Despite being highly effective, flash flood warning systems have not yet widely used
this technology. In contrast, few studies have shown that it can improve flood-related
communications, as shown in Table 4. Thus, cloud computing does not operate on its own;
rather, it combines with other networks, such as the Internet of Things, in order to enhance
the operation of flash flood management [69].

A study conducted in Maryland, United States, developed integrated cloud-based
systems (i.e., consisting of cloud, 3G, Central Processing Unit (CPU), water level ultrasonic
sensors, solar panels, and the application programming interphase (API) for early warning
alert forecasting. Interestingly, the system efficiently transmits flash flood status and
visualizations into social media platforms, like Twitter. Some of the main changes faced
during the operation were data loss issues and poor cloud connectivity, and it was suggested
that integrating these systems into computer vision could help in future warnings [59].
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Another study in Texas, United States, found that a hydrological-based cloud com-
puting system (i.e., made up of a network of a Research Distributed Hydrological Model
[RDHM], cloud, geographical JavaScript object notation [GeoJSON], GIS, Google Maps)
was able to process data and show flash flood status online to the local emergency re-
sponse managers and issued alerts through mobile apps [70]. However, another study from
Bangladesh has pointed out that this current cloud-based system has difficulties reading
water levels due to environmental-related issues, such as high water sediment levels. There
is also a report about limited cloud centers across the country, making it difficult to employ
this technology in rural areas or less developed countries [71]. However, the system was
able to issue flash flood early warnings by mimicking water levels of river banks during
rainfall [71].

Table 4. Summary of cloud computing studies used in flash flood warning systems.

Location Activity Composition The Study Outcome Challenges Reference

Maryland, United
States

Early Warning
Alert

Cloud, 3G, Central
Processing Unit (CPU),
Water Level Ultrasonic
Sensors, Solar Panels,
Application
Programming
Interphase (API)

The system could
transmit flash flood
status, including
images, through
social media
platforms, such
as Twitter

Data loss issues and
poor cloud
connectivity.
Integration of
computer vision could
help in the future

[59]

Texas, United
States

Flash Flood
Prediction

Research Distributed
Hydrological Model
(RDHM), Cloud,
GeoJSON, GIS, and
Google Maps

The RDHM in the
cloud computer
system could show
flash flood status
online to local
emergency response
managers and issue
alerts through
mobile apps

- [70]

Bangladesh Early Warning
Alert

Cloud Servers
(e.g., CloudSim),
Gradient Servers
Communications, Water
Level, Ultrasonic
Sensors

The system was able
to issue flash flood
early warnings by
mimicking water
levels of river banks
during rainfall

The system was
unable to read water
levels due to
sediments. A lack of
cloud centers across
the country was a
major concern

[71]

4.4. Robotics

Robotics technologies are gaining attention in natural disaster management, especially
for earthquakes, wildfires, landslides, etc., and for operations like searching for flood
victims [72,73]. Furthermore, several studies have focused exclusively on the use of aerial
robots to rescue flood victims [74–77]. From the aforementioned evidence, it is evident that
robotic technologies have not been well documented in the literature when it comes to
flash flood management, specifically for early warnings and communications. One study
has utilized robotics in the Philippines’ early warning systems for flash floods [78]. In this
study, a robot was able to transmit accurate flash flood data to receivers when water levels
reached critical levels. Additionally, a robot can display warnings on a liquid crystal display
(LCD) and issue alarms via Global System Mobile Communication (GSM) to regulatory
officials. The study’s main limitations were deployment issues and the robots’ electrical
shielding [78].
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4.5. Other Innovative Flash Flood Warning Technologies (Storm Cell Identification, Video-Based
Surveillance, Interactive Voice Response, Digital Image Analysis)

In addition to the technologies (AI/ML, the IoT, could computing, and robotics)
reviewed earlier in this study, many other innovative technologies such as storm cell
identification, video-based surveillance, interactive voice response, and digital image
analysis have been applied in flash flood warning systems, as shown in Table 5. A study in
Catalonia (Spain) employed a storm cell identification and tracking algorithm (SCIT). It
revealed that SCIT technology improved the flash flood forecasting systems by including
different precipitation thresholds and identified topography as a triggering factor for storms
occurring outside the convective periods [79].

The video-based surveillance system (VSS) was able to monitor water levels and
potentially activate warnings on social media networks for public consumption [80]. Other
systems, including SMS, interactive voice response (IVR), and cell broadcasting service
(CBS), are easy to integrate with flash flood warning systems because they aid dissemination
and are easily accessible to a majority of people [81]. There is also evidence that flash flood
data, such as water levels generated through digital image analysis, can successfully be
integrated into computer servers and shared via Android phones for public consumption.
It should be noted that this application requires high-speed internet to be able to function
effectively [82]. In addition, it has been found that international River Interface Cooperative

(iRIC
�
@Version2.X) software can estimate flash flood events for both gauged and ungauged

basins. It was concluded this software requires accurate digital elevation model (DEM)
data to ensure successful early warning forecasting [83].

