
Citation: Thapa, U.; Pati, B.M.; Thapa,

S.; Pyakurel, D.; Shrestha, A.

Comparative Analysis of

Snowmelt-Driven Streamflow

Forecasting Using Machine Learning

Techniques. Water 2024, 16, 2095.

https://doi.org/10.3390/w16152095

Academic Editor: Jueyi Sui

Received: 28 May 2024

Revised: 20 June 2024

Accepted: 25 June 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Comparative Analysis of Snowmelt-Driven Streamflow
Forecasting Using Machine Learning Techniques
Ukesh Thapa 1,* , Bipun Man Pati 1, Samit Thapa 2, Dhiraj Pyakurel 3 and Anup Shrestha 4

1 AI Research Center, Advanced College of Engineering and Management, Kathmandu 44600, Nepal;
bipunmanpati@acem.edu.np

2 Department of Civil Engineering, Advanced College of Engineering and Management,
Kathmandu 44600, Nepal; samit.thapa@acem.edu.np

3 Department of Electronics and Computer Engineering, Advanced College of Engineering and Management,
Kathmandu 44600, Nepal; dhiraj@acem.edu.np

4 Department of Electronics and Computer Engineering, National College of Engineering,
Lalitpur 44700, Nepal; anup@nce.edu.np

* Correspondence: ukesh.thapa@acem.edu.np

Abstract: The rapid advancement of machine learning techniques has led to their widespread
application in various domains, including water resources. However, snowmelt modeling remains
an area that has not been extensively explored. In this study, we propose a state-of-the-art (SOTA)
deep learning sequential model, leveraging a Temporal Convolutional Network (TCN), for snowmelt
forecasting of the Hindu Kush Himalayan (HKH) region. To evaluate the performance of our proposed
model, we conducted a comparative analysis with other popular models, including Support Vector
Regression (SVR), Long Short-Term Memory (LSTM), and Transformer models. Furthermore, nested
cross-validation (CV) was used with five outer folds and three inner folds, and hyperparameter
tuning was performed on the inner folds. To evaluate the performance of the model, the Mean
Absolute Error (MAE), Root-Mean-Square Error (RMSE), R square (R2), Kling–Gupta Efficiency
(KGE), and Nash–Sutcliffe Efficiency (NSE) were computed for each outer fold. The average metrics
revealed that the TCN outperformed the other models, with an average MAE of 0.011, RMSE of 0.023,
R2 of 0.991, KGE of 0.992, and NSE of 0.991 for one-day forecasts of streamflow. The findings of this
study demonstrate the effectiveness of the proposed deep learning model as compared to traditional
machine learning approaches for snowmelt-driven streamflow forecasting. Moreover, the superior
performance of this TCN highlights its potential as a promising deep learning model for similar
hydrological applications.

Keywords: support vector regression (SVR); long short-term memory (LSTM); transformer;
temporal convolutional network (TCN); nested cross-validation; snowmelt

1. Introduction

Snowmelt is the process by which snow or ice on the ground or various surfaces
changes into water due to the temperature rising. Snowmelt plays a pivotal role in the
environment and development of human society. Snowmelt is also a major source of fresh
water in the world. Figure 1 shows that Central Asia contains a large amount of ice in the
Hindu Kush Himalayan (HKH) region and is highly sensitive to global climate change, with
it having faced significant warming (0.21 ± 0.08◦/decade) [1] over the past few decades. In
a study by Pandey et al. [1], a dynamic threshold-based method was applied to enhance
QuickSCAT ku-band backscatter observations from 2000 to 2008, wherein the average
melt duration was calculated and a longer melt season (∼5 weeks) was found to occur
in the Eastern Himalayan region relative to the Central and Western Himalayas and the
Karakoram region. The river basin sourced from the HKH region provides the habitat’s
vital supplies [2]. The seasonal snowmelt process significantly affects the ecosystem, water

Water 2024, 16, 2095. https://doi.org/10.3390/w16152095 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16152095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0009-0001-4008-534X
https://doi.org/10.3390/w16152095
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16152095?type=check_update&version=1

Water 2024, 16, 2095 2 of 19

availability, agriculture, and water resources. Additionally, the snowmelt directly influences
the river flow, aquatic habitats, and the functioning of the hydroelectric power system.
The geographical conditions and extreme weather in this region make it difficult to gather
adequate information to develop an optimal strategy for the sustainable utilization of its
water resources. Therefore, precise forecasting of the snowmelt runoff is essential in this
area for efficient planning and management.

The Hindu Kush-Himalayan Region

Esri, TomTom, Garmin, FAO, NOAA, USGS, Esri, GEBCO, Garmin, NaturalVu

Figure 1. Map of the Himalayan Hindu Kush region.

The prediction of snowmelt runoff can be carried out through various approaches,
which are classified into three different models, namely Energy-Based (EB) models, Tem-
perature Index (TI) models, and Data-Driven (DD) models. EB models are computationally
heavy models that require a huge amount of data for forecasting as well as a deep under-
standing of thermodynamics. This type of model cannot provide optimal predictions in
data-scarce regions [3]. TI models are often used for forecasting, as they use air temperature
data to estimate the energy that melts the snow [4]. Moreover, TI models can not outperform
EB models, and calibration should be conducted to find the suitable parameters, which
is tedious work [5]. DD models include machine learning (ML) models, which have the
capability to learn complex data distributions with high precision for forecasting without
prior knowledge of the process. However, the application of ML models in snowmelt
runoff prediction is still limited.

ML has diverse applications across interdisciplinary fields, showcasing its versatility
and impact. The application of ML in the domain of water resources has been well investi-
gated in previous studies [6,7]. However, traditional ML models such as Support Vector
Regression (SVR), Decision Tree (DT), and other regression models are used in practice
for snowmelt runoff prediction. In one study [8], snowmelt forecasting of the Italian Alps
area was carried out using SVR where the Snow Cover Area (SCA), antecedent discharge
(Q), and meteorological data such as the temperature (T), precipitation (P), humidity of
the atmosphere, and weather conditions were taken as the features, which outperformed
a simple linear auto-regressive model with an average relative Root-Mean-Square Error

Water 2024, 16, 2095 3 of 19

(RMSE) of 33% on the tested samples. Another study, by De Gregorio et al. [9], proposed an
SVR model for real-time river flow prediction, where the SVR model performed better than
the average of the previous 10 years on a single gauging station, with a mean improvement
of about 48% in the RMSE. Artificial Neural Networks (ANNs) are also used for various
applications as they can handle non-linear data better than traditional ML models. In the
study in [10], the authors used an ANN for snowmelt runoff prediction, where SCA, Q, T,
and P were used as inputs to the model, and research verified that this ANN model outper-
formed any TI model as its Nash–Sutcliffe Efficiency (NSE) increased from 0.51 to 0.71 in
forecasting. Similarly, in [11], the authors conducted a comparative analysis of Random
Forest (RF), SVR, and Multi-Layered Perceptron (MLP) models for the forecasting of soil
moisture levels on a volumetric basis, where the MLP model showed the best performance,
with a coefficient of determination (R2) value of 0.957.

