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Abstract: Unquestionably, the rapidly changing climate and, therefore, alterations in the associated
bioclimate, constitute an alarming reality with implications for daily practice and natural capital
management. This research displays the present and projected bioclimate evolution over Greece’s
phytogeographical regions. For this purpose, ultrahigh-resolution computation results on the spatial
distribution of the Emberger index’s Q2 classes of bioclimatic characterization are analyzed and
illustrated for the first time. The assessments are performed over the reference period (1970–2000)
and two future time frames (2021–2040; 2041–2060) under the RCP4.5 and RCP8.5 emission scenarios.
By 2060 and under the extreme RCP8.5, intense xerothermic trends are demonstrated owing to the
resulting significant spatial evolution mainly of the Arid–Hot, Semi-Arid–Very Hot, Semi-Arid–
Hot, and Semi-Arid–Temperate Q2 classes, respectively, over the phytogeographical regions of
Kiklades (up to 29% occupation), Kriti and Karpathos (up to 30%), West Aegean Islands (up to
26%), North East (up to 56%), and North Central (up to 31%). The RCP8.5 long-term period exhibits
the strongest impacts over approximately the right half of the Greek territory, with the bioclimate
appearing more dry–thermal in the future. In conclusion, the Emberger index provides an in-depth
view of the Greek area’s bioclimatic regime and the potential alterations due to climate change per
phytogeographical region.

Keywords: aridisation; bioclimate classification; climate change; climate projections; natural capital
management; southern Europe

1. Introduction

There is global scientific consensus on the anthropogenic phenomenon of climate
change (CC) [1] and the related altered bioclimate by focusing on its vital impacts on
humans [2,3], fauna [4–6], flora [7–9], natural resources, ecosystem–climate services, and
management policies [10–13].

The Greek Peninsula in southeastern Europe appears as a future climatically threat-
ened territory due to its rapidly changing bioclimatic conditions [14–17]. Projections on
the country’s changing climate reveal significant warming trends under the RCP8.5, with a
near-surface temperature average rise of 4.3 ◦C by the end of the 21st century and, therefore,
a significant increase in the annual number of hot days and tropical nights, night frosts,
continuous dry spell days, and length of the growing season and a decrease in frost days.
The reduction of precipitation by 16% and an increase in the annual number of consecutive
dry days by 30% (15.4 days) pinpoint a future drier environmental evolution [18,19].

Furthermore, directly linked to CC, present and future extreme weather events appear
modified in their frequency and intensity, e.g., an increase in extreme wind speeds [20],
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more frequent flash floods and drought episodes [21–23], more often, more extreme, and
longer heatwaves [24,25], and a lengthened hot extremes season [26].

Predictions on Greece’s future climatic parameters’ evolution conjointly with its
present more xerothermic climatic footprint may justify its increasing vulnerability to
CC capable of forming significant impacts on its extensive natural vegetation and highly
heterogeneous agricultural ecosystems [8,27,28].

The present and projected impacts of CC on the Greek natural ecosystems involve
increased wildfire and flood risks [29,30], altered fire behavior in natural landscapes [31],
increase in high fire danger days [32], reduction in water availability [33], declining tree
growth and productivity [34,35], dieback of tree species [36], higher extinction risk of the
endemic flora [37–39], reduction in habitat-suitable areas [37,40], elevational and altitudinal
shifts of dominant species, changes in forest cover [41], occurrence and spread of alien
plant taxa [42], and loss of biodiversity [43].

As for the agricultural areas, respective impacts include alterations of frost agroclimatic
indicators, increase in the growing season duration [44], crop yield and product quality
reduction [45,46], agricultural soil losses [47], degradation of surface and groundwater
resources, declining of water availability [48], crop phenology modifications [49], changes
in area suitability for cultivation [50], impacts on crops’ adaptive capacity [51], declining
variety suitability [15], cultivations’ expansion to higher altitudes and northern areas,
increased frequency of crops’ vulnerability (elevated heat injuries) [44,52], and rural areas’
negative socio-economic evolution [53].

A thorough understanding and better capture of the phenomenon of bioclimatic
change is justifiably demonstrated by the very common utilization of bioclimatic indices
(mathematical formulas based on fundamental climatic parameters such as temperature
and precipitation) as tools for the climate’s characterization in various surveys of different
scientific fields (e.g., climatology, bioclimatology, forestry, agricultural surveys, investiga-
tions on climate/bioclimate change) [15,54–70].