Table 5. Summary of emerging innovative technologies (storm cell identification, video-based
surveillance, interactive voice response, digital image analysis) used in flash flood warning systems.

Location Technology Performance Levels Challenges Reference

Catalonia, Spain

Storm Cell
Identification and
Tracking Algorithm
(SCIT)

Improved the current flash flood
forecasting systems by including
different precipitation
thresholds. Was able to identify
topography as a triggering factor

It can be enhanced by
including the role of the
ocean (e.g., melting of ice
particles in the rain)

[79]

Manado, Indonesia
Video-Based
Surveillance System
(VSS)

The system can provide
surveillance on water levels and
has the potential to activate
social media networks for
public consumption

- [80]

Sunamganj,
Bangladesh

SMS, Interactive Voice
Response (IVR), Cell
Broadcasting Service
(CBS)

SMS and IVR were suitable for
the dissemination of flash flood
forecasting due to ease of
understanding and accessibility

The system can be
enhanced by incorporating
mixing push- and
pull-based
telecommunication
services

[81]

Indonesia Digital Image Analysis

Data on water levels were
successfully integrated with a
computer server and shared via
Android phones for public
consumption

The application was
interrupted by an internet
disconnection issue,
especially during
data transfer

[82]

Laos, Thailand
International River
Cooperative (iRIC)
Software

The iRIC showed satisfactory
performance in estimating flash
flood disasters for both gauged
and ungauged basins

Requires an accurate
digital elevation model
(DEM) to ensure successful
forecasting

[83]
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5. Discussion

This review study has identified some strengths and limitations associated with
applying AI/ML for flash flood early warning and susceptibility prediction (Figure 5).
However, previous studies have exhibited high prediction performance levels based on
a wide range of topographical, geological, and demographic indicators/variables. These
indicators include slope, altitude, plan curvature, proximity to roads, slope aspect, elevation,
land use, lithology, land cover, and population levels [41,42]. However, the basis for the
selection of these indicators is lacking. For example, each indicator used in flash flood
prediction should be evaluated to show it can reliably contribute to flash floods. This
will lead to using a few reliable indicators for flash flood warnings and susceptibility
prediction and help reduce the complexities in terms of the interpretation or application of
the susceptibility maps.

To achieve a few indicators, multicollinearity must be conducted to help better identify
variables that are not correlated and can independently contribute to flash flood vulnerabil-
ity or early warning predictions [84]. Hydrological variables such as slope, elevation, and
gully density usually show multicollinearity and should be excluded to reduce the data
dimensions and complexities of the analysis [8].

It should be acknowledged that the main purpose of warnings or susceptibility map-
ping is to help develop interventions to reduce the catastrophic effects of flash floods
or prevent their occurrence. Unfortunately, the majority of the indicators used for the
predictions are natural features (e.g., elevation, slope, lithology, population levels). They
are difficult to control, making it difficult to develop interventions. This implies that fu-
ture flash flood predictive studies should focus on anthropogenic-driven or man-made
indicators since they can be easily controlled or managed.

For example, using variables derived from urbanization, urban sewer systems, road
networks, etc., for flash flood early warning and susceptibility prediction makes it possible
to develop effective interventions compared to elevation or slope because the former can be
managed. There is evidence that the common factors attributed to flash flood-related deaths
are the inundation of buildings and a closer proximity of communities/neighborhoods to
rivers [85]. Also, a study using an artificial neural network (ANN) algorithm was able to
predict flash flood early warnings using urban drainage water level data with a forecasting
accuracy level of 93.5%, suggesting the need to use man-made variables, such as drainage
data [19].

This review has proven that despite operational and technical challenges, such as
false alarms, internet connectivity issues, and data loss problems, including difficulties
in reading and transmitting alerts, these modern smart technologies, A/ML, the Internet
of Things, cloud computing, and robotics, can successfully predict flood-prone areas and
issue early warnings for given reasonable lead times about imminent flood events for
the planning of potential mitigation measures. However, there is no empirical evidence
showing these innovative technologies’ effectiveness in reducing flood-related deaths,
disease, and property damages following their implementation. Studies suggest that
among the different flood types (e.g., coastal flood, riverine), flash floods account for the
highest number of fatalities per every event because of sudden occurrence and limited lead
times [86].

