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Abstract: Surfactant-Enhanced Remediation is increasingly being recognized for its exceptional
effectiveness in eliminating non-aqueous phase liquids in soil. A comprehensive knowledge of
the technique is essential for its field application. This paper provides a thorough examination of
Surfactant-Enhanced Remediation incorporating insights based on the most recent advancements.
Firstly, the fundamental process and major mechanisms that underpin the technology were summa-
rized, including mobilization, solubilizing, and emulsifying. Secondly, the improvements achieved
by using surfactants in soil remediation, through chemical, physical, and biological methods, have
been elucidated through theoretical explanations and practical case studies. Thirdly, the risks and
other limitations of Surfactant-Enhanced Remediation were discussed with an outlook for future
development. This review aims to promote understanding of the effectiveness and risks holistically
in field implementation of the technique.

Keywords: non-aqueous phase liquid; surfactants; mechanisms; soil remediation

1. Introduction

The contamination of soils by organic compounds is becoming an urgent global
concern with the development of industrialization [1]. Organic pollutants are mostly
soluble but non-aqueous phase liquids (NAPLs) are distinct due to their volatility, toxicity
and insolubility in water [1–3]. Considering the relative densities to water, NAPLs can be
categorized into light non-aqueous phase liquids (LNAPLs) and heavy non-aqueous phase
liquids (DNAPLs). With a density lower than water, LNAPLs are primarily composed
of hydrocarbon compounds such as gasoline, diesel, kerosene, aromatic hydrocarbons,
and short-chain alkanes. DNAPLs, on the other hand, notably include Trichloroethylene,
Perchloroethylene, Trichloroacetic acid, Chlorophenols, Chlorobenzenes, coal tar and other
highly toxic chlorinated organic substances. Toxic and chemically stable, NAPLs can
infiltrate, migrate, and interact with the soil matrix or become trapped within the soil’s pore
spaces acting as a persistent source of contamination [4,5]. Resistant to natural degradation,
NAPLs tends to accumulate and disrupt soil functionality, posing a significant risk to the
environment as well as to human health [6,7].

A variety of techniques [8] have been proposed to solve the contamination prob-
lem of soil and groundwater, including Permeable Reactive Barriers, bioremediation, Air
Stripping, and the Pump and Treat (P&T) technique; of which, P&T is the most common
approach. However, traditional P&T is not effective for NAPL remediation due to their low
solubility and low mobility. As an improvement to P&T [9], Surfactant-Enhanced Reme-
diation (SER) was proposed, which involves the injection of water containing surfactants
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into the subsurface aquifer. With the aid of SER, the duration of P&T has been notably
shortened while its effectiveness towards NAPLs has been amplified [10,11]. Surfactants
are a class of amphiphilic substances renowned for their distinctive surface activity, which
pose a unique dual-phase molecular structure, featuring a hydrophilic head and a lipophilic
tail [12,13]. As shown in Figure 1, the hydrophilic head of surfactants integrates into the
aqueous phase by interacting with water molecules, while their hydrophobic tails engage
with nonpolar or weakly polar solvents, allowing them to be incorporated into the oil
phase [14,15]. This dual interaction positions surfactants at the oil–water interface, displac-
ing some water or oil molecules, reducing intermolecular forces, and thereby forming a
stable monolayer and decreasing interfacial tension. As surfactant concentration in the
solution rises, so does the adsorption at the interface, which in turn lowers the tension.
Since capillary forces restrict the mobility of NAPLs, the mobilized contaminants can then
be recovered in a P&T extraction well. Once the surfactant concentration surpasses the
critical micelle concentration (CMC), the adsorption plateaus. Beyond CMC, hydrophobic
tails of surfactant molecules self-assemble to form aggregates within the solution, known
as micelles. Micelles are spherical or ellipsoidal structures that have their hydrophobic
tails oriented inward and their hydrophilic heads facing outwards towards the water. This
configuration endows great importance on hydrophilic heads which are often comprised of
polar groups. Based on the hydrophilic head groups, surfactants can be classified into non-
ionic surfactants [16], anionic surfactants [17], cationic surfactants [18], gemini surfactants
and special surfactants [19,20].
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Figure 1. Schematic of Interfacial Tension Dynamics with Surfactant Concentration at the Molecular Level.