Temperature and precipitation are decisive climatic inputs for the exploration of
CC, but the utilization of bioclimatic indices allows a more thorough understanding and
better capture of the phenomenon’s dimension in bioclimatic terms [71]. By exploiting the
indices’ values, the assessment of the effects of climate on vegetation and the environment’s
correlation with the predominating vegetation types is more feasible [72,73].

Based on fundamental climatic parameters (temperature, precipitation, and evapo-
ration), the Emberger index (IEMB), commonly termed the pluviothermic quotient (Q),
classifies the bioclimate zones in the Mediterranean area according to a scheme extending
from the “Per-Humid” to “Per-Arid” characterization (or bioclimatic type, bioclimatic
category). For the index’s estimation, the temperature is represented, on an annual basis, by
the average value of the maximum temperatures of the hottest month (M) and the average
value of the minimum temperatures of the coldest month (m), given that vegetation devel-
opment is strictly associated with these thermal limits. The precipitation (P) is expressed
by its annual values, and evaporation is indirectly represented by (M—m), considering the
parameter’s common increase with the latter difference [54,73,74]. Concomitantly, for the
phytoclimatic classification in bioclimatic subtypes (or Q2 classes), Emberger also utilized
a simplified algorithm on the basis of the minimum winter temperature (m) extending
from the “Very Hot” to the “Very Cold” temperature characterization [74,75]. As such, the
phytoclimatic conditions’ mapping is conducted through the combination of the charac-
terizations of the bioclimatic types as obtained from the estimates of the Q values and the
temperature conditions corresponding to the estimates of the m values, which results in the
Q2 bioclimatic subtypes (e.g., a Q2 subtype described as “sub-humid with mild winter”).

In Europe, the IEMB has been applied for the classification of the bioclimate [76,77],
for investigations on the vegetation’s dissemination [75,78], for surveys on the preserva-
tion (conservation, restoration, habitat suitability) of landscapes [10,63,73,79–82], and for
research on the risk of desertification [10] and on changes of the bioclimatic regime [83,84].
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For Greece, in particular, very limited investigations on the changes in the bioclimate
have been conducted based on applications of the IEMB. Up to the present, researchers
have conducted bioclimatic classifications at a very local scale involving surveys on fires
and wildfire risk assessment [85–87], the bioclimatic classification of natural vegetation
environments [88], reforestation potential, restoration and conservation of natural land-
scapes [10,88–91], plant diversity [92–95], land cover change [96], and environmental
monitoring and management of water resources and water quality parameters [97,98]. The
IEMB has also been applied in investigations concerning the effects of climatic factors on
the fuel complex characteristics of the pine forests and on the fire activity patterns in natural
vegetation formations in Greece [31,87].

Within the changing climate’s research framework, the overview of previous investi-
gations demonstrates the very limited applications of the IEMB as a tool for bioclimatic
classification (mostly conducted at the local scale) and for predictions on the future of
Greece’s bioclimatic regime under the influence of CC.

The originality of the current research lies in the high-resolution computation (approx-
imately 300 m) of the Emberger index’s Q1 and Q2 classes of bioclimatic characterization,
which are analyzed and illustrated for the first time in order to capture the present bio-
climatic regime and its future evolution in a particularly extensive area represented by
the entire country of Greece. This mapping material, along with the spatial statistics per
phytogeographical region, could be a reference dataset for ecological, agricultural, and
natural conservation applications and research.

The more detailed outcomes on the country’s bioclimatic alteration drawn from this
study might serve as an exhortation to implement advanced technologies for their suc-
cessful preservation under the future status of an altered climate. Additionally, results for
the phytogeographical regions of Greece [99] will support decision-making for targeted
future research and resource allocation to enhance conservation management for habitats
and species (in natural and anthropogenic, human-induced, cultural ecosystems) found in
these areas.

2. Materials and Methods
2.1. Study Area

The Greek Peninsula, situated at the heart of the Mediterranean, covers a total area
of 131,957 km2 which occupies the southernmost expansion of the Balkans. The main-
land represents 80% of the land area, while a vast number of approximately 3000 islands
constitute the residual 20%. Lowland areas, particularly along its extensive coastline, char-
acterize almost a quarter of the country’s surface. Natural areas (rugged mountains, forests,
and lakes) dominate the Greek mainland landscape, while agricultural areas appear to be
less expanded.