Therefore, with the emergence of these smart technologies in terms of the efficient
dissemination of early warnings, these tools must be evaluated to assess their effectiveness
in reducing fatalities before and after implementation. New deep learning methods, such as
transfer learning models [87] and hybrid ML models (based on predictions obtained from
the methods) [88], may be utilized to improve the flash flood predictions since they reduce
data complexities compared to the current algorithms. Considering the scope of this review
study and the emergence of diverse smart technologies, it is evident that flood disaster
management sectors will continue these new tools while improving their effectiveness in
reducing flood-related burdens in the future.
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Regarding the main challenges that still exist in current flash flood predictions, the
main problems are model reliability/accuracy and data quality issues. Several models
make predictions based on the assumption that there is a linear relationship between input
variables (predictors) and the likelihood of flash flood events/susceptibility/hazards, which
may not be applicable to non-linear dynamics. The reliance on interdependent variables
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such as slope, altitude, slope aspect, and elevation could lead to the construction of biased
flood susceptibility maps. Limited high-quality datasets have been a major challenge facing
most developing countries. While open-access satellite data are the most common data
sources in these countries, the issue of up-to-date data, data loss, and coarse resolution
data are the important potential issues that could lead to inaccurate flood susceptibility
maps in these countries [89]. Studies suggest that flash floods are driven by human-
induced climate change impacts [90,91]. However, the current flash flood predictions using
AL/ML technologies have not been projected under different climate change scenarios.
It is imperative that flash flood predictions are projected under various greenhouse gas
emissions Representative Concentration Pathways (RCPs), such as RCP 2.6 (low emissions),
RCP 4.5 (medium emissions), and RCP 8.5 (high emissions), are used to help develop long-
term adaptation strategies among vulnerable communities. These projections also help to
track whether a particular country’s climate change mitigation policies are contributing to
reducing or increasing flash flood events.

Regarding future directions, flash flood predictions/early warning studies should
involve several disciplines (epidemiology, urban forestry, economics, etc.) to help provide
evidence-based study outcomes that can translate into policy. Future susceptibility studies
may account for potential flash flood-associated deaths, hospital admissions, and ambu-
lance call-out areas, including their attributable healthcare costs in highly/least susceptible
areas. Studies show that vegetation cover/land cover are important predictors of flash
flood events [92,93]. Future intervention studies may explore the role of urban forests,
particularly vegetation density and species diversity on flash flood susceptibility. Finally,
our review has highlighted several well-known variables (slope, altitude, plan curvature,
proximity to roads, slope aspect, elevation, land use, lithology, and land cover) that cause
the occurrence of flash floods. Future research may explore other unmeasured variables
(known as confounding variables) that may influence flash flood susceptibilities or human
health outcomes [94].

6. Summary of the Main Findings, Limitations, and Future Perspectives

The advancement of traditional models for flash flood prediction has proven valuable.
However, it has been hindered by several inherent technological challenges, necessitating
the integration of emerging smart technologies such as AI/ML, the IoT, cloud computing,
and robotics for more accurate flash flood assessments and early warning systems. The
traditional models, such as hydrological and hydrodynamic models, have been helpful in
mitigating these impacts through early warning predictions. However, they face inherent
challenges, such as issuing warnings in complex terrains, high computational costs, and
less accurate predictions [7]. Therefore, it is crucial to employ emerging and innovative
technological tools such as AI/ML, the IoT, cloud computing, and robotics to comprehensi-
bly assess flash flood susceptibilities and develop more reliable early warning systems to
help protect communities and properties. The findings of this critical review study suggest
the following:

(I) Current technologies, especially AI/ML, the IoT, and cloud computing, can suc-
cessfully issue flash flood early warnings in real time. However, this approach has
challenges with false alarms, internet connectivity issues, and data loss problems.
Therefore, future research should include aerial robotics and computer vision to
improve their performance.

(II) The current AI/ML methods require optimization techniques to improve their current
prediction performance.

(III) Random forest and the support vector machine were the most accurate AI/ML meth-
ods. However, these algorithms could be integrated with other technologies, such as
computer vision, to help enhance their capabilities.

(IV) The current AI/ML utilizes a wide range of topographical, geological, and hydrologi-
cal variables. Future studies should include sociodemographic, health, and housing
data variables to help generate more realistic flood susceptibility maps.
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(V) There are inconsistencies and limited information regarding the rationale for se-
lecting the susceptibility variables, and there is potential multicollinearity among
the variables.

(VI) The current flash flood susceptibility prediction models have not been evaluated
with health data (flash flood-related death cases) to test their reliability in predicting
vulnerable flood-prone areas.

(VII) Future AL/ML-based flash flood prediction studies should project susceptibility maps
or early warnings under different climate change scenarios.

(VIII)Quantifying flash flood-associated deaths, morbidity, and healthcare costs among
susceptible communities could improve future research.

7. Conclusions

The flash flood warnings and susceptibility predictions provide guidelines for emer-
gency response planning, adaptability, and policy implementation for future flash flood
events. This study aims to critically review current innovative technologies, such as AI/ML,
the IoT, cloud computing, and robotics, for early flood warning predictions and suscepti-
bility assessments. AI/ML, the IoT, and cloud computing technologies can disseminate
early warnings to targeted communities through electronic media, such as SMS and social
media platforms, in real time. However, these systems suffer from internet connectivity
problems and data loss problems. Random forest and support vector machines are the
most common AI/ML methods used in warnings and susceptibility predictions, but these
technologies require optimization and other emerging technologies, such as computer
vision, to perform well. Current Al/ML methods use several topographical, geometric,
and hydrological variables to predict susceptibility, but there are inconsistencies and no
clear theoretical bases for selecting the variables. Therefore, future flood risk assessment
maps must incorporate factors such as sociodemographic, health, and housing data.
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