A variety of surfactants have been extensively investigated in SER, including sodium
dodecyl benzene sulfonate (SDBS), Tween-80®, sodium dodecyl sulfate (SDS), hexade-
cyltrimethylammonium bromide (CTMAB), polyoxyethylene(10)octylphenyl ether(TX-100),
cocamidopropyl hydroxysultane (CAHs) and polyethoxylate lauryl ether (Brij35) [21]. The
mechanism underlying SER of NAPL contamination can be primarily categorized into
solubilizing effect [22], mobilization effect [23] and emulsification [24]. The dominant mech-
anism varied with different types of NAPLs. The solubilization effect is often predominant
in the remediation of DNAPLs, whereas the mobilization effect mostly plays the key role in
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the remediation of LNAPLs contamination. For example, the ratio of mobilized to solubi-
lized oil in the porous rock was reported [25] to be 6:1 using n-Dodecyl β-D-maltoside as
surfactant. A thin layer of surfactant formed and reached saturation relatively fast, which
led to a reduction of the interfacial energy which favors the formation of microemulsions
that promote the mobilization of NAPLs. However, the introduction of surfactants into an
aquifer can also trigger complications and risks. Following the diminution of interfacial
tension, unstable DNAPLs are subject to continued migration influenced by gravitational
forces, hydrodynamic pressures, and capillary action, which may lead to an expansion of
the contaminated area, thereby risking the contamination of previously unpolluted aquifer
regions. Comprehending the mechanisms, risk, and state-of-the-art techniques is essential
for the implementation of effective containment strategy. A systematic exposition of the
mechanisms underpinning SER technology was reviewed followed by the examination
of the synergistic applications of SER with other soil remediation methods. This paper
then concluded with an analysis of the potential risks and other issues constraining the
commercialization of SER in soil remediation.

2. Mechanisms of Surfactant-Enhanced Remediation Technologies

The mechanisms of Surfactant-Enhanced Remediation of NAPL-contaminated sites
are primarily categorized into mobilization, emulsification, and solubilization, as depicted
in Figure 2. Mobilization, which reduces the interfacial tension between NAPLs and water,
thereby promoting the mobility and migration of NAPLs in porous media; emulsification,
generating fine NAPL droplets stabilized by surfactant molecules, thus improving their
dispersion in water; and solubilization, encapsulating hydrocarbon chains within micelles
to increase the water solubility of non-aqueous solvents. The synergistic action of these
mechanisms facilitates NAPLs elimination and biodegradation processes.
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2.1. Mobilization

The mechanism of the mobilization effect involves surfactant forming an adsorption
layer at the water-NAPLs interface as shown in Figure 3. This reduces the interfacial
tension between the water and NAPL phases, diminishing the capillary resistance within
the porous media. Consequently, the stable DNAPLs are mobilized, migrating with the
water flow in a liquid state. The ability of surfactant to reduce the oil–water interfacial
tension determines the effectiveness of surfactant on the mobilization of NAPLs [26].
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To assess the critical conditions for the movement of NAPLs, Penell [27] proposed
to use the total trapping number NT to describe the state of NAPLs in porous media, as
shown in the schematic diagram of the pore retention model in Figure 4 below.
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√
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NCA =
qwl µw

σowcos θ
(2)

NB =
∆ρgkkrw

σowcos θ
(3)

in which NCA is the capillary number defined in terms of the aqueous flow component in
the direction of the pore. NB is the bond number representing the ratio of the buoyancy
to capillary forces. σow is the interfacial tension between the oil and water phases. qwl

denotes the Darcy velocity of the water phase in the l direction. The angle α is measured
between the flow and the positive x-axis (counterclockwise). The absolute permeability
of the porous medium is characterized by k, while krw denotes the relative permeability
to the aqueous phase. The dynamic viscosity of the aqueous phase is µw. ∆ρ signifies the
difference between the density of water and the density of organic liquid, and θ is the
contact angle.

