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Abstract: Landslide disasters frequently result in significant casualties and property losses, underscor-
ing the critical importance of research on landslide displacement prediction. This paper introduces an
approach combining improved empirical mode decomposition ICEEMDAN) and singular entropy-
enhanced singular spectrum analysis (SSA) to predict landslide displacement using a time series
short-duration memory network (LSTM). Initially, ICEEMDAN decomposes the landslide displace-
ment time series into trend and periodic terms. SSA is then employed to denoise these components
before fitting the trend term with LSTM. Pearson correlation analysis is utilized to identify character-
istic factors within the LSTM model, followed by predictions using a multivariate LSTM model. The
empirical results from the Baijiabao landslide in the Three Gorges Reservoir area demonstrate that the
joint ICEEMDAN-SSA approach, when combined with LSTM modeling, outperforms the separate
applications of SSA and ICEEMDAN, as well as other models such as RNN and SVM. Specifically,
the ICEEMDAN-SSA-LSTM model achieves an RMSE of 6.472 mm and an MAE of 4.992 mm, which
are considerably lower than those of the RNN model (19.945 mm and 15.343 mm, respectively)
and the SVM model (16.584 mm and 11.748 mm, respectively). Additionally, the R? value for the
ICEEMDAN-SSA-LSTM model is 97.5%, significantly higher than the RNN model’s 72.3% and the
SVM model’s 92.8%. By summing the predictions of the trend and periodic terms, the cumulative
displacement prediction is obtained, indicating the superior accuracy of the ICEEMDAN-SSA-LSTM
model. This model provides a new benchmark for precise landslide displacement prediction and
contributes valuable insights to related research.

Keywords: landslide; ICEEMDAN-SSA-LSTM; temporal prediction; displacement decomposition

1. Introduction

Landslides are prevalent geological disasters that not only result in significant casual-
ties but also lead to substantial economic losses. There are primarily two approaches for
the monitoring and early warning of landslides: one relies on historical data prediction,
and the other utilizes theoretical analysis. The choice of method for landslide displacement
prediction often depends on the specific circumstances and available technologies. With
advancements in UAV remote sensing and 3D laser scanning, it is now possible to mon-
itor landslides extensively, although these methods produce data characterized by high
noise levels and large volumes, posing challenges in extracting useful information and
developing effective prediction models.

Historical research has explored various predictive models for landslide displacement.
For instance, in 2017, Shihabudheen advocated the use of the Extreme Learning Machine
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(ELM) to address challenges like gradient descent in landslide prediction [1]. In 2020,
Wang Yankun et al. utilized two Least Squares Support Vector Machine (LSSVM) mod-
els, enhanced by a differential search algorithm, to forecast future displacement intervals
and optimize model parameters [2]. Furthermore, Wu introduced a metabolism-based
GM(1,1) model that dynamically updates to improve prediction accuracy over the tradi-
tional GM(1,1) model [3]. Most recently, in 2022, Zian Lin et al. combined an exponentially
weighted moving average (EWMA) method with a Double-BiLSTM model to predict land-
slide displacements, demonstrating significant advancements from initial singular model
applications to complex multi-model approaches [4].

Current methodologies in landslide displacement prediction fall into three categories:
constructing time series models from periodic monitoring data [5], integrating landslide
data with time series models like ARIMA and PSO-LSTM [6], and developing enhanced
models through innovative techniques [7]. The first two methods effectively handle non-
stationary signals but require extensive data for model training and may not capture all
characteristics of landslide displacement time series. The third approach, which includes
novel decomposition and noise reduction techniques, tends to preserve time series features
more effectively, though some data may be lost during the process.

Regarding specific techniques, the ICEEMDAN method is noted for its superior signal
decomposition capabilities [8], SSA is recognized for its effective denoising properties [9],
and the LSTM model is particularly advantageous for predicting long series data due to
its ability to handle such complexities, making it a common choice in time series predic-
tion [10]. Despite their strengths, these methods are not frequently employed in landslide
displacement prediction, suggesting an area for further exploration and application in
geotechnical forecasting.