Vast forested mountain formations (Rhodope Mountains) stretch along the Greece–
Bulgaria border, extend from the Greece–Albania border to the Corinthian Gulf (Pindos
Mountain range), continue in the Peloponnese geographical area (Teygetos Mountain
range), and reappear in Crete (Dikti and White Mountains or Lefka Ori and the Idi Mountain
range). These mountain ranges encircle fertile agricultural lands across mainland Greece
(e.g., Thessaloniki Plain, Thessaly Plain, northern and western Peloponnese plains, and
central Crete). A great number of the islands also demonstrate natural vegetation of
incomparable specificity and variability. Therefore, it can be seen that given its natural
geography and position, Greece is governed by considerable climate variation.

Greece is one of the most diverse countries in terms of flora species, hosting 6811 taxa,
including 1144 Greek endemics and 1553 range-restricted [100–103], distributed among
13 well-distinguished phytogeographical regions (Strid and Tan 1997). The 13 phyto-
geographical regions of Greece (Figure 1) separate the Greek territory in the parts of
Peloponnisos (Pe), North Central (NC), East Aegean Islands (EAe), Ionian Islands (IoI),
East Central (EC), Kriti and Karpathos (KK), North Aegean Islands (NAe), Kiklades (KiK),
West Aegean Islands (WAe), North East (NE), Southern Pindos (SPi), Sterea Ellas (StE), and
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Northern Pindos (NPi), according to Strid and Tan [99]. The species found in each region
renders its particular characteristics; in Table 1, the number of total species, endemics, and
range-restricted species for each region are presented.
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Figure 1. The phytogeographical regions of Greece as defined by Strid and Tan (1997) [46]. Pelopon-
nisos (Pe), North Central (NC), East Aegean Islands (EAe), Ionian Islands (IoI), East Central (EC),
Kriti and Karpathos (KK), North Aegean Islands (NAe), Kiklades (KiK), West Aegean Islands (WAe),
North East (NE), Southern Pindos (SPi), Sterea Ellas (StE), and Northern Pindos (NPi).

Table 1. Distribution of species and sub-species (total, endemic, range-restricted) in the 13 phytogeo-
graphical regions of Greece [47].

Number NE NC StE Pe SPi NPi EAe EC KK WAe NAe IoI Kik

Species and subspecies (total) 4440 4215 4169 4046 3502 3456 3087 2685 2679 2658 2558 2489 2206

Endemics 166 203 399 522 156 150 182 104 426 226 71 94 191

Range-restricted 414 468 519 577 301 355 292 171 423 250 99 113 197

2.2. Data and Methods

The WorldClim dataset [104], which has been used for various research topics, includ-
ing ecology and agriculture from a climatic point of view [105–112], is the atmospheric
dataset source for this study. More specifically, for future projections, we use the Met
Office Hadley Centre HadGEM3-GC31-LL model results. From the initial resolution of
~1 km, we downscaled statistically (utilizing altitude, latitude, and Euclidean distance from
the shoreline) the temperature parameters to ~250 m resolution with the SpatialEco [113]
R language package. The precipitation data was resampled via the bilinear method to
the same resolution. For the calculations and the mapping, the Tidyverse [114] package,
especially dplyr [115] and gglot2 [116], along with the terra [117] geospatial R package,
were used (Figure 2).
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Figure 2. The performed analysis process.

The variability of the IEMB is studied over the reference period (Ref: 1970–2000) and
two future time periods (p1: 2021–2040; p2: 2041–2060), computed at a high resolution of
approximately 300 m under the RCP4.5 and RCP8.5 emission scenarios. The short-term
and long-term bioclimatic change trends are targeted by approaching the main differences
between the present and the future bioclimate regime.

The metric exploited for the evaluation of the bioclimate is the Emberger index,
frequently characterized as the aridity of the bioclimate index. It is easy to apply, and it can
be distinguished between two different levels. The first refers to the pluviothermic quotient
(pluvio = rainfall):

Q1 =
2000 × P
M2 − m2

(1)

where
P is the annual precipitation,
M is the maximum air temperature of the hottest month (in K),
m is the minimum air temperature of the coldest month (in K).
According to the value of the Q1 quotient, the bioclimate can be characterized as

presented in Table 2.

Table 2. Emberger Q1 classification and the related bioclimatic characterization.

Emberger Q1 Class Bioclimatic Characterization

Q1 > 170 Per-Humid (PeHu)

120 < Q1 ≤ 170 Humid (Hu)

65 < Q1 ≤ 120 Sub-Humid (SuHu)

30 < Q1 ≤ 65 Semi-Arid (SeAr)

17 < Q1 ≤ 30 Arid (Ar)

0 < Q1 ≤ 17 Per-Arid (PeAr)

The next level of the Emberger index combines the Q1 with the mean minimum air
temperature of the coldest month, as shown in Table 3 and Figure 3.
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Table 3. The m (mean minimum temperature of the coldest month) classification and the related char-
acterization.

Mean Minimum Temperature of the Coldest Month (m) in ◦C Temperature Characterization

m > 10 ◦C Very Hot (VHo)

7 ◦C < m ≤ 10 ◦C Hot (Ho)

3 ◦C < m ≤ 7 ◦C Temperate (Te)

0 ◦C < m ≤ 3 ◦C Cool (Co)

−3 ◦C < m ≤ 0 ◦C Cold (Cd)

m ≤ −3 ◦C Very Cold (VC)
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values (mean minimum values of the coldest month).

The final characterization of the Q2 is the combination of the Q1 and the m, as dis-
played in Table 4. For example, when calculating the Q1 as 4 and the m as 5, the Q2
classification is characterized by the ‘Per-Arid Temperate (PeAr-Te)’ class.
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Table 4. The Q2 classes and their abbreviations *.

Very Hot
(VHo)
m > 10

Hot
(Ho)

7 < m ≤ 10

Temperate
(Te)

3 < m ≤ 7

Cool
(Co)

0 < m ≤ 3

Cold
(Cd)

−3 < m ≤ 0

Very Cold
(VCd)

m ≤ −3

Per-Arid (PeAr)
0 < Q1 ≤ 17 PeAr-VHo PeAr-Ho PeAr-Te PeAr-Co PeAr-Cd PeAr-VCd

Arid (Ar)
17 < Q1 ≤ 30 Ar-VHo Ar-Ho Ar-Te Ar-Co Ar-Cd Ar-VCd

Semi-Arid (SeAr)
30 < Q1 ≤ 65 SeAr-VHo SeAr-Ho SeAr-Te SeAr-Co SeAr-Cd SeAr-VCd

Sub-Humid (SuHu)
65 < Q1 ≤ 120 SuHu-VHo SuHu-Ho SuHu-Te SuHu-Co SuHu-Cd SuHu-VCd

Humid (Hu)
120 < Q1 ≤ 170 Hu-VHo Hu-Ho Hu-Te Hu-Co Hu-Cd Hu-VCd

Per-Humid (PeHu)
170 < Q PeHu-VHo PeHu-Ho PeHu-Te PeHu-Co PeHu-Cd PeHu-VCd

Note: * The background colors are the same as the Q2 classes inside maps.

3. Results and Discussion
3.1. Reference Period 1970–2000

For the reference period (1970–2000) (henceforth Ref), the presented pluviothermic
quotient Q1 map’s classification (Figure S1) demonstrates the Emberger’s main bioclimate
types’ characterization by four classes (PeHu, Hu, SuHu, and SeAr), reflecting a transition
toward drier conditions from the west to the east of the country. The resulting percentage
area estimations of the Q1 classes’ % coverage per phytogeographical region reveal the
predominance of the SuHu class over the East Aegean Islands (EAe) (approximately 99%),
followed mainly by Peloponnisos (Pe) (88%), Sterea Ellas (StE) (84%), Kriti and Karpathos
(KK) (75%), Southern Pindos (SPi) (70%), Northern Pindos (NPi) (64%), and the North
Central (NC) (51%) (Figure S2, Table S1).

According to the presented map’s classification (Figure 4), all four Q1 classes are
combined with temperature conditions ranging from the Te to the VCd characterization (the
additional designation Ho appears only for the SuHu and SeAr types). These combinations
result in a great number of bioclimatic sub-categories (18 in total).

At this point, it must be underlined that the Q2 classes’ presentation in the legends but
not in the spatial distribution maps (e.g., Figure 4) and percentage (%) relative surface per
geographical zone charts (e.g., Figure 5) is attributed to the resulting classes’ very limited
(%) coverage values.