The aforementioned equation quantitatively illustrated the mechanical equilibrium of
gravity, viscous force, and capillary force on NAPLs in the pore space, while the generation of
the mobilization effect is related to the capillary number (NCA), capillary force, buoyancy force,
and viscous force. When NT exceeds a critical threshold, the NAPLs exhibit a mobilization
effect [27]. The introduction of surfactants notably diminishes the interfacial tension between
the oil–water phases. Concurrently, an increase in both NB and NCA facilitates the surpassing
of the critical threshold of NT. When NCA is elevated, the viscous force becomes predominant,
leading to a decrease in the interfacial tension within the fluid at the pore scale. In instances
where the viscous force exceeds the capillary force, the mobility of NAPLs is significantly
augmented [29,30]. Based on the total capture number NT concept, Andrew et al. [31]
produced migration potential maps showing how mixtures of composite multiple NAPLs
are affected by viscous and interfacial tensions in both vertical and horizontal directions.
Under a specified permeability condition, total trapping number influenced by surfactants
that primarily operate through solubilization and emulsification mechanisms will be higher
than that dominated by the mobilization mechanism.

Different types of surfactants exert varying impacts on the mobilization effect [32]. By
blending multiple surfactants [30,33], the aqueous solubility of NAPLs can be significantly
enhanced, thereby facilitating the occurrence of the mobilization mechanism. Increasing
the concentration of surfactants can accelerate the decrease in interfacial tension [34] and
low interfacial tension can help to enhance the mobilization mechanism [35], but higher
surfactant concentration may also change the soil structure and flow pathway [36]. Apart
from the nature of the surfactant, the nature of the porous medium, the pore water flow rate,
and the environmental salinity may all affect the mobilization mechanism. For example,
the alteration in the wettability of porous media leads to changes in the capillary pressure
in the pores, which affects the mobilization effect to a great extend [37]. Certain surfactants
have the capacity to promote the accumulation of negative charges on the surface of
porous media, changing them from lipophilic to hydrophilic, which in turn intensify the
mobilization effect of NAPLs [38–40]. The pore water flow rate exerts a limiting influence
on the value of NT . When the flow rate is low, NT is diminished, making it difficult for
the mobilization mechanism to manifest. Consequently, the removal efficiency of NAPLs
is negligible [41]. To promote the mobilization of NAPLs, the addition of an appropriate
amount of ions to the surfactant system to change the salinity is a promising strategy [25].

The mobilization effect of NAPLs offers a higher remediation rate for free-phase
NAPLs, but there is a greater risk of secondary contamination due to the difficulty of
controlling the movement of free-phase liquid [42], especially in the case of DNAPLs.

2.2. Solubilization

The solubilization effect involves the micellization process of surfactants, which dis-
tributes NAPLs into the hydrophobic core of the micelles. This increases the solubility of
insoluble or slightly soluble NAPLs in the aqueous phase, allowing them to migrate from
the porous medium to the aqueous phase through the formation of nanoscale agglomerates
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that encapsulate the contaminants [43,44]. The solubilizing effect of surfactants is mainly
manifested in micellar solubilization, as shown in Figure 5.
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The concentration at which a surfactant spontaneously forms micelles is called the
critical micelle concentration (CMC). This pivotal concentration dictates the extent of the
solubilization capacity. Surfactants exist solely as individual molecules below CMC. Once
their concentrations surpass the CMC, surfactants are present both as individual molecules
and as micelles, in a dynamic equilibrium between association and decomposition [45–47].
It was discovered that the CMC of nonionic surfactants in the aqueous phase decreases
with an increase in the number of carbon atoms within the lipophilic group. Meanwhile,
the higher the polarity of the hydrophilic group, the lower the tendency to form micelles,
resulting in a higher CMC value [48].