This paper introduces a combined approach using ICEEMDAN, SSA, and LSTM
to process landslide displacement data, where ICEEMDAN decomposes the data into
trend and periodic terms, SSA performs noise reduction, and LSTM models predict these
components. This study employs the Baijiabao landslide as a case study to demonstrate the
efficacy of the ICEEMDAN-SSA-LSTM model against conventional methods. The results
indicate that this model not only effectively removes trend and noise from non-stationary
landslide data but also achieves superior prediction accuracy. This integrated model offers
a novel perspective for predicting landslide hazards, suggesting a promising direction for
future research in this field.

2. Research Flowchart

This paper explores the technical process of landslide prediction from the perspective
of displacement decomposition. We introduce the ICEEMDAN-SSA-LSTM model to en-
hance the accuracy of landslide displacement data prediction. Initially, displacement data
are decomposed into trend and periodic terms using ICEEMDAN, SSA, and a combined
ICEEMDAN-SSA approach. Subsequently, these decomposed terms are predicted using an
LSTM model. The performance of each model is evaluated by comparing their prediction
accuracy. To further assess the feasibility of this hybrid model, traditional models such
as RNN and SVM are incorporated into the prediction of periodic terms for comparative
analysis. The error metrics of the prediction results from each model are thoroughly re-
viewed. This study uses the Baijiabao landslide as a case study, with Figure 1 illustrating
the detailed research process.
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Figure 1. Research flowchart.

3. Materials and Methods
3.1. Geological Situation and Time Series Data of Baijiabao Landslide

The Baijiabao Landslide is situated within the second group of Xiangjiadian Village,
Guizhou Town, Zigui County, located in the Three Gorges Reservoir area, approximately
2.5 km from the confluence of the Xiangxi River and the Yangtze River. It lies 41.2 km from
the Three Gorges Dam, positioned on the right bank of the Xiangxi River, a northern tribu-
tary of the Yangtze River. The geographical coordinates of the landslide are 30°58'59.9” N,
110°45'33.4" E. The terrain at the landslide site is complex, featuring a mix of gentle slopes
and gullies, leading to varied landforms. The sliding surface of the landslide typically
presents an arc shape. The profile and the distribution of monitoring equipment locations
are illustrated in Figure 2. The data were derived from field survey data of the landslide site.
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Figure 2. Section view of Baijiabao landslide.

The Baijiabao landslide is situated on the right bank of the Xiangxi River, a tributary
of the northern bank of the Yangtze River. Seasonally, the area experiences precipitation
predominantly from April to September, characterized by cooler temperatures in winter
and rainy, humid, and warmer summers. Structurally, two distinct groups of geological
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joints are identified at the landslide site; one group facilitates the collapse of the landslide’s
trailing edge, while the other bisects the landslide into left and right segments [11].

To safeguard the lives and property of the local villagers, GNSS-based surface displace-
ment monitoring of the Baijiabao landslide commenced in October 2006. This monitoring
strategy utilizes multiple GNSS sensors strategically placed across the landslide to record
precise displacement data, culminating in comprehensive datasets on the cumulative dis-
placement. Over time, this allows researchers to trace and analyze the progression of
deformation within the landslide. For this initiative, four monitoring sites designated as
7G323, ZG324, ZG325, and ZG326 were established. Sites ZG324 and ZG325 are located in
the principal area of landslide activity, while ZG323 and ZG326 are positioned in the middle
and lower sections, near the Zixing. The instrumentation employed delivers exceptionally
high measurement accuracy [12].

From November 2006 to December 2011, data from four displacement sensors—ZG323,
ZG324, ZG325, and ZG326—were collected, providing 75 data periods. Sensor ZG323,
located near the highway, provided the primary dataset for this study, supplemented
by corresponding monthly rainfall and local reservoir water levels [13]. These compre-
hensive data are illustrated in Figure 3, sourced from the archived records of the China
Geological Environmental Monitoring Institute, Three Gorges Center. As illustrated in
the figure, landslide stability is significantly influenced by rainfall and reservoir water
levels. During periods of heavy rainfall, water infiltrates the soil, increasing its weight and
reducing its shear strength, thereby promoting landslide activity. Similarly, fluctuations
in the reservoir water levels can alter the hydrostatic pressure within the slope materials.
An increase in the water level can lead to slope saturation, reducing its stability, while a
decrease may lessen the support against the slope materials, potentially triggering land-
slides. Therefore, reservoir bank landslides induced by rainfall exhibit distinct periodic and
trend characteristics.
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Figure 3. Monthly rainfall, reservoir levels and displacement data for the Baijiabao landslide.