Overall, the resulting Q2 classes’ relative % coverage per phytogeographical region
(Figure 4 and Table S6) shows dominant distributions among the SeAr-Te (74% over Kik-
lades (KiK) and 44% for the West Aegean Islands (WAe)), the SuHu-Te (68% for EAe and
57% for Pe), the SuHu-Co (67% for the North Aegean Islands (NAe)) and the SuHu-Cd
(36% over NC). The more humid Hu category also appears, mainly falling within the
temperature conditions of Te (50% in the Ionian Islands (IoI)), Co (31% in IoI), and Cd (22%
in NPi and 19% in SPi).
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3.2. Emissions Scenario RCP4.5 for the 2021–2040 Time Period

In comparison with the Ref (1970–2000) (Figure 4), classifications of the Q1 for the
2021–2040 timeframe (henceforth P1) under the RCP4.5 scenario reveal distributions among
the same bioclimate types (PeHu, Hu, SuHu, and SeAr) (Figure S3). However, xerothermic
trends are already evident in this relatively short-term period, given the % coverage
favoring the SeAr and SuHu classes in contradiction to the distribution decrease in the
Hu and PeHu classes. The drier and warmer bioclimatic conditions of the SeAr class are
expected to spatially expand (Figure S4 and Table S2), mostly over the phytogeographical
regions of the North East (NE) (from 68% in the Ref to 84%) and the North Aegean Islands
(NAe) (from 58% to 68%). This is also the case for the SuHu class, which appears more
distributed over the Northern Pindos (NPi) and Southern Pindos (SPi) (64% to 75% and
70% to 82%, respectively).

The drying and warming trend over the Greek territory is already evident from the first
period of the less influential RCP4.5 scenario. With respect to the Ref, Figure 5 demonstrates
that, in the short run, additional xerothermal conditions may influence mainly southern
Greece (e.g., the SeAr-VHo in KK). Comparisons of the outcomes on the Q2 classes’ relative
% coverage per phytogeographical region in P1 (Figures 6 and 7 and Table S7) with the
respective in the Ref (Figure 4 and Table S6) reveal significant increases in the SeAr-Ho
subtype for the KK region (11% in Ref to 27% in P1) and majorly for the KiK region (1% in
Ref to 64% in P1). Also, the EAe, NAe, WAe, and NE regions are foreseen to experience
substantial dry–thermal changes owing to the spatial increases of the SeAr-Te (e.g., 0.6% to
nearly 10% for the EAe, 3% to 59% for the NAe, 44% to 68% for the WAe, 0% to 35% for the
NE). A notable increase is also exhibited for the SuHu-Ho category over the EAe region
(from 8% in Ref to 38% in P1).
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3.3. Emissions Scenario RCP4.5 for the 2041–2060 Time Period

As illustrated in Figure S5, outcomes on the 2nd investigated period (henceforth P2)
of the RCP4.5 demonstrate the possible existence in the long run of the four Q1 main
classes (PeHu, Hu, SuHu and SeAr), which also occur for the Ref and P1 (Figures S1 and
S3, respectively). With reference to the latter periods, an important % coverage decrease in
the Hu type is documented for, e.g., the IoI phytogeographical region (65% in Ref to 53%
in P1 and 27% in P2) in favor of the less humid SuHu class (35% in Ref to 47% in P1 and
73% in P2). In comparison with the Ref, more xerothermic conditions are exhibited due to
significant increases resulting for the SeAr type over the NE (from 68% in Ref to 90% in P2),
the NC (49% to 69%), and the NAe (58% to 79%) phytogeographical regions.

Overall, a more intense dry–thermal trend is documented for the P2 of the RCP4.5
compared with the P1 and the Ref. Although distributed among the same Q2 classes
(Figures 8 and 9 vs. Figures 4 and 6), the bioclimate is now characterized also by the
warmer SuHu-VHo while the PeHu-VCd occurring in the previous RCP4.5 timeframes is
now out of the picture. In addition, with reference to the preceding time periods (Ref and
P1), 19% coverage of the SeAr-VHo class occurs for the first time in the KK region. A more
than tenfold % increase in the SeAr-Ho is also documented in the WAe region (0.8% in P1
to 12% in P2). Furthermore, an apparent more dry–thermal evolution is illustrated due to
the presence of the SeAr-Te bioclimate, which now appears to influence greater areas of the
NAe region (3% in Ref to 59% in P1 and 75% in P2) and the NE region (35% in P1 to 49%
in P2).



Water 2024, 16, 2070 11 of 22Water 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 8. Spatial distribution of the Emberger Q2 classes for the RCP4.5 scenario and 2041–2060 

period over the phytogeographical regions of Greece. 

 

Figure 9. Q2 classes’ relative surface (1 = 100%) per phytogeographical region for the RCP4.5 sce-

nario and 2041–2060 period. 

Figure 8. Spatial distribution of the Emberger Q2 classes for the RCP4.5 scenario and 2041–2060 period
over the phytogeographical regions of Greece.

Water 2024, 16, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 8. Spatial distribution of the Emberger Q2 classes for the RCP4.5 scenario and 2041–2060 

period over the phytogeographical regions of Greece. 

 

Figure 9. Q2 classes’ relative surface (1 = 100%) per phytogeographical region for the RCP4.5 sce-

nario and 2041–2060 period. 

Figure 9. Q2 classes’ relative surface (1 = 100%) per phytogeographical region for the RCP4.5 scenario
and 2041–2060 period.



Water 2024, 16, 2070 12 of 22

3.4. Emissions Scenario RCP8.5 for the 2021–2040 Time Period

Under the RCP8.5, the Emberger Q1 classifications for the P1 (2021–2040) exhibit
almost identical spatial patterns (Figure S7) with the P2 (2041–2060) of the RCP4.5 scenario
(Figure S5). This similarity pinpoints the crucial role of the more extreme RCP8.5 by
considering the notable advancement of its bioclimatic negative impacts. As already
demonstrated for the P2 of the RCP4.5, the same bioclimate types (PeHu, Hu, SuHu, and
SeAr) are now evident, while significant increases also result for the SeAr type over the NE
(68% in Ref to 88%), the NC (49% to 64%), and the NAe (58% to 76%) phytogeographical
regions. Similarly to the P2 of the RCP4.5, a significant % coverage increase in the less
humid SuHu type (35% in Ref to 67%) at the expense of the Hu type (65% in Ref to 33%)
results for the region of the Ionian Islands (IoI).

For this examined case, similarities with the P2 of the RCP4.5 on the characterization
of the bioclimate resulting in the same 20 Q2 classes are also demonstrated (Figure 10 vs.
Figure 8). Related results on the % Q2 classes coverage per phytogeographical regions are
also evident under the RCP8.5 (Figure 11 vs. Figure 9 and Table S9 vs. Table S8). A few
exceptions, however, involve more limited occurrences, mainly of the SeAr-VHo (8% in the
P1 of the RCP8.5 vs. 19% in the P2 of the RCP4.5 over the KK), the SeAr-Ho (e.g., 1.3% vs.
13% for the EAe, 1.2% vs. 12% for the WAe), and the SeAr-Te classes (65% vs. 75% for the
NAe and 33% vs. 49% for the NE). Concomitantly, more extensive % coverage occurs as
displayed for the SeAr-Te conditions over the KiK phytogeographical region (24% vs. 12%).
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3.5. Emissions Scenario RCP8.5 for the 2041–2060 Time Period

The more intensified drying and warming of the Greek bioclimate is clearly demon-
strated over the P2 (2041–2060) of the RCP8.5 scenario. In this case, three Q1 categories are
distinguished (Hu, SuHu, and SeAr) since the most humid PeHu bioclimatic type is now
absent for the first time (Figure S9). On the contrary, an increase in the % coverage of the
most arid SeAr class is exhibited over all the phytogeographical regions with respect to all
previous cases (e.g., Figure S10 vs. Figure S8 and Table S5 vs. Table S4). When compared
with the reference period, most impacted phytogeographical regions by the SeAr conditions
include the NC (from approximately 49% in the Ref to 74% in the P2 of the RCP8.5), NE
(68% to 93%), NAe (58% to 81%), WAe (56% to 76%), KiK (67% to 81%), EC (29% to 42%),
and the StE (11% to 20%).

With reference to the P1 of the RCP8.5 (Figure 12 vs. Figure 10), the appearance
for the first time of the Ar-VHo Q2 subtype (almost 1% coverage over the KK region)
(Figure 13 and Table S10) and the concomitant absence of the PeHu-Te may justify more
intense xerothermic trends. The present case results as the most influential by accounting
the substantial spatial pattern evolution of the more dry–thermal Q2 classes and mainly of
the Ar-Ho (from 0.7% in the P1 of the RCP8.5 to 29% over the KiK), the SeAr-VHo (8% to
30% over the KK), the SeAr-Ho (1.2% to 26% in the WAe), and the SeAr-Te (e.g., 33% to 56%
in the NE; 19% to 31% in the NC).
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3.6. Management Implications

The study findings render significant bioclimatic changes throughout Greece. Espe-
cially the expansion of the Arid-Hot, Semi-Arid–Very Hot, Semi-Arid–Hot, and Semi-Arid–
Temperate Q2 classes, respectively, over the phytogeographical regions of Kiklades (up to
29% occupation), Kriti and Karpathos (up to 30%), West Aegean Islands (up to 26%), North
East (up to 56%), and North Central (up to 31%), by 2060 (RCP8.5), highlights a severe
threat to flora species and vegetation, especially in the island regions and in the mountain
tops (the “escalator to extinction” phenomenon). Findings from the RCP8.5 long-term
scenario support that the east part of Greece will have a more dry–thermal bioclimate, thus
threatening spatial shifts or even the extinction of species and vegetation communities (see,
e.g., [38,118,119]). Our findings on the impact of CC on Greece’s phytogeographical regions
extend to the alteration of phenological events. Phenology, the study of periodic plant
and animal life cycle events, is highly sensitive to climate changes. For instance, earlier
flowering of plants can disrupt the synchrony between plants and their pollinators, affect-
ing pollination success and, consequently, plant reproduction [120]. Grillakis et al. [120]
emphasize that the earlier flowering of olive trees in Crete due to CC can have significant
implications for olive production and the broader ecosystem.

One of the critical areas affected by bioclimate change in Greece is documented at
the Chelmos-Vouraikos National Park, a regional biodiversity hotspot in the northern
part of the phytogeographical region of Peloponnisos (Pe); the study by Kougioumoutzis
et al. [121] highlights the significant impacts of climate and land-cover change on rare and
endemic species distributions within this park. The study emphasizes that changes in
temperature and precipitation patterns, coupled with human-induced land-cover changes,
pose substantial risks to the survival of these species. Using extinction risk assessment
models to predict the future viability of these taxa under various climate scenarios, the
researchers found that many species may face increased extinction risks unless proactive
conservation measures are implemented.

Additionally, we should note that the conservation of Mediterranean phytogeographi-
cal diversity in areas like the island of Crete, included in the phytogeographical region of
Kriti and Karpathos (KK), is closely linked to traditional land use practices. Siebert [122]
argues that maintaining traditional cultivation and livestock grazing practices is crucial
for preserving the mosaic of habitats supporting high biodiversity levels. These practices
help maintain the structural complexity and heterogeneity of the landscape, which are vital
for supporting diverse plant communities. The abandonment of traditional agricultural
practices, driven by socio-economic changes, poses a threat to this biodiversity, as it leads
to habitat homogenization and the loss of species adapted to these traditional land-use
systems [122].

In peri-urban areas, such as the forests surrounding the city of Thessaloniki, belonging
to the phytogeographical region of North East (NE) Greece, the change of the bioclimate
and the anthropogenic activities have led to significant degradation of phytogeographical
quality. Petaloudi et al. [123] report that forest fragmentation, pollution, and the presence
of garbage have varying degrees of negative impacts on forest ecosystem types. The
study highlights that different forest ecosystems within the peri-urban area exhibit varying
levels of degradation and biodiversity status, with some areas showing considerable
declines in species diversity and forest health. This degradation is exacerbated by the
increasing urban heat island effect and changing precipitation patterns, which further stress
these ecosystems.

Agroecosystems in regions like East Attiki Prefecture, belonging to the phytogeograph-
ical region of Sterea Ellas (StE), play a crucial role in preserving plant diversity. Spanou
et al. [124] explore the phytogeographical and vegetation diversity within these agroe-
cosystems, finding that they significantly contribute to the area’s overall plant diversity.
These systems can serve as vital reservoirs of biodiversity, supporting a wide range of
plant species that are adapted to specific agricultural practices. The study underscores the
importance of integrating biodiversity conservation into agricultural land management
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to ensure the sustainability of these ecosystems, which can be significantly altered by the
predicted shift in the bioclimate in the region.

The phenotypic diversity of certain species, such as Sideritis scardica in Northern
Greece (mainly in phytogeographical regions of NC and NE), is closely linked to the
phytogeographical composition of their habitats. Papaporfyriou et al. [125] found that
the presence of specific plant groups, like forbs, can favor the abundance and diversity of
Sideritis scardica populations, whereas high densities of graminoid and shrub species can
suppress their presence. This interaction between species highlights the complex dynamics
within plant communities and the importance of habitat composition in maintaining species
diversity [125], a condition that will be severely affected by predicted bioclimate shifts.

4. Conclusions

Bioclimate change, driven primarily by human activities, has significant and far-
reaching impacts on the floristic diversity of various regions. These impacts are particularly
pronounced in Greece, a country characterized by rich biodiversity and distinct ecolog-
ical zones. The following conclusions may summarize the innovative findings of the
present study.

Greece is projected to face drier and warmer conditions under both scenarios (RCP4.5
and RCP8.5).

It also appears that for both emission scenarios, the bioclimate of Greece temporar-
ily becomes more xerothermic given the resulting gradual drier and warmer transitions
between the studied timeframes (reference period: 1970–2000, 1st time period: 2021–2040
and 2nd time period: 2041–2060). Classifications of the Q1 type under the RCP4.5 scenario
reveal distributions among four bioclimate types (PeHu, Hu, SuHu, and SeAr) indepen-
dently of the examined time frame. Classifications of the Q2 subtypes (20 in total), however,
demonstrate the appearance of more xerothermic categories (Ar-Ho, SeAr-VHo, HuHo, and
SuHu-VHo), the spatial distributions of which are primarily evident during the investigated
long-term time period (2041–2060).

Under the RCP4.5, the phytogeographical regions, which appear mostly drier and
warmer in the more distant future (2041–2060), are almost entirely located in the right
half of the country. By 2060, under the RCP4.5 scenario, the SeAr-Te bioclimate type
is expected to dominate the NAe and WAe phytogeographical regions, while the more
xerothermic SeAr-Hot will influence most of the KiK region and parts of the WAe, StE, PE,
KK, EC, and EAe regions. It is also underlined that, even under the less influential RCP4.5,
even more adverse conditions of the SeAr-VHot class may be present in the KK and EC
regions. The same Emberger Q1 classifications in the 2021–2040 period of the extreme
RCP8.5 (4 bioclimate types: PeHu, Hu, SuHu, and SeAr) are demonstrated and exhibit
similar spatial distributions with the respective ones for the 2041–2060 period of the RCP4.5
scenario. The xerothermic trends’ similarity between these cases highlights the crucial role
of the more extreme RCP8.5 owing to the pronounced advancement of its impacts on the
investigated area’s bioclimate. Classifications of the Q2 fall within the aforenamed Ar-Ho,
SeAr-VHo, HuHo, and SuHu-VHo, forming once more the same types (also 20 in total) and
relatively similar spatial distributions per phytogeographical region with some exceptions
concerning the SeAr categories.

The most impactful is the 2nd period (2041–2060) of the RCP8.5 scenario, which is
projected to induce substantial drying and warming over the investigated area. Three
Hu, SuHu, and SeAr subtypes are determined, while an increase in the latter’s % cov-
erage (most xerothermic SeAr) is exhibited over all geographical zones. Concerning the
1970–2000 period, the areas most impacted by the SeAr conditions are the NC, NE, NAe,
WAe, KiK, EC, and the StE phytogeographical regions. As for the % spatial coverage of
the Q2 types, a small expansion of the Ar-VHo and the absence of the PeHu-Te both justify
more intense dry–thermal trends. The latter trends are clear given the significant spatial
evolution mainly of the Ar-Ho, SeAr-VHo, SeAr-Ho, and SeAr-Te classes, respectively, over
the KiK, KK, WAe, NE–NC regions, which is projected to occur by 2060 under the RCP8.5.
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It is evident that the long-term time period (2041–2060) of the extreme RCP8.5 scenario
exhibits the strongest dry–thermal trends over the eastern half of the Greek territory.
The alteration of the bioclimate can be characterized as one of the most tenacious and
pressing threats to the ecosystems over the Greek territory. Its impacts are expected to
pose substantial threats to the phytogeographical regions of Greece, impacting agriculture,
forest health, national parks and protected areas, urban environments, and phenological
events related to the now-established flora and vegetation. Our study highlights the need
for comprehensive strategies to mitigate and adapt to CC, urging decision-makers efforts
to focus on sustainable agricultural practices, forest management, urban planning, and
conservation of biodiversity to safeguard Greece’s rich floristic heritage and natural capital
in the face of a changing climate.
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