Molar solubilization ratio (MSR) is a quantitative measure of the solubilizing ability
of surfactants, which denotes the number of moles of compound solubilized per mole of
surfactant [49]. It is expressed by the following formula:

MSR =
S − SCMC

CS − CMC
(4)

in which CS is the concentration of the solution when the surfactant concentration is greater
than CMC; S is the apparent solubility of the solute at a surfactant concentration of CS; and
SCMC denotes the apparent solubility of the solute at a surfactant concentration of CS as
well as at the concentration of CMC.

In addition to the type and structure of surfactant, the ambient ionic strength and
temperature had a significant effect on MSR [21,50]. Varied surfactants have different molar
solubilization ratios. The solute partition coefficient between micellar and water phases
KMC can be calculated from the MSR [51] to find constant solubilizing capacity:

KMC =
MSR/(1 + MSR)

SCMCVw
=

55.4 × MSR
SCMC(1 + MSR)

(5)

On the basis of the above expression, the solubilizing effect of surfactants is related to
the concentration of surfactant monomers and micelles in solution and their corresponding
partition coefficients [50]:
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S∗
w/Sw = 1 + XmnKmn + XmnKMC (6)

where S∗
w is the apparent solubility of the solute at a total surfactant concentration of X; Sw

is the solubility of the solute in pure water; Xmn is the surfactant monomer concentration;
Xmc is the concentration of surfactant micelles; Kmn is the partition coefficient of the solute
between the monomer and water phase; and KMC is the solute partition coefficient between
the micelle and water phase.

The solubilizing ability of a surfactant can be measured by the hydrophilic–lipophilic
balance number (HLB) [23,52,53], whose value depends on the combined affinity of its
hydrophilic and lipophilic groups for oil or water, respectively. High HLB values indicate
strong hydrophilicity. When the HLB value exceeds 13, the solubilizing effect of the
surfactant becomes even more pronounced, particularly in the case of nonionic surfactant
solutions with high molecular weight and high HLB values [54].

Different surfactants have distinct CMCs. Surfactants with lower CMCs can produce
stabilized polymers at low concentrations, thereby exerting a solubilizing effects [55]. It
is advantageous for applications requiring a minimal surfactant dosage. Compared with
single surfactants, complex surfactant systems often have more significant solubilizing
effects, attributed to their reduced surface tension and CMC, coupled with the formation of
more stable mixed micelles and lower adsorption and precipitation loss. Investigating the
solubilizing effects of eight different types of surfactants and their complex system, Yang
et al. [56] confirmed that complex systems of multiple surfactants had stronger solubilizing
ability. The concentration of surfactant can also play an important role in the solubilizing
effect of NAPLs [23]. Theoretically, the necessary condition for the solubilization mech-
anism to occur is that the concentration of surfactant is higher than CMC [23,53,57,58].
Nevertheless, even at sub-critical micelle concentrations (sub-CMC) [59,60], certain sur-
factants are capable of inducing solubilization. The work of Zhong [59] showed that at
concentrations above CMC, the biosurfactant rhamnolipids formed micelles characterized
by strong intermolecular interactions. Conversely, at concentrations below the CMC, the
interactions between rhamnolipids and alkane molecules become predominant, resulting
in a marked solubilizing effect. This effect is notably more pronounced than that observed
at levels above the CMC, highlighting the unique behavior of rhamnolipids in facilitating
the solubility of hydrocarbons.

Surfactants are easily adsorbed in soil and sensitive to the nature of porous media,
and their adsorption in soil reduces the micellar solubilizing effect on NAPLs, which
adversely affects remediation [61,62]. In addition, irregular soil pore structures restrict the
passage of water and solute [63]. Moreover, flushing may lead to pore clogging due to
the accumulation of surfactant micelles, which impede the effectiveness of remediation
efforts [64].