Time series data form the data foundation for this study, originating from four GNSS
monitoring stations distributed across the landslide body. Due to signal interruptions and
equipment failures, the data from each monitoring point are not always continuous, with
varying degrees of missing information. The ZG323 monitoring point has the least data
missing and is conveniently located in the middle of the landslide, making it the primary
dataset for this study. Missing data from ZG323 are supplemented with data from the other
three stations, resulting in a continuous time series dataset spanning from January 2007 to
December 2011. GNSS monitoring data are vectorial and three-dimensional, meaning their
magnitude does not directly represent accurate landslide displacement. To characterize the
changes more precisely in landslide displacement, we project the vectorial displacement
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data along the direction of the landslide. Typically, monitoring occurs once a month, but
the frequency increases during the rainy season from June to September each year, with
two monitoring sessions being conducted each month. Ultimately, the number of data
periods applied to the model totals 75, comprising 60 + 15 periods, where 60 represents
the sum of monthly displacement data periods from January 2007 to December 2011, and
15 accounts for the sum of the second monitoring periods during the period of June to
September in certain years. This ensures consistency in the direction of the data used,
establishing an accurate dataset for subsequent model applications.

Given the step-like nature and evident periodicity of displacement at Baijiabao, this
study proposes a landslide prediction method based on displacement decomposition using
ICEEMDAN-SSA. This technique enables the precise extraction of trend and periodic terms
from the landslide displacement data. A univariate LSTM model predicts the trend term,
while a multivariate LSTM model addresses the periodic term. In this predictive framework,
data from 2007 to 2010 serve as the training set, and data from 2011 are designated as the
prediction set.

3.2. ICEEMDAN

Empirical Modal Decomposition (EMD) is a signal decomposition technique that
iteratively extracts a series of intrinsic modal functions (IMFs), each representing different
vibration modes at corresponding time scales. Traditional EMD algorithms often suf-
fer from issues such as excessive mode extraction and mode aliasing. To address these
issues, enhancements such as Completely Adaptive Noise Ensemble Empirical Modal
Decomposition (CEEMDAN) and Improved Adaptive Noise Ensemble Empirical Modal
Decomposition ICEEMDAN) have been developed. CEEMDAN introduces adaptive noise
into the original signal, followed by independent decomposition and averaging, which
enhances denoising, improves accuracy, and mitigates modal aliasing to a significant extent.

ICEEMDAN, an advancement of the CEEMDAN method, is capable of decomposing
complex and non-smooth signals into a trend term and a series of IMFs. In ICEEMDAN,
IMFs must satisfy two conditions: (1) the number of orthogonal extreme points in any
IMF must be equal or differ by no more than one throughout the signal time domain, and
(2) the local mean of the function must be zero at any given moment. Through step-by-step
decomposition into IMFs, ICEEMDAN achieves more accurate extraction of the signal
structure, enhancing the precision and stability of signal processing analysis. ICEEMDAN
is extensively applied in medical signal measurement, signal processing, image processing,
and time series data analysis, offering robust methods for both analysis and processing [14].

3.3. SSA

SSA is a technique for processing nonlinear time series data. It can effectively de-
compose the total displacement time series into multiple sub-sequences and aggregate
them into trend terms and periodic terms while removing noise. Its specific process mainly
consists of four parts: embedding, decomposition, grouping, and reconstruction [15]. It is
carried out through the following steps:

(1) The Creation of a Trajectory Matrix (embed step). SSA focuses on the analysis of
one-dimensional and finite sequences [x1, x7, ..., xN], where N represents the length of
the sequence. First, the matching window length, L, is selected and the raw time series
is hysterically processed to construct the trajectory matrix, D. In most cases, the L value
chosen is less than N/2, where N is the length of the sequence. K is defined as N — L + 1,
and the resulting trajectory matrix, X, is a matrix of L rows and K columns.

xl xz o .. xK
X2 X3 o XK1
X=1. . . 1)

XL Xr+1 -°° XN



Water 2024, 16, 2111

6 of 20

(2) Singular Value Decomposition (SVD). The decomposition, X, is of the form X = U )" VT,
where V is called the right matrix, U is called the left matrix, and non-zero values occurring
only on the main diagonal are the singular values, and the rest of the elements have a value of
0. In addition, both U and V are unit orthogonal matrices, satisfying UUT = I, VVT = [. Itis
impractical to decompose the trajectory matrix directly, so it is first necessary to calculate the
covariance matrix S of the trajectory matrix, which can be obtained by the formula S = XXT.
Then, the eigenvalue decomposition of the covariance matrix S is carried out to obtain a series
of eigenvalues A; > Ay > -+ > A > 0 and corresponding eigenvectors Uy, Uy, ..., Uy. In this
step, U = [Uy, Uy, ..., Ur], and \/A] > /A3 > -+ > /AL > 0 for the singular spectrum of
the original sequence. In addition, the trajectory matrix X may be expressed by the following
formula: X = YL AUV, Viy = XTUy/ /A, m = 1,2, - - L. Here, the eigenvector U
corresponding to each A; is called the time-empirical orthogonal function, which reveals patterns
of change in time series data.

(3) Grouping. The grouping step involves dividing the set of fundamental matrices
into {1,2,...,d} cutinto m disjoint subsets, I, I, . . ., I;. The singular value decomposition
of X can be expressed as a combination of X; = Xj, +--- + X,

(4) Singular Entropy Calculation. The singular entropy is then calculated using the
Shannon entropy formula applied to the normalized singular values:

H ==Y pjilog(p;) )

i=1

where p; is the normalized singular value, and r is the rank of the trajectory matrix.

(5) Reconstruction (diagonal averaging). First, the hysteresis sequence X; is calculated
in Uy, projection: af" = X;Uy, = Z]‘L:1 XitjUpm,j,0 < i < N — L. Considering X;, the ith
column of the trajectory matrix X is associated with the time evolution type, and a"
represents the weight of X; in the original sequence: X; 1, Xj 15, -+, Xjy1. These weights
are also called time principal components (TPCs). In short, the matrix consists of 4", which
is actually the right matrix without normalization, which is /A Viu. Then, reconstruction is
performed by using the orthogonal function of time experience and the principal component
of time [16], as shown in Formula (2).

| =

]

i
k .
L aifjllk,j,l <i<L-1

™= =

1a§gjuk,j,LgigN—L+1 3)

1 i .
- k U, N—L+2<i<N
N—l+1j:i§\]+Lal—] kj t2sis

|-

]

In this way, the sum of all reconstructed sequences is equal to the original sequence,
ie,x;=YF  xKi=12...,N.

3.4. LSTM

In 1997, Hochreiter and Schmidhuber first proposed the LSTM model. LSTM is a
special kind of RNN, which is carefully designed. The original RNN training process, due
to the extended training time and the increase in the number of network layers, is likely to
have problems such as gradient bursting and gradient vanishing, which make it difficult
to efficiently process very long data processing. To address this problem, LSTM adds the
RNN-based memory feature, which can maintain the long-term memory of the neural
network [17]. The LSTM model structure is shown in Figure 4.
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Figure 4. LSTM model structure diagram.

LSTM neurons possess three control gates, the forgetting gate (f;), the input gate (i),
and the output gate (o), with subscripts denoting moments.

Forgetting gate (f;): Taking x; and h;_ as inputs, a value between 0 and 1 is output,
which is used to determine how much to retain the cellular state C;_; of the previous step,
where 1 means completely retained and 0 means completely discarded. The details are
shown in Formula (3) [18].

fr = oc(Wexe + Ughy ) 4)

Input gate (i;): First, the input gate of the sigmoid function is utilized to filter out the
information that needs to be updated immediately. Then, a vector is generated at the tanh
layer that determines how much information from the network input X; at the current time
step can be saved to the current cell state C;. Finally, these two parts are combined to update
the information in the current cell state C; [19]. The details are shown in Formulas (4)—(6).

ir = c(Wixy + Uihy—q) (5)
¢ = tanh(Wox; + Uchy_1) (6)
Cr = frxcrq +ip % 7)

Output gate (0;): First, the sigmoid layer acts as an output gate determining how much
information about the cell state C; at the current moment can be retained into the current
hidden state h;. Then, the cell state is processed by the tanh layer, and the final output is the
result of multiplying these two parts [20]. The details are shown in Formulas (7) and (8).

0y = O'(Woxt + Uoht,l) (8)
Y = hy = o X tanh(cy) 9)

3.5. Error Analysis Index

In this paper, the root mean square error (RMSE), mean absolute error (MAE), and R?
are used to assess the error in the prediction results.

The RMSE is the ratio of the square root of the sum of the squares of the deviations of
the predicted values from the true values to the sample size, as shown in Equation (9).

The MAE is the average of the absolute errors between the predicted and observed
values, as shown in Equation (10).

R? is calculated as R?> = 1 — (SSE/SST), where SSE is the residual sum of squares
and SST is the total sum of squares. If the model is well fitted, then the SSE will be small
and the R? value will be close to 1. If the model is poorly fitted, then the SSE will be large
and the R? value will be close to zero.

Y(x —x;)?
n

RMSE = (10)
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1 n
MAE = =) |x —x; 11
ol = il (11)
where x and x; are the true and predicted values, respectively, and 7 is the number of samples.

4. Results
4.1. Cumulative Displacement Decomposition

Numerous factors influence cumulative displacement, many of which exhibit cycli-
cal patterns corresponding to seasonal weather changes. Therefore, by segregating the
cyclic and trend components of the cumulative displacement, each can be predicted more
effectively in isolation. This approach enhances the accuracy of cumulative displacement
predictions by aligning the forecast models with the distinct behaviors exhibited by each
component over time.

4.1.1. ICEEMDAN

The ICEEMDAN method is capable of decomposing data into multiple Intrinsic
Mode Functions (IMFs) and a trend term. In this section, the ICEEMDAN method is
employed to decompose the landslide displacement data recorded at sensor ZG323 into
IMF1, IMF2, IMF3, and a trend term, as depicted in Figure 5. The sum of the IMFs, excluding
the trend term, constitutes the periodic term displacement. Typically, the ICEEMDAN
method extracts four to six components. As illustrated in Figure 5, the first component
represents the trend term, which exhibits a distinct trend. IMF1, IMF2, and IMF3 present as
progressively smoother curves, with IMF3 displaying clear periodicity. After experimental
evaluation, a configuration yielding four sub-signals was selected for its enhanced accuracy
in decomposing landslide displacement into trend and periodic terms.
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Figure 5. ICEEMDAN of cumulative displacement results.

4.1.2. SSA Decomposition

The core step of singular spectrum analysis (SSA) involves decomposing a time series
into subsequences and subsequently reconstructing them. Traditionally, SSA selects the first
five subsequences or customizes the number of subsequences, which can yield inaccurate
results, potentially discarding crucial subsequences or reconstructing noisy ones. In this
study, we employ the singular entropy method to evaluate the significance of subsequences
after decomposition. The cumulative displacement is initially decomposed into L subse-
quences using SSA, with L set at 20. Post-decomposition, the singular entropy is calculated
for each component to determine their significance, as illustrated in Figure 6a. This analysis
reveals that the entropy value increment stabilizes after the tenth component, indicating
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that the first ten subsequences are significant and suitable for reconstruction, while the
last ten are deemed random and are discarded. The first subsequence is reconstructed as
the trend term, and subsequences two through ten are reconstructed as periodic terms.
The detailed results of this decomposition and reconstruction process are displayed in
Figure 6b, demonstrating the efficacy of using singular entropy to enhance the accuracy of
SSA decompositions.

Entropy value The change in entropy Trend term  ===-Periodic term
I r 600
09 r
g | 500 t
07 E 400 |
0.6 r z 300
5 300
0.5 g
04 | S 200 |
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(a) (b)

Figure 6. SSA decomposes cumulative displacement. (a) Entropy and change in entropy. (b) Decom-
position cumulative displacement.

4.1.3. ICEEMDAN-SSA Decomposition

The ICEEMDAN method is effective for decomposition, while the SSA method excels
in denoising and reconstruction. This study proposes the combined use of these methods
for joint decomposition. Initially, the ICEEMDAN method decomposes the landslide
displacement data into trend and periodic terms. Subsequently, the SSA method is applied
to denoise these components separately.

In this analysis, the singular entropy method is introduced to assess the significance of
subsequences derived from SSA decomposition. