Biodiversity and Ecosystem Services in Rivers
1. Introduction
2. Main Messages of the Special Issue
3. Conclusions
- (i)
- understand the characteristics of the physical and biological processes occurring in the ecosystem;
- (ii)
- have a means for the assessment of threats to an ecosystem’s residents and to humans benefiting from it;
- (iii)
- quantify and valuate natural resources;
- (iv)
- incorporate the interests of all stakeholders into conservation planning;
- (v)
- account for future trends (natural, e.g., climate warming or technological, e.g., innovations);
- (vi)
- obtain support from appropriate authorities for the proper implementation of management objectives.
Funding
Conflicts of Interest
References
- Mcmillan, S.; Millington, P.; Olson, D.C. An Introduction to Integrated River Basin Management; Integrated River Basin Management Briefing Note; World Bank Group: Washington, DC, USA, 2006; Available online: http://documents.worldbank.org/curated/en/965371468340137430/An-introduction-to-integrated-river-basin-management (accessed on 1 June 2024). (In English)
- Yang, W.; Sun, T.; Yang, Z. Does the implementation of environmental flows improve wetland ecosystem services and biodiversity? A literature review. Restor. Ecol. 2016, 24, 731–742. [Google Scholar] [CrossRef]
- Gabrielyan, B.; Khosrovyan, A.; Schultze, M. A review of anthropogenic stressors on Lake Sevan, Armenia. J. Limnol. 2022, 81, 2061. [Google Scholar] [CrossRef]
- Guzelj, M.; Hauer, C.; Egger, G. The third dimension in river restoration: How anthropogenic disturbance changes boundary conditions for ecological mitigation. Sci. Rep. 2020, 10, 13106. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, Z.; Kavian, A.; Sadeghi, S.H.R.; Khosrovyan, A.; DelValls, A. Identifying environmental risk associated with anthropogenic activities in Zanjanrud River, Iran, using an integrated approach. Catena 2019, 183, 104156. [Google Scholar] [CrossRef]
- Su, G.; Logez, M.; Xu, J.; Tao, S.; Villéger, S.; Brosse, S. Human impacts on global freshwater fish biodiversity. Science 2021, 371, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evolut. 2011, 27, 19–26. [Google Scholar] [CrossRef]
- Lin, Z.; Wu, T.; Xiao, Y.; Rao, E.; Shi, X.; Ouyang, Z. Protecting biodiversity to support ecosystem services: An analysis of trade-offs and synergies in southwestern China. J. Appl. Ecol. 2022, 59, 2440–2451. [Google Scholar] [CrossRef]
- Roni, P.; Hanson, K.; Beechie, T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. N. Am. J. Fish. Manag. 2008, 28, 856–890. [Google Scholar] [CrossRef]
- Ingram, H. Water as a multi-dimensional value: Implications for participation and transparency. Inter. Environ. Agreem. Politics Law Econom. 2006, 6, 429–433. [Google Scholar] [CrossRef]
- Asatryan, V.; Vardanyan, T.; Barseghyan, N.; Dallakyan, M.; Gabrielyan, B. Experimental Validation of Suitability of a River for Natural Reproduction of Trout of Lake Sevan Using Egg Incubation. Water 2023, 15, 3993. [Google Scholar] [CrossRef]
- Osathanunkul, M.; Suwannapoom, C. Sustainable fisheries management through reliable restocking and stock enhancement evaluation with environmental DNA. Sci. Rep. 2023, 13, 11297. [Google Scholar] [CrossRef] [PubMed]
- Hasler, A.D. Orientation and Fish Migration. In Fish Physiology; Hoar, W.S., Randall, D.J., Eds.; Academic Press: Cambridge, MA, USA, 1971; Volume 6, pp. 429–510. [Google Scholar] [CrossRef]
- Gabrielyan, B.; Vardanyan, T.; Barseghyan, N.; Khosrovyan, A. Estimation of the Potential Wild Fish Stock Biomass to be Supported by Available Food Base in a Lake. Inland Water Biol. 2022, 15, 331–340. [Google Scholar] [CrossRef]
- Bonnail, E.; Vera, S.; Blasco, J.; DelValls, A.T. Towards a Cleaner Textile Industry: Using ASEC to Decrease the Water Footprint to Zero Liquid Discharge. Water 2023, 15, 3781. [Google Scholar] [CrossRef]
- Dallakyan, M.; Lipinskaya, T.; Asatryan, V.; Golovenchik, V.; Thormann, J.; von der Mark, L.; Astrin, J.J. Revealing Diversity in Gammarus (Amphipoda: Gammaridae) in the Freshwater Ecosystems of Armenia Using DNA Barcoding. Water 2023, 15, 3490. [Google Scholar] [CrossRef]
- Stange, M.; Barrett, R.D.H.; Hendry, A.P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet. 2021, 22, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Bertola, L.D.; Brüniche-Olsen, A.; Kershaw, F.; Russo, I.M.; MacDonald, A.J.; Sunnucks, P.; Bruford, M.W.; Cadena, C.D.; Ewart, K.M.; de Bruyn, M.; et al. A pragmatic approach for integrating molecular tools into biodiversity conservation. Conserv. Sci. Pract. 2023, 6, e13053. [Google Scholar] [CrossRef]
- Theissinger, K.; Fernandes, C.; Formenti, G.; Bista, L.; Berg, P.R.; Bleidorn, C. How genomics can help biodiversity conservation. Trends Genet. 2023, 39, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Blumfelde, M.; Gudra, D.; Zacs, D.; Vonda, K.; Zorza, L.; Selga, T.; Grinbergs, A.; Delina, A.; Bartkevics, V.; Fridmanis, D.; et al. Risks of Antibiotic Resistance Dissemination by Leachates from Municipal Landfills of Different Ages. Water 2023, 15, 3349. [Google Scholar] [CrossRef]
- European Commission. A European One Health Action Plan against Antimicrobial Resistance (AMR); European Commission: Brussels, Belgium, 2017; Available online: https://eur-lex.europa.eu/EN/legal-content/summary/a-european-one-health-action-plan-against-antimicrobial-resistance.html (accessed on 1 June 2024).
- Lindamulla, L.; Nanayakkara, N.; Othman, M.; Jinadasa, S.; Herath, G.; Jegatheesan, V. Municipal Solid Waste Landfill Leachate Characteristics and Their Treatment Options in Tropical Countries. Curr. Pollut. Rep. 2022, 8, 273–287. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Avalyan, R.; Atoyants, A.; Aghajanyan, E.; Hambaryan, L.; Aroutiounian, R.; Gabrileyan, B. Tradescantia-Based Test Systems Can Be Used for the Evaluation of the Toxic Potential of Harmful Algal Blooms. Water 2023, 15, 2500. [Google Scholar] [CrossRef]
- Liess, M.; Foit, K.; Knillmann, S.; Schafer, R.; Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 2016, 6, 32965. [Google Scholar] [CrossRef] [PubMed]
- Aghajanyan, E.A.; Avalyan, R.E.; Simonyan, A.E.; Atoyants, A.L.; Gabrielyan, B.K.; Aroutiounian, R.M.; Khosrovyan, A. Clastogenecity evaluation of water of Lake Sevan (Armenia) using Tradescantia micronucleus assay. Chemosphere 2018, 209, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zubcov, E.; Ene, A. Ecotoxicological Methodological Guide for Environmental Monitoring: Problematics, Laboratory Techniques and Health Risk Investigation. BSB27-MONITOX. 2021. Available online: https://blacksea-cbc.net/images/e-library/BSB27_MONITOX_-_Ecotoxicological_methodological_guide_for_environmental_monitoring_EN.pdf (accessed on 1 June 2024).
- Avalyan, R.E.; Aghajanyan, E.A.; Khosrovyan, A.; Atoyants, A.L.; Simonyan, A.E.; Aroutiounian, R.M. Assessment of mutagenicity of water from Lake Sevan, Armenia with application of Tradescantia (clone 02). Mutat. Res./Fundam. Mol. Mech. Mutagen. 2017, 800–802, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Pakshirajan, K.; Chaturvedi, R. Chromium (VI) accumulation and tolerance by Tradescantia pallida: Biochemical and antioxidant study. Appl. Biochem. Biotechnol. 2014, 173, 2297–2306. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Aghajanyan, E.; Avalyan, R.; Atoyants, A.; Sahakyan, L.; Gabrielyan, B.; Aroutiounian, R. Assessment of the mutagenic potential of the water of an urban river by means of two Tradescantia-based test systems. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2022, 876–877, 503449. [Google Scholar] [CrossRef] [PubMed]
- Bonnail, E.; Vera, S.; Blasco, J.; Conradi, M.; DelValls, A.T. Metal Pollution and Mining in the Iberian Pyrite Belt: New Remediation Technologies to Improve the Ecosystem Services of the River Basins. Water 2023, 15, 1302. [Google Scholar] [CrossRef]
- Key, T.A.; Sorsby, S.J.; Wang, Y.; Madison, A.S. Framework for field-scale application of molecular biological tools to support natural and enhanced bioremediation. Front. Microbiol. 2022, 13, 958742. [Google Scholar] [CrossRef] [PubMed]
- Boopathy, R. Factors limiting bioremediation technologies. Bioresour. Technol. 2000, 74, 63–67. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosrovyan, A. Biodiversity and Ecosystem Services in Rivers. Water 2024, 16, 2091. https://doi.org/10.3390/w16152091
Khosrovyan A. Biodiversity and Ecosystem Services in Rivers. Water. 2024; 16(15):2091. https://doi.org/10.3390/w16152091
Chicago/Turabian StyleKhosrovyan, Alla. 2024. "Biodiversity and Ecosystem Services in Rivers" Water 16, no. 15: 2091. https://doi.org/10.3390/w16152091
APA StyleKhosrovyan, A. (2024). Biodiversity and Ecosystem Services in Rivers. Water, 16(15), 2091. https://doi.org/10.3390/w16152091