The pore water flow rate during the aggregation process has considerable impact
on surfactants’ solubilization mechanism. A high flow rate can diminish the surfactants’
interaction with NAPLs, leading to a reduction in micelle formation and consequently
weakening the solubilization effect [27]. However, concurrently, this increased flow rate
can enhance the transportation of the micellar aggregates, mitigating the occurrence of pore
throat plugging [23].

As one main mechanism of SER of soil contamination by NAPLs, solubilization
effectiveness depends on the type of surfactant used; hence, suitable surfactants should be
carefully selected according to the specific contaminants present during the remediation
process in order to achieve the optimal results.

2.3. Emulsification

Surfactants play an important role in the treatment of NAPL-contaminated soil, and
their emulsification is one of the key mechanisms for enhanced remediation. By adsorbing at
the “oil–water interface” to form stable nanoscale oil or water droplets, surfactants achieve
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an emulsifying effect, promoting the dispersion of NAPLs into micro-droplets [65,66],
enhancing mass transfer efficiency, and improving the mobility and recovery rate of NAPLs.

Emulsification products can be categorized into two types: microemulsions and emul-
sions. Microemulsions are formed through the micellar solubilization action and represent
thermodynamically stable systems that are transparent or semi-transparent. On the other
hand, emulsions are thermodynamically unstable systems, formed by the emulsification
process that disperses the NAPL phase within an immiscible liquid phase. According
to the difference between the dispersed and continuous phases, emulsion systems can
be further classified into oil-in-water (O/W), water-in-oil (W/O), or multiple emulsions
(W/O/W, O/W/O) [67], as illustrated in Figure 6. In porous media, the transport perfor-
mance of emulsification products is lower than those of nanoscale aggregates produced
by micellar solubilization [68], but moderate water-emulsion droplet size adjustments can
improve the remediation efficiency [24]. Some studies indicate that enhanced emulsifi-
cation of surfactants may be more advantageous than solubilization [69] in remediation
applications [70].
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Emulsification is caused by the density difference between the oil and water phases,
resulting in the formation of emulsified droplets that move in accordance with gravitational
fields, Brownian motion, or applied forces, and are in a state of continuous motion. The
oil–water interfacial tension was rapidly reduced to mitigate the rupture and generate
fine droplets in the emulsification. However, emulsified droplets are not sufficiently
stable [71–73] to overcome collision, sedimentation, coagulation, and aggregation, resulting
in remediation impediment. Therefore, this stability is pivotal in ensuring the effectiveness
of surfactant-based remediation strategies.

Emulsification is a dynamic process in which surface-active molecules move rapidly
to the interfacial region with the destruction of emulsified droplets. The emulsion stability
is not only related to the nature of the surfactant solution [74], but also affected by the
type of NAPLs [75], the ratio of NAPLs to water and the water content of the system [76].
Liu et al. found that surfactant AEOSHS derived from the modification of fatty alcohol
ethoxylates yielded emulsions characterized by reduced droplet sizes, increased emulsifi-
cation capacity, and enhanced emulsion stability. These attributes led to increases in the
mobility and recycling efficiency of emulsified droplets in porous media [74]. In addition
to the modification of surfactants, the addition of auxiliary substances such as polymers
can also improve the stability of emulsions. For example, the addition of xanthan gum can
form a 3D network of polymers, reducing the collision rate of droplets and improving the
formation and stability of emulsions [77]. The introduction of sodium carbonate solution in
the emulsion system can promote the adsorption at the oil–water interface and improve the
mechanical strength of the emulsion film. In the application of foam-assisted oil recovery,
high emulsion stability is more beneficial than the low interfacial tension for the flow of
the emulsified oil [78]. The properties of emulsion in porous media are also affected by
pore structure and pore water flow rate. Emulsions exhibit the shear thinning behavior as
non-Newtonian fluids when passing through porous media. Different pore structures can
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alter the rheology of emulsions [79]. By increasing the pore water flow rate, the retention of
emulsion in porous media can be reduced [80].

However, the formation of emulsions from surfactants during remediation can have
negative effects. If the emulsion traps contaminants within a low mobile phase, increasing
its volume will hinder the penetration of surfactants to the soil–oil interface due to its rela-
tively static and highly viscous properties. It may pose a risk of secondary contamination,
and present challenges for subsequent remediation [81].

2.4. Other Mechanisms

In addition to mobilization, solubilizing, and emulsifying effects, surfactants have
the ability to increase the bioavailability of NAPLs, thereby enhancing the bioremediation
process and promoting the biodegradation of NAPLs [82]. The degradation ability of
NAPLs varies among different types of surfactants [83]. The micellar system formed by
surfactants helps to increase the number of microorganisms and enhance the degradation
efficiency of NAPLs [84]. The uptake of NAPLs by plant roots was promoted in the
presence of surfactants, enhancing the phytoremediation effect, which shows promise in
the remediation of organically contaminated soil and groundwater.

However, some of the metabolites produced by surfactants during the remediation
process may be toxic and inhibit microbial activity [85,86]. Further investigation in this
area holds promise and merits continued exploration in the future.

3. Surfactant-Enhanced Remediation Techniques

Widely distributed in the soil environment, NAPLs are not prone to be desorbed
from soil pores, being characterized by limited mobility and degradation. As a result, the
remediation effect of chemical, biological, and physical remediation techniques on NAPLs
in soil is often unsatisfactory. Non-traditional approaches that leverage surfactants have
the potential to enhance remediation efficiency significantly, offering the added benefits of
reduced costs and expedited time.

3.1. Surfactant-Enhanced Chemical Oxidative Remediation Technology

In situ chemical oxidation (ISCO) is an advanced remediation technology that employs
chemical oxidants and the potent oxidizing free radicals they generate to degrade organic
pollutants in soil [87], converting them into small molecules, H2O and CO2, and NAPL con-
taminants within the soil matrix. Oxidizing agents of choice include persulfate, potassium
permanganate, hydrogen peroxide and ozone, among which sodium persulfate is the most
widely used in soil remediation [88]. Given the oxidation reaction usually occurs solely
in the aqueous phase [89], the residual non-aqueous phase NAPLs that persist within in
the soil are not susceptible to oxidization, thereby inducing a rebound effect [90] in which
recalcitrant pollutions continue to be emitted.

Surfactants promote the dissolution of NAPLs into the aqueous phase, and synergis-
tically amplify the chemical oxidation on NAPLs in the remediation process. Surfactant
enhanced in situ chemical oxidation (S-ISCO) as a co-elution technique [91] has been exten-
sively studied. This technology was first developed by VeruTEK (Bloomfield, CT, USA)
and later acquired by EthicalChem LLC (South Windsor, CT, USA), which sells its VeruSOL
surfactant to the oil production industry as a “green” product. In S-ISCO technology, the
compatibility of surfactants and oxidizers is an important factor to be considered [92].
Although extensive research has shown that the addition of surfactant has an significant
promotive effect on the chemical oxidation technology, the organic nature of surfactant
can lead to interactions with oxidants, potentially inactivating the surfactants [93]. Ad-
ditionally, the introduction of oxidants may escalate the non-productive consumption of
surfactants [94] which could compromise the overall remediation efficacy.

Wei et al. [92] selected a binary mixture of SDBS/BS-12 to synergistically enhance
the remediation of the oxidizing agent KMnO4, using 1.73–23.07% of the commonly used
surfactant in practical experiments, with a cost reduction of more than 50%. Demiray
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et al. [95] found that despite Tween 80 possibly affecting the kinetics of the oxidation
reaction, its overall impact is to accelerate and facilitate the remediation process. The
preferential adopting of surfactants that are more compatible with the oxidant system can
maximize the remediation effect and have a positive impact on soil remediation.