In past research studies, traditional ANNs were used for the time-series problem,
but this was not sufficient for capturing all of the necessary or complex information from
the data. So, the Recurrent Neural Network (RNN) was introduced to capture temporal
information with the help of memory or a feedback loop, although it has its own prob-
lems like the problems of vanishing and exploding gradients [12]. The advancement of
technology has led to the development of more complicated architectures. Accordingly,
Long Short-Term Memory (LSTM) was introduced to overcome the problems of RNNs
and capture temporal information with better precision. In the study in [13], two-layered
LSTM was used for rainfall-runoff modeling with an NSE of 0.63, and the authors argued
that the associativity between winter precipitation and spring runoff can be replicated by
learning the process of snowmelt, but they did not investigate the influence of hyperpa-
rameter tuning on model performance. Similarly, an LSTM model proposed in another
study was able to obtain an average RMSE of 150 m3/s with an NSE above 99% while
forecasting Q for one day [14]. Additionally, in [14,15], it was claimed that the window
size in forecasting problems is an important hyperparameter to be tuned for achieving the
best model performance, but in both studies, other hyperparameters, such as the number
of LSTM layers and optimizers, were not observed. In a recent study, Thapa et al. [16]
compared snowmelt prediction across different models by hypertuning parameters with
the hit-and-trial method and setting the window size for prediction. Also, gamma testing
was performed, where SCA, T, and Q were chosen as the inputs for the different models,
out of which the LSTM model had the best performance with 0.997, 0.112, 0.173, 0.99, and
0.995 as its R2, Mean Absolute Error (MAE), RMSE, Kling–Gupta Efficiency (KGE), and
NSE, respectively. This study did not evaluate the performance of the model using nested
cross-validation (CV), and the created state-of-the-art (SOTA) model only performed better
for the specified dataset, not for any unseen dataset. In most studies, we found that RNN
and LSTM models are commonly used for time-series forecasting. However, Temporal Con-
volutional Neural Networks (TCNs), which have outperformed other sequential models on
publicly available datasets [17], have not yet been used in snowmelt forecasting. So, the
main contributions of this article are summarized as follows:

1. We compare SOTA deep learning (DL) architectures such as the Transformer and
TCN models for snowmelt prediction with traditional ML methods like SVR and
previous DL techniques such as LSTM. Notably, our study incorporates a TCN ar-
chitecture that has not yet been widely utilized for comprehensive comparison in
snowmelt forecasting.

2. We use nested CV to evaluate the model’s generalization capability in the context of
snowmelt prediction, which has not been carried out in previous studies.

The remainder of the paper is organized as follows: Section 2 provides the materials
and methods of the study. Section 3 then describes the methodology. The results of the
study are then discussed in Section 4. The discussion part is presented in Section 5. Finally,
Section 6 provides the conclusion and directions for future research.

Water 2024, 16, 2095 4 of 19

2. Materials and Methods
2.1. Study Area

Within the Langtang basin, which is situated in Nepal’s Central Himalayas, this
study’s main focus was on predicting the runoff from snowfall. The Langtang River basin
covers an area of 353.59 km2, with an elevation ranging from 3647 to 7213 m above sea
level and with a mean slope of 26.7◦. Glaciers occupy almost 39% of the total basin area
and the remaining 61% is covered by rock and vegetation. The Randolph Glacier Inventory
(RGI), part of the Global Land Ice Measurements from Space (GLIMS) initiative, version 6,
calculated the extent of these glaciers [18]. The average annual discharge is 6.57 m3/s
according to the data collected from 2002 to 2012. An Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) of a 30 m
resolution from 2002 to 2012 was used. The entire amount of water discharge in this
watershed is largely determined by the melting of glaciers and snow [19]. Figure 2 shows
that a significant amount of water discharge occurs during the summer months (June to
September). Figure 3 shows that a significant amount of snow is present during the winter
(December to February) and the minimum SCA is present during the summer months (June
to September). Figure 4 shows the HKH area that was used for the dataset collection.

Figure 2. Monthly observed discharge for the Langtang basin from 2002 to 2012.

Figure 3. Monthly observed SCA for the Langtang basin during the research period (2002–2012).

Water 2024, 16, 2095 5 of 19

Figure 4. Map of the Langtang basin area.

2.2. Hydrometeorological Data

In Nepal, the Department of Hydrology and Meteorology provided the hydrological
data from the Kyangjing station (28.216◦ latitude, 85.55◦ longitude) located in the Rasuwa
District of Bagmati Province. The APHRODITE product (APHRO_TAVE_MA_V1808)
provided diurnal temperature data with a 0.25◦ × 0.25◦ grid for 2002 to 2012 [20]. The high
associativity between APHRODITE products and the surface observations of the Langtang
basin has been shown in a previous study [21]. The precipitation-related data were obtained
from multiple detectors, including satellite infrared data to compute the precipitation rate,
acquired from the Tropical Rainfall Measuring Mission (TRMM). The 3B42RT TRMM
dataset was created by combining data from rain needles. TRMM products are available at
https://pmm.nasa.gov and are constantly used in the Himalayan region [22].

2.3. Snow Cover

In the MODIS MOD10A2 interpretation, six products were employed to analyze snow
cover. Stigter et al. [23] observed an accuracy of 83.1% with on-point snow compliances
in the Langtang basin with this snow-mapping algorithm, which utilizes MODIS bands
4 and 6 to calculate the regularized-difference snow indicator [24]. In MOD10A2, a pixel
is labeled as snow if snow is observed at least once over eight days. No snow label is
marked if snow is absent throughout these eight days and cloud is marked if cloud cover is
observed on all eight days. In this research work, we used datasets from the Langtang basin
of the HKH, where we collected 496 images from 2002 to 2012. The area boundary was
traced from the DEM and all of the images of MOD10A2 were converted to the coordinated
system of World Geodetic System 1984 (WGS84) and the Universal Transverse Mercator
(UTM) zone 45. The daily SCA for 365 days a year was interpolated or extrapolated from
the 8-day maximum SCA using the cubical spline method to obtain 4015 total samples.

2.4. Dataset Preparation

SCA, Q, T, and P were used as inputs for forecasting the snowmelt runoff. We used
MinMaxScaler to scale the data without losing their distribution for faster convergence
during the training process. MinMaxScaler uses a data value and subtracts it from the
minimum value of the overall features, which is then divided by the difference of the
maximum value and the minimum value of features:

https://pmm.nasa.gov

Water 2024, 16, 2095 6 of 19

MinMaxScaler(m) =
x − xmin

xmax − xmin
, (1)

where

x is the input value;
xmin is the minimum value of the column;
xmax is the maximum value of the column.

We used data from two days to predict the third day’s SCA, i.e., a window size of 2.
Furthermore, nested CV of the model was carried out to check the generalizability of any
unseen data, with five folds for the outer loop and three folds for the inner loop. The tensor
shape for our models was (window size, number of features), i.e., (2, 3) for three inputs and
(2, 4) for four inputs. Keras’ K-Fold was used for splitting the dataset with a random state
of 42, which ensured that the data split could be replicated in the future. The number 42
was the seed value for the consistent reproduction of random data. The dataset was split
into 80% for training (3212 samples) and 20% for testing (803 samples).

2.5. Experimental Setup

The simulations were performed for four different architectures:

1. SVR;
2. LSTM;
3. Transformer;
4. TCN.

Each of the four different architectures was evaluated for two different inputs: M1,
with inputs T, Q, SCA, and P; and M2, with T, Q, and SCA. A list of the hyperparameters
used for our experiments is given in Table 1.

The performance of each of the four architectures was evaluated using the metrics in
the following table:

Table 1. Hyperparameters used to tune four different models for optimal performance.

Model Hyperparameters Values

SVR
C
Epsilon
Kernel

[0.1, 1, 10]
[0.01, 0.1, 0.2]
[Linear, RBF]

LSTM

LSTM Layers
LSTM Units
Dropout Rate
Optimizer
Learning Rate

[1, 2, 3]
[32, 64, 128]
[0.2, 0.3, . . . , 0.5]
[Adam, Adamax, RMSProp, SGD]
[0.0001, 0.001, . . . , 0.1]

Transformer

Transformer Blocks
Head Size
Number of Heads
FF Dim
Dropout Rate
Number of MLP Layers
MLP Units
MLP Dropout
Optimizer
Learning Rate

[2, 4, 6, 8]
[8, 16, . . . , 256]
[2, 4, . . . , 16]
[4, 8, . . . , 64]
[0.1, 0.2, . . . , 0.6]
[1, 2, 3]
[32, 64, . . . , 256]
[0.1, 0.2, . . . , 0.6]
Adam, Adamax, RMSProp, SGD
[0.0001, 0.001, . . . , 0.1]

TCN

TCN Layers
Number of Filters
Kernel Size
Optimizer
Learning Rate

[1, 2, 3]
[32, 64, . . . , 128]
[2, 3, 4]
[Adam, Adamax, RMSProp, SGD]
[0.0001, 0.001, . . . , 0.1]

Water 2024, 16, 2095 7 of 19

2.5.1. Kling–Gupta Efficiency

The KGE is an evaluation metric that checks the performance of a model as it considers
the data, correlation, bias, and variability. A value of KGE equal to 1 indicates a perfect
agreement between simulations and observations [25].

KGE = 1 −
√
(r − 1)2 + (α − 1)2 + (β − 1)2, (2)

where
r is the Pearson’s correlation coefficient;

β =
Q̄′

Q̄
is the bias ratio;

Q̄ is the average observed discharge;
Q̄′ is the average simulated discharge;

α =
CVs

CVo
is the variability;

CVo is the observed coefficient of variation;
CVs is the simulated coefficient of variation

2.5.2. Nash–Sutcliffe Efficiency

The magnitude of residual variance concerning the observed data variance is provided
by the NSE.

NSE = 1 − ∑N
t=1(Qt − Q′

t)
2

∑N
t=1(Qt − Q̄)2

, (3)

where
Qt is the observed discharge at time t;
Q′

t is the simulated discharge at time t;
Q̄ denotes the average observed discharge.

2.5.3. R Square (R2)

The coefficient of determination R2 evaluates the variation of dependent features with
the independent features in a regression model. It ranges from 0 to 1, where 1 indicates a
high correlation and 0 indicates a low correlation.

R2 =

 ∑n
t=1(Q

′
t − Q̄′)(Qt − Q̄)√

∑n
t=1(Q

′
t − Q̄′)2

√
∑n

t=1(Qt − Q̄)2

2

, (4)

where
Qt is the observed discharge at time t;
Q′

t is the simulated discharge at time t;
Q̄ is the average observed discharge;
Q̄′ is the average simulated discharge.

2.5.4. Root-Mean-Square Error

The RMSE evaluation metric is used to measure the average differences between
predicted and measured values. It represents the standard deviation of the error, with
a lower RMSE value indicating a better fit. The RMSE is sensitive to large errors and is
calculated using the following equation:

RMSE =

√
∑n

t=1(Q
′
t − Qt)2

n
, (5)

where

Water 2024, 16, 2095 8 of 19

Qt is the observed discharge at time t;
Q′

t is the simulated discharge at time t.

2.5.5. Mean Absolute Error

The MAE measures the average magnitude of errors between actual and predicted
values. A low MAE value represents a poor performance of the model. A lower MAE
represents lower error. The equation for calculating the MAE is given below:

MAE =
1
n

n

∑
t=1

|Qt − Q′
t|, (6)

where
Qt is the observed discharge at time t;
Q′

t is the simulated discharge at time t.

3. Methodology

In this section, the proposed methodology for snowmelt runoff prediction is shown in
Figure 5. First, we preprocessed the dataset using MinMaxScaler to scale the data and set
the value of the window size to 2 for the third day’s SCA prediction. The prepared data
were then split into outer and inner folds in a random state of 42, with a splitting ratio of
80%, i.e., 3212 samples, and 20%, i.e., 803 samples, for training and testing, respectively.
These split data were used for the traditional ML and DL architectures, as shown in Figure 5.
The trained models were evaluated using metrics such as the RSME, MAE, R2, KGE, and
NSE, which were then used for comparing the models. These performance metrics helped
to create a baseline for model performance comparison and highlight the best-performing
traditional ML or DL model.

In Figure 5, the model section contains traditional ML and deep learning architectures.
Detailed explanations of the four different models used in our simulations are described below.

Figure 5. Methodological framework for assessing the performance of ML techniques in
snowmelt forecasting.

3.1. SVR

The SVR model, proposed by Vapnik in 1999 [26], is a traditional ML algorithm
designed for classification and regression. SVR can use both linear and non-linear kernels.
SVR determines the hyperplane in high-dimensional space to separate the classes or output
values. The main objective of SVR is to minimize the error value between the predicted
and actual values to obtain the correct prediction. In this study, we used a Radial Basic

Water 2024, 16, 2095 9 of 19

Function (RBF) kernel with SVR; an RBF kernel is capable of capturing non-linear patterns.
The RBF kernel mathematical expression is given below.

K(xi, xj) = exp

(
−
∥xi − xj∥2

2σ2

)
, (7)

where

xi and xj are the input feature vectors;
σ is a parameter controlling the width of the kernel.

In this study, we used 0.1, 1, and 10 as regularization parameters (C) and 0.01, 0.1,
and 0.2 as epsilon (ϵ) values for the hyperparameter tuning. We also used both linear and
RBF techniques for the kernel. All of these hyperparameters were determined using the
grid-search approach. The best hyperparameters after tuning were 0.1 for C, 0.01 for the
epsilon value, and the linear kernel.

3.2. LSTM

LSTM, proposed by Hochreiter and Schmidhube [27], is a variation of an RNN used
widely in DL architecture. Unlike the vanilla RNN, LSTM is capable of capturing long-term
dependencies and solving the problems of exploding and vanishing gradients. LSTM
consists of feedback connections, which allow it to process sequences of data. It consists
of three different gates: an input gate, a forget gate, and an output gate. The forget gate
removes information that is no longer useful in the cell state. Additional new information
is then added into the cell state by the input gate. The output gate extracts the useful
information from the cell state to be presented as the output. A classic LSTM cell is shown
in Figure 6, and its related equations are below.

Forget gate: ft = σ(w f · [ht−1, xt] + b f)

Input gate: it = σ(wi · [ht−1, xt] + bi)
Update vector: ĉ = tanh(wc · [ht−1, xt] + bc)
Cell state: ft ⊙ Ct−1 + it ⊙ ĉt
Output gate: σ(wo · [ht−1, xt] + bo)

where

w f , wi, wc, and wo are weights for the forget gate, input gate, cell state, and output gate, re-
spectively;
b f , bi, bc, and bo are biases for the forget gate, input gate, cell state, and output gate, respectively;
σ represents the sigmoid activation function;
[ht−1, xt] represents the concatenation of the current input and the previous hidden state.

Figure 6. The detailed LSTM architecture, where C denotes the cell state, h denotes the hidden state,
o denotes the output gate, i denotes input vectors at time step t, and tanh represents a hyperbolic
tangent function [27].

The hyperparameters we used to tune our LSTM model were three different numbers
of LSTM layers; three different LSTM hidden units, with values of 32, 64, and 128; dropout
values ranging from 0.2 to 0.5; learning rate values ranging from 0.0001 to 0.1; and five

Water 2024, 16, 2095 10 of 19

different optimizers, including Adam, Adamax, RMSProp, and SGD. The hyperparameter
tuning was carried out using a random search in the Keras tuner. For the optimal hyperpa-
rameters in our model, we utilized the Adam optimizer with a learning rate of 0.004 and a
dropout rate of 0.2, and incorporated two LSTM layers, each consisting of 96 hidden units.

3.3. Transformer

A Transformer, proposed by Vaswani et al. [28], is a DL architecture that includes
an encoder and a decoder. The encoder and decoder are connected through an attention
mechanism. This architecture requires less training time than LSTM, as its latest version is
highly used for training Large Language Models (LLMs). This architecture is applicable for
Natural Language Processing (NLP) and computer vision, but also for audio and multi-
modal processing. Figure 7 shows the Transformer model architecture, and its components
are described below.

Figure 7. Detailed architecture of the Transformer model [28].

3.3.1. Self-Attention Mechanism

A self-attention mechanism is responsible for capturing any crucial information in
a long sequence of data. The calculation for attention can be expressed as a large matrix
calculation using the softmax function:

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V, (8)

where

Water 2024, 16, 2095 11 of 19

Q represents the query;
K represents the key;
V represents the value;
dk represents the dimensionality of the key in the items.

3.3.2. Multi-Head Attention

Multi-head attention is a feature of the Transformer that helps the model process dif-
ferent aspects of an input sequence simultaneously. In this process, multiple self-attention
heads work in parallel, and outputs are concatenated and linearly transformed.

MultiHead(Q, K, V) = Concat(h1, . . . , hn)Wo, (9)

where
h represents the heads;
Wo represents the matrix of the entire multi-head attention mechanism.

3.3.3. Position Encoding

Position encoding in the model architecture is responsible for the order of the words
in a sequence, and this is then added to the input embedding.

PE(pos, 2i) = sin
(

pos
1000(2i/dmodel)

)
, (10)

PE(pos, 2i + 1) = cos
(

pos
1000(2i/dmodel)

)
, (11)

where
pos is the position of the sequence;
dmodel is the dimensionality of the model.

In our Transformer, we used four different Transformer blocks, with values of 2, 4,
6, and 8; head sizes ranging from 8 to 256; different numbers of heads, ranging from 2 to
16; dropout rate values ranging from 0.1 to 0.6; three different numbers of MLP layers;
MLP unit values ranging from 32 to 256; MLP dropout values ranging from 0.1 to 0.6;
four different optimizers, namely Adam, SGD, RMSProp, and Adamax; and learning
rate values from 0.0001 to 0.1 as hyperparameters to tune the model. We used a Keras
tuner for the hyperparameter tuning. The optimal hyperparameters were two Transformer
blocks, each with a head size of 136, and two attention heads. The two MLP layers were
employed with units of 192 and 160, respectively. Dropout regularization is a technique
that involves ignoring some layers’ outputs during training to prevent overfitting, and in
our experimental setup, 0.41, which means 41%, of the neurons were randomly dropped.
Similarly, the dropout values were 0.10 and 0.11 for the second and third layers, respectively.
The Adam optimizer with a learning rate of 0.0044 was used for training.

3.4. TCN

A TCN, proposed by Bai et al. [17], is a DL architecture that is capable of capturing long-
term dependencies and temporal patterns. The TCN architecture is capable of preventing
data leakage, using causal convolution by ensuring that the model’s prediction is solely
based on past and present information. The TCN architecture can handle sequences of
varying lengths, allowing for the efficient capture of long-range dependencies. Figure 8
shows the TCN model architecture, and its key components are described below.

Water 2024, 16, 2095 12 of 19

Dropout

ReLU

weightNorm

Dilated Causal Conv

Dropout

ReLU

weightNorm

Dilated Causal Conv

1X1 Conv
 (Optional)

+

++

Output

d = 4

Hidden

d = 2

d = 1

Hidden

Input
XT

ŷ0 ŷTŷT-2ŷT-1ŷ1 ŷ2

X0 X1 X2 XT-1XT-2

...

...

Residual Block (K, d)

X0 X ... XTXT-1

ẑTẑT-1
(1)(1)

Residual Block (K = 3, d = 1)

Convolutional Filter

Identity Map (or 1x1 Conv)

ẑ ẑ1 ẑT

(i)(i) (i)
= (),...,

ẑ ẑ1 ẑT
(i-1)(i-1) (i-1)

= (),...,

(a) (b) (c)

Figure 8. TCN architectural elements. (a) A dilated causal convolution, with dilated factors d = 1,
2, 4 and filter size k = 3. (b) A TCN residual block. A 1 × 1 convolution matrix is added when the
residual input and output have different dimensions. (c) An example of a residual connection in
a TCN, where the blue lines represent the residual function and the green line represents identity
mapping [17].

3.4.1. Dilated Causal Convolutions

In a TCN, the dilated causal convolutions can process any length of sequence at varying
receptive field sizes. The dilated convolutions are responsible for capturing long-range
dependencies and are useful for memory management.

yt =
k

∑
i=1

wi · xt−dt , (12)

where

yt is the output at time t;
wi is the weight of the convolutional filter;
xt is the input at time t;
d is the dilation rate;
k is the filter size.

3.4.2. Residual Blocks

A TCN uses residual connections within its blocks that help to solve the vanishing-
gradient problem and allow for the effective optimization of its deeper architecture. A TCN
residual block consists of two layers of dilated causal convolutions and non-linearity, for
which a rectified linear unit is used.

3.4.3. Temporal Skip Connection

TCNs have skip connections that connect every other layer, which makes the network
capable of capturing and reusing the information. The skip connection feature is also useful
for promoting gradient flow and can also enhance model’s capability to learn hierarchical
representations.

In this study, the TCN model used three different TCN layers. We used 32 to 256 filters;
three kernel sizes, such as 2, 3, and 4; five different optimizers, including Adam, Adamax,
RMSProp, and SGD; and learning rate values ranging from 0.0001 to 0.1 as hyperparameters
for tuning the model. We used a Keras tuner for the hyperparameter tuning. The optimal
hyperparameters were a single TCN layer with 96 filters and a kernel size of 3, with the
Adam optimizer, alongside a learning rate of 0.0057.

Water 2024, 16, 2095 13 of 19

4. Results

This section presents a comprehensive analysis of each model’s performance across
different scenarios. We evaluate the effectiveness of both three-input and four-input models
in each fold, comparing their performance against other models. Additionally, we provide
insights into the testing time required for each model.

4.1. Performance Analysis of ML Models with Four Inputs

This subsection describes the performance of ML models with four inputs in each fold
of nested CV, as given in Table 2.

Table 2. Performance comparison of different models with four inputs, assessing each fold using the
MAE, RMSE, R2, KGE, and NSE.

Model Folds MAE RMSE R2 KGE NSE

SVR

1
2
3
4
5

0.0341
0.0312
0.0306
0.0338
0.0313

0.0451
0.0401
0.0406
0.0450
0.0395

0.9657
0.9723
0.9710
0.9672
0.9734

0.8967
0.9291
0.9227
0.9175
0.9220

0.9657
0.9723
0.9710
0.9672
0.9734

LSTM

1
2
3
4
5

0.0161
0.0130
0.0126
0.0130
0.0121

0.0301
0.0235
0.0239
0.0242
0.0220

0.9847
0.9905
0.9901
0.9905
0.9918

0.9727
0.9889
0.9693
0.9713
0.9735

0.9847
0.9905
0.9903
0.9905
0.9918

Transformer

1
2
3
4
5

0.0195
0.0177
0.0186
0.0185
0.0177

0.0308
0.0274
0.0283
0.0281
0.0258

0.9840
0.9870
0.9860
0.9872
0.9887

0.9855
0.9880
0.9819
0.9859
0.9883

0.9840
0.9870
0.9860
0.9872
0.9887

TCN

1
2
3
4
5

0.0126
0.0110
0.0107
0.0109
0.0098

0.0269
0.0227
0.0214
0.0230
0.0192

0.9878
0.9911
0.9919
0.9914
0.9937

0.9914
0.9927
0.9913
0.9926
0.9931

0.9878
0.9911
0.9919
0.9914
0.9937

Table 2 shows the performance of the DL architectures and the traditional ML algo-
rithms. The SVR model shows the worst performance for each fold of nested CV among all
other models, with average MAE, RMSE, R2, KGE, and NSE values of 0.032, 0.042, 0.97,
0.918, and 0.97, respectively. The LSTM model shows a significant performance improve-
ment over SVR in terms of its average MAE, RMSE, R2, KGE, and NSE, at 0.013, 0.025, 0.989,
0.975, and 0.989, respectively. The Transformer achieved a better performance compared to
the LSTM model, with an average KGE value of 0.986. However, the TCN shows superior
performance compared to the other models due to its capability of capturing long-range
dependencies, where the average performance metric values for the MAE, RMSE, R2, KGE,
and NSE are 0.011, 0.023, 0.991, 0.992, and 0.991, respectively. It is important to note that we
used data points from the testing set of the best-predicted model fold to avoid data leakage
resulting from systematic data separation using nested CV. In the scatter-plot diagram, the
discharged river is estimated correctly near the line, whereas points above and below the
diagonal overestimate and underestimate the actual flow, respectively. Figure 9 shows that
the SVR and Transformer models predicted medium flows well, but the higher and lower
flows were overestimated and underestimated, respectively. The low and medium flows
were estimated accurately by the LSTM model but the high flows were only accurately
estimated by the TCN model. Therefore, the TCN model predicted all types of flows
accurately when compared to the other models.

Water 2024, 16, 2095 14 of 19

(A) SVR (B) LSTM

(C) Tranformer (D) TCN

P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)
P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)

P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)
P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)

Observed Flow (m3/s) Observed Flow (m3/s)

Observed Flow (m3/s) Observed Flow (m3/s)

Figure 9. Scatter plot of model predictions, with the red dotted 1:1 solid line having four inputs.

4.2. Performance Analysis of ML Models with Three Inputs

In this subsection, the performance of ML models with three inputs in each fold of
nested CV is given in Table 3.

Table 3. Performance comparison of different models with three inputs, assessing each fold using the
MAE, RMSE, R2, KGE, and NSE.

Model Folds MAE RMSE R2 KGE NSE

SVR

1
2
3
4
5

0.0317
0.0300
0.0288
0.0300
0.0284

0.0426
0.0386
0.0374
0.0395
0.0368

0.9693
0.9743
0.9755
0.9747
0.9769

0.9316
0.9403
0.9405
0.9335
0.9369

0.9693
0.9743
0.9755
0.9746
0.9769

LSTM

1
2
3
4
5

0.0143
0.0136
0.0112
0.0116
0.0106

0.0272
0.0236
0.0231
0.0232
0.0206

0.9875
0.9903
0.9905
0.9912
0.9927

0.9768
0.9757
0.9812
0.9840
0.9875

0.9875
0.9903
0.9905
0.9912
0.9927

Transformer

1
2
3
4
5

0.0178
0.0161
0.0162
0.0126
0.0115

0.0305
0.0262
0.0266
0.0243
0.0213

0.9842
0.9881
0.9875
0.9904
0.9922

0.9663
0.9781
0.9751
0.9826
0.9831

0.9842
0.9881
0.9875
0.9904
0.9922

Water 2024, 16, 2095 15 of 19

Table 3. Cont.

Model Folds MAE RMSE R2 KGE NSE

TCN

1
2
3
4
5

0.0122
0.0108
0.0113
0.0115
0.0104

0.0269
0.0217
0.0223
0.0228
0.0201

0.9877
0.9918
0.9913
0.9915
0.9931

0.9806
0.9891
0.9865
0.9888
0.9904

0.9877
0.9918
0.9913
0.9915
0.9931

The SOTA DL architectures achieved higher levels of performance when compared to
the traditional ML algorithms, as shown in Table 3. The SVR model shows the minimum
performance over each fold in comparison to the other models, with average MAE, RMSE,
R2, KGE, and NSE values of 0.030, 0.039, 0.974, 0.937, and 0.974, respectively. The LSTM
model shows a significant performance improvement over SVR, with average MAE, RMSE,
R2, KGE, and NSE values of 0.012, 0.024, 0.99, 0.981, and 0.99, respectively. The LSTM model
shows a better performance, with an average KGE value of 0.981, than the Transformer
model, which shows an average KGE value of 0.977. However, the TCN also shows superior
performance for the three inputs due to its capability of capturing long-range dependencies,
where the average performance metric values for the MAE, RMSE, R2, KGE, and NSE
are 0.011, 0.023, 0.991, 0.987, and 0.991, respectively. Figure 10 shows that the low and
medium flows were estimated well by the other models. However, the high flows were
only accurately predicted with the TCN model.

(A) SVR (B) LSTM

(C) Tranformer (D) TCN

P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)
P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)

P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)
P
re

d
ic

te
d
 F

lo
w

 (
m

3
/s

)

Observed Flow (m3/s) Observed Flow (m3/s)

Observed Flow (m3/s) Observed Flow (m3/s)

Figure 10. Scatter plot of model predictions, with the red dotted 1:1 solid line having three inputs.

Water 2024, 16, 2095 16 of 19

4.3. Overall Comparison of ML models

This section describes the overall performance of the models by averaging all of the
performance metrics for the M1 and M2 input types given in Tables 2 and 3.

Table 4 shows the values of different performance metrics obtained for all of the
models over the five outer folds. In this table, four different models’ sensitivity analyses are
compared for two input conditions, i.e., all four inputs (M1) and three inputs (M2) without
precipitation. The performance of the SVR and LSTM models was better for the M2 input,
while the Transformer model achieved better results with M2 for most of metrics except
the KGE. However, the TCN model performed systematically better than all other models,
as shown in Table 4, and the inclusion of the precipitation (P) input slightly improved the
verification statistics for the TCN model. However, in this overall comparison, the results
we obtained for inputs M1 and M2 are almost identical. The results obtained in the study
by Thapa et al. [16] show a very similar RMSE value for the M1 and M2 inputs. The final
value of RMSE reached in the aforementioned paper was achieved using the hit-and-trial
method, which is not the best practice for tuning hyperparameters to increase a model’s
performance. Hence, our research demonstrates the fact that the method of systematic
hyperparameter tuning with the Keras tuner can significantly reduce the RMSE value for
both M1 and M2 when compared to the hit-and-trial method used by Thapa et al. [16].
Furthermore, we used a persistence model as a baseline model in order to evaluate its
performance with the other models. The TCN model outperformed the benchmark set
achieved with the persistent model after the addition of the P parameter.

Table 4. Overall performance comparison with four inputs (M1) and three inputs (M2) for various
models, where the performance metrics are the MAE, RMSE, R2, KGE, and NSE.

Model Inputs MAE RMSE R2 KGE NSE

SVR
M1
M2

0.032
0.030

0.042
0.039

0.970
0.974

0.918
0.937

0.970
0.975

LSTM
M1
M2

0.013
0.012

0.025
0.024

0.989
0.990

0.975
0.981

0.989
0.990

Transformer
M1
M2

0.018
0.015

0.028
0.026

0.987
0.989

0.986
0.977

0.987
0.989

TCN
M1
M2

0.011
0.011

0.023
0.023

0.991
0.991

0.992
0.987

0.991
0.991

Persistence N/A 0.0143 0.0310 0.9837 0.991 0.983

4.4. Testing Time

For this subsection, we computed the testing time in each outer fold for different
models and averaged these testing times, as shown in Table 5. We do not report the testing
time of the SVR model based on several considerations, including the computational
efficiency of SVR relative to the other models evaluated in our study, i.e., in comparison
to more complex models like the LSTM, TCN, and Transformer models. The training and
testing times for SVR are generally lower due to its simpler architecture and optimization
algorithms, which are specifically designed for efficiency in high-dimensional feature
spaces. By focusing our testing-time analysis on the LSTM, TCN, and Transformer models,
we aim to highlight the computational characteristics of these newer and more sophisticated
models, which are of greater interest to the research community given their potential for
handling complex sequential data. The TCN model had a faster computational testing time
than any other DL architecture, as shown in Table 5.