3.2. Surfactant-Enhanced Bioremediation Technologies

Bioremediation encompasses two primary approaches: microbial remediation and
phytoremediation. The efficiency of microbial remediation technology [96] is contingent
upon the functionality and abundance of the microbial community in the environment.
The degradation of NAPLs in soil is achieved under the combined action of organic nu-
trients and oxygen, and the specificity of the microorganisms and their susceptibility to
external environmental factors significantly influences the remediation efficiency [97]. The
combination of biosurfactant and microbial remediation technology can not only increase
the degradation rate by more than 50% [98], but also substantially mitigate the secondary
contamination effects associated with chemical surfactants; but, the biodegradation mecha-
nism of surfactants remain elusive. Moreover, severe adverse effects on remediation were
discovered relating to surfactants at high concentration [99].

Phytoremediation technology [100,101] utilizes plants to adsorb pollutants in soil
or shallow groundwater through their roots. However, this method is characterized by
a prolonged remediation time as well as limited remediation depth [102]. Surfactants
can augment the combined plant-microorganism remediation technology by significantly
increasing the abundance of bacterial flora, which, in return, elevates the removal rate of
NAPLs. Non-ionic surfactants and biosurfactants demonstrate optimal performance as
they mitigate the root toxicity associated with cationic surfactants [103–105].

3.3. Surfactant-Enhanced Physical Remediation Technology

Soil physical remediation technologies encompass a range of methods, including
aeration remediation, electric remediation, and thermal treatment technologies. These are
complemented by ex situ treatment techniques and land replacement strategies.

Aeration remediation technology is suited for soil environments characterized by high
permeability and a loose structure [106]. This method expels NAPLs to the surface through
air flow injection. Nevertheless, the method’s remediation efficacy is constrained when
addressing organic pollutants with attributes of low concentration and low volatility. To
solve this problem, a technique referred to as surfactant-enhanced air sparging (SEAS) was
proposed by adding surfactants to increase the mobility of organic pollutants and broaden
the influence area of air in the soil matrix [107]. The efficiency of NAPAL’s remediation
is reported to be closely related to the airflow rate, surfactant concentration, aeration
pressure, and the area of remediation [108]. Although this approach shows promise in
low-permeability formations, additional research is warranted to elucidate the role of
NAPLs in such environments [109].

Electric Remediation Technology [110] is another well practiced method in the field of
soil remediation. The anode and cathode electrodes are inserted into the soil to generate
an electric field where contaminants were extracted from the soil through electro-osmosis,
electro-migration and electrophoresis [111–113]. However, the heat accumulated during the
process will affect the soil properties in the long run, and it is more suitable for hypotonic
soils with low acid buffer capacity. Nonionic surfactants are commonly used in conjunction
with electrokinetic remediation techniques. Studies have demonstrated that the synergistic
application of nonionic surfactants under a periodic voltage gradient can remove individual
PAHs up to 69% [114]. Arumugam et al. [115] reported the integration of natural surfactants
with electrokinetic remediation technology resulted in a 98% decomposition efficiency for
organic pollutants and also increased subsequent bioavailability. In practical application,
it is essential to consider the secondary contamination of surfactants and to identify the
optimal operating conditions for electrokinetic remediation technology to ensure the most
effective remediation outcomes [116].
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Thermal desorption technology [117] in soil remediation refers to a process where heat is
applied to contaminated soil to increase the temperature and volatilize organic compounds,
thereby separating them from the soil matrix. Thermal desorption technology can regulate
the temperature and residence time to achieve the best NAPL removal rate, and has the
advantages of high removal efficiency, short remediation time, and minimal likelihood of
inducing secondary pollution. However, the application of this technology faces limitations
due to constraints posed by soil water content, high cost, and the potential for altering the
physicochemical and biological properties of the soil [118]. Coupled with surfactant use,
thermal desorption can implement a dual process approach, consisting of a cleaning phase
followed by thermal desorption [119]. Surfactant based pretreatment diminishes the volume of
soil to be treated by thermal desorption, thereby reducing the associated energy consumption
costs. However, the limited number of cases of application of this technology necessitates
additional research to substantiate its feasibility and effectiveness.

4. Risk Analysis of Surfactant-Enhanced Remediation

SER technology has the capacity to augment the solubility of pollutants, thereby
facilitating their removal. However, it also presents challenges, such as the potential
for residual concentrations to induce secondary contamination in remediation sites. The
application of surfactants may also introduce heightened toxicity to the soil. Prolonged
presence within the subsurface soil system could further lead to the contamination of
groundwater resources.

Cationic surfactants have been observed [17,120] to interact with the negatively
charged surfaces of porous media, potentially leading to adsorption and enrichment in
the subsurface environment. This interaction can burden the soil medium, induce soil
toxicity, exert adverse effects, reduce soil permeability, and impair soil function. On the
other hand, anionic surfactants [76,121] are more susceptible to forming precipitates with
cations in the soils. As for nonionic surfactants, it is often used as a common agent in SER
technology [120] because of their stronger solubilizing effect, lower cost and lower toxicity
to soil microorganisms [17]. However, some studies have proved that although the content
of NAPLs in soil is significantly reduced post remediation, the residual surfactants can
remain toxic to the plants in subsequent years [17].

To mitigate that risk, biosurfactants were proposed as an alternative in the remediation
of soils contaminated with NAPLs [122]. Unlike traditional synthesized surfactants from
petrochemical industrial processes, biosurfactants are generated by biological systems
such as plants and microorganisms, representing a novel class of eco-friendly agents with
lower toxicity and higher biodegradability [123,124]. Also, biosurfactants have a larger
molecular structure and more ligand groups, endowing them with superior performance
or additional properties that their synthetic counterparts often lack. For example, bio-
surfactants can be utilized as a carbon source by soil-inhabiting microbes to accelerate
the pollutants’ biodegradation [125]. Compared with traditional surfactants, the majority
of biosurfactants are more efficient and effective in SER applications due to lower CMC,
surface, and interfacial tension values. However, biosurfactants are constrained by limited
production scales and high selectivity for target products, resulting in higher costs than
synthetic surfactants [126], which poses challenges for their commercial application. Since
the substrate alone accounts for almost half of the total cost of obtaining a biosurfactant,
ongoing research in the field of biosurfactants is increasingly focusing on the utilization of
cost-effective substrates, particularly agricultural waste [127].

5. Conclusions

Recent years saw growing research attention in SER technology thanks to its significant
role in strengthening the efficacy of chemical, physical, and biological remediation of
NAPL pollution in soil by leveraging mobilization, solubilization, emulsification and
other mechanisms. In chemical remediation, surfactants promote the action of chemical
oxidizers, while they can be used as carbon source for the activating of microorganisms in
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biodegradation methods. For physical remediation techniques, the presence of surfactants
can broaden the influence zone of aeration or boost the electrokinetic process to accelerate
NAPL removal. Detailed examination of the case studies concerning economic analysis,
influencing factors, as well as the long term impact on the environment and human health
is non-exhaustive and limited by relevant references. Further research and exploration is
urgent in the following two areas:

1. Surfactants: The development of new surfactants, such as bilobal surfactants and
switchable surfactants, is important in reducing the potential impact while improving
the remediation efficiency of NAPLs [67,128]. Another strategy is to integrate various
surfactants in the remediation process, leveraging their combined action towards
NAPLs. Furthermore, surfactants and reaction intermediates warrant further investi-
gations and ongoing monitoring to ensure SER was implemented with a minimum
environmental risk.

2. Remediation technology: It is of great importance to further study the synergistic
mechanism of SER coupled with different remediation technologies which may sur-
pass the limitations of one single method while concurrently maximizing the outcome,
such as with reduced environmental footprint, minimized surfactant usage, and
enhanced NAPL removal.
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