Water 2024, 16, 2095 17 of 19

Table 5. Model testing time (seconds) comparison.

Models Testing Time (s)

LSTM 0.694

Transformer 0.652

TCN 0.372

5. Discussion

Snowmelt modeling is crucial for water resource management, optimizing hydroelec-
tricity power generation, irrigation, and disaster preparation for events like landslides
and avalanches, so it is necessary to explore new techniques for appropriate snowmelt
forecasting. Taking the Langtang basin as an example, we applied SOTA DL architectures
such as Transformer and TCN models for snowmelt prediction, which have not been used
before for snowmelt forecasting. The values of NSE for the SVR, LSTM, Transformer, and
TCN models were 97.5%, 99%, 98.9%, and 99.1%, respectively. However, an ANN model
proposed in a past study showed a 93% model efficiency for the Upper Euphrates basin of
Turkey, which is comparatively less than that of traditional ML models [10]. The NSE value
of the LSTM model in [14] was 99.2%, which is comparable to our LSTM model result as
our study and their study both focus on predicting discharge.

Previous studies show that single-layered LSTM is being used for prediction [14,15],
but the model proposed by Kratzert et al. [13] used two-layered LSTM; however, these
studies do not explore the performance of models using different layers of LSTM. In
Thapa et al.’s study [16], the performance of LSTM models with different layers of LSTM,
optimizers, and window sizes was compared and evaluated; however, the manual tuning of
hyperparameters without the use of any systematic approach is questionable for achieving
the best model performance. In our study, we used a Keras tuner for the hyperparameter
tuning to increase the model performance. After hyperparameter tuning, we found that
two-layered stacked LSTM performs better than single-layered LSTM. In this research work,
we evaluated the performance of five optimizers across different layers and found that the
Adam optimizer with a learning rate of 0.004 performed better. The performance of all of
the models for each fold is shown in Tables 2 and 3.

The majority of research work using ML models does not exploit the most recent SOTA
deep learning technologies [10,13,15,16]. In past endeavors, traditional approaches such as
SVR, ANNs, and LSTM were used for snowmelt forecasting. In our study, we used recent
DL architectures such as Transformer and TCN models; these models have been shown
to be capable of capturing long-range dependencies, and they outperformed all other
traditional ML models. We found that the TCN model exhibited superior performance
compared to the other models, with a model efficiency of 99.1% in terms of the NSE. In the
model development phase, input selection is an important task, but it is often neglected.
In the study by Thapa et al. [16], it was found that gamma testing can help to determine
the appropriate input combination; so, in this study, we compared each model based
on different input types and evaluated that the models with the M2 input type had a
better performance, which is shown in Table 4. However, the TCN model had a better
model efficiency with the M1 input, while all other models performed better with the
M2 input, which might be due to variations in the spatial and temporal resolution or the
relevance of the input variable. In this study, we used nested CV to make the models
generalizable. However, the model generalizability depends on the distribution of the
input data. Therefore, we used 10 years (2002–2012) of data with features such as Q, P, SCA,
and T. This dataset encompasses a diverse range of data distributions, enabling the model
to learn different distributions. Nevertheless, the model performance will be lower when
using data with unknown distributions, such as those influenced by climatic changes, like
SCA, T, and P. Given that the model encounters completely different distributions, when
compared to a model trained with a specific distribution, the ML model will have a poor
performance [29]. Furthermore, the authors of [30] evaluated the performance of a DL

Water 2024, 16, 2095 18 of 19

model under different distributions and found that the proposed SOTA model was still far
from solving this problem. Ground-truth observation in the Himalayan basins is difficult
due to the high elevation difference between the stations. Hence, the remotely sensed SCA
and meteorological products are important assets. This research proves the effectiveness
of ML models in regions with limited data, and it also signifies that SOTA models are
more applicable for snowmelt forecasting as they capture long-range dependencies and are
more generalizable.

6. Conclusions

In this work, we investigated snowmelt-driven streamflow forecasting using ML
techniques. The experiments were conducted over the HKH area. We compared the
performance of SVR, LSTM, Transformer, and TCN architectures with M1 and M2 inputs
for forecasting snowmelt. We found no significant differences in performance between
the M1 and M2 inputs, which indicates that precipitation is not important for forecasting
streamflow during the snowmelt period. In this study, we have also highlighted the
importance of hyperparameter tuning to obtain a better model. The TCN architecture
showcased superior performance compared to the other ML techniques. Furthermore,
we disclosed the benefits of nested CV for evaluating the performance of different ML
techniques in snowmelt-driven streamflow forecasting. This contribution provides valuable
insights for decision-makers in environmental monitoring and resource management,
emphasizing the importance of leveraging advanced deep learning architecture for more
reliable and precise forecasting.

Author Contributions: Conceptualization, U.T., B.M.P. and S.T.; investigation, U.T. and B.M.P.;
methodology, U.T.; resources, S.T.; supervision, B.M.P. and S.T.; writing—original draft preparation,
U.T.; writing—review and editing, U.T., B.M.P., S.T., D.P. and A.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Advanced College of Engineering and Management,
Tribhuvan University.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors extend their heartfelt gratitude to all Electronics and Computer
Department members at the Advanced College of Engineering and Management. Special appreciation
is also extended to the AI Research Center and Advanced College of Engineering and Management
for their generous financial support and management of the experimental setup.

Conflicts of Interest: No conflicts of interest are declared by the authors regarding the experimental
setup; data analyses; interpretation of the results; or documentation of the manuscript.

References
1. Panday, P.K.; Frey, K.E.; Ghimire, B. Detection of the timing and duration of snowmelt in the Hindu Kush-Himalaya using

QuikSCAT, 2000–2008. Environ. Res. Lett. 2011, 6, 024007. [CrossRef]
2. Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability

and People; Springer Nature: New York, NY, USA, 2019.
3. Griessinger, N.; Schirmer, M.; Helbig, N.; Winstral, A.; Michel, A.; Jonas, T. Implications of observation-enhanced energy-balance

snowmelt simulations for runoff modeling of Alpine catchments. Adv. Water Resour. 2019, 133, 103410. [CrossRef]
4. Ohmura, A. Physical basis for the temperature-based melt-index method. J. Appl. Meteorol. Climatol. 2001, 40, 753–761. [CrossRef]
5. Massmann, C. Modelling snowmelt in ungauged catchments. Water 2019, 11, 301. [CrossRef]
6. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I:

Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [CrossRef]
7. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II:

Hydrologic applications. J. Hydrol. Eng. 2000, 5, 124–137. [CrossRef]
8. Callegari, M.; Mazzoli, P.; De Gregorio, L.; Notarnicola, C.; Pasolli, L.; Petitta, M.; Pistocchi, A. Seasonal river discharge forecasting

using support vector regression: A case study in the Italian Alps. Water 2015, 7, 2494–2515. [CrossRef]
9. De Gregorio, L.; Callegari, M.; Mazzoli, P.; Bagli, S.; Broccoli, D.; Pistocchi, A.; Notarnicola, C. Operational river discharge

forecasting with support vector regression technique applied to alpine catchments: Results, advantages, limits and lesson learned.
Water Resour. Manag. 2018, 32, 229–242. [CrossRef]

http://doi.org/10.1088/1748-9326/6/2/024007
http://dx.doi.org/10.1016/j.advwatres.2019.103410
http://dx.doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2
http://dx.doi.org/10.3390/w11020301
http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
http://dx.doi.org/10.3390/w7052494
http://dx.doi.org/10.1007/s11269-017-1806-3

Water 2024, 16, 2095 19 of 19

10. Uysal, G.; Şensoy, A.; Şorman, A.A. Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer
perceptron model with satellite snow products. J. Hydrol. 2016, 543, 630–650. [CrossRef]

11. Granata, F.; Di Nunno, F.; Najafzadeh, M.; Demir, I. A stacked machine learning algorithm for multi-step ahead prediction of soil
moisture. Hydrology 2022, 10, 1. [CrossRef]

12. Nagesh Kumar, D.; Srinivasa Raju, K.; Sathish, T. River flow forecasting using recurrent neural networks. Water Resour. Manag.
2004, 18, 143–161. [CrossRef]

13. Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using long short-term memory (LSTM)
networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [CrossRef]

14. Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water
2019, 11, 1387. [CrossRef]

15. Fan, H.; Jiang, M.; Xu, L.; Zhu, H.; Cheng, J.; Jiang, J. Comparison of long short term memory networks and the hydrological
model in runoff simulation. Water 2020, 12, 175. [CrossRef]

16. Thapa, S.; Zhao, Z.; Li, B.; Lu, L.; Fu, D.; Shi, X.; Tang, B.; Qi, H. Snowmelt-driven streamflow prediction using machine learning
techniques (LSTM, NARX, GPR, and SVR). Water 2020, 12, 1734. [CrossRef]

17. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

18. RGI Consortium; Randolph Glacier Inventory. A Dataset of Global Glacier Outlines: Version 6.0; Global Land Ice Measurements
from Space: Boulder, CO, USA, 2017.

19. Ragettli, S.; Pellicciotti, F.; Immerzeel, W.W.; Miles, E.S.; Petersen, L.; Heynen, M.; Shea, J.M.; Stumm, D.; Joshi, S.; Shrestha, A.
Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with
an advanced simulation model. Adv. Water Resour. 2015, 78, 94–111. [CrossRef]

20. Yasutomi, N.; Hamada, A.; Yatagai, A. Development of a long-term daily gridded temperature dataset and its application to
rain/snow discrimination of daily precipitation. Glob. Environ. Res. 2011, 15, 165–172.

21. Thapa, S.; Li, B.; Fu, D.; Shi, X.; Tang, B.; Qi, H.; Wang, K. Trend analysis of climatic variables and their relation to snow cover and
water availability in the Central Himalayas: A case study of Langtang Basin, Nepal. Theor. Appl. Climatol. 2020, 140, 891–903.
[CrossRef]

22. Immerzeel, W.W.; Droogers, P.; De Jong, S.; Bierkens, M. Large-scale monitoring of snow cover and runoff simulation in
Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [CrossRef]

23. Stigter, E.E.; Wanders, N.; Saloranta, T.M.; Shea, J.M.; Bierkens, M.F.; Immerzeel, W.W. Assimilation of snow cover and snow
depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 2017,
11, 1647–1664. [CrossRef]

24. Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002,
83, 181–194. [CrossRef]

25. Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios.
J. Hydrol. 2012, 424, 264–277. [CrossRef]

26. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 1999.
27. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30.
29. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. (CSUR)

2014, 46, 1–37. [CrossRef]
30. Guillory, D.; Shankar, V.; Ebrahimi, S.; Darrell, T.; Schmidt, L. Predicting with confidence on unseen distributions. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 10–17 October 2021; pp. 1134–1144.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jhydrol.2016.10.037
http://dx.doi.org/10.3390/hydrology10010001
http://dx.doi.org/10.1023/B:WARM.0000024727.94701.12
http://dx.doi.org/10.5194/hess-22-6005-2018
http://dx.doi.org/10.3390/w11071387
http://dx.doi.org/10.3390/w12010175
http://dx.doi.org/10.3390/w12061734
http://dx.doi.org/10.1016/j.advwatres.2015.01.013
http://dx.doi.org/10.1007/s00704-020-03096-5
http://dx.doi.org/10.1016/j.rse.2008.08.010
http://dx.doi.org/10.5194/tc-11-1647-2017
http://dx.doi.org/10.1016/S0034-4257(02)00095-0
http://dx.doi.org/10.1016/j.jhydrol.2012.01.011
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1145/2523813

	Introduction
	Materials and Methods
	Study Area
	Hydrometeorological Data
	Snow Cover
	Dataset Preparation
	Experimental Setup
	Kling–Gupta Efficiency
	Nash–Sutcliffe Efficiency
	R Square (R2)
	Root-Mean-Square Error
	Mean Absolute Error

	Methodology
	SVR
	LSTM
	Transformer
	Self-Attention Mechanism
	Multi-Head Attention
	Position Encoding

	TCN
	Dilated Causal Convolutions
	Residual Blocks
	Temporal Skip Connection

	Results
	Performance Analysis of ML Models with Four Inputs
	Performance Analysis of ML Models with Three Inputs
	Overall Comparison of ML models
	Testing Time

	Discussion
	Conclusions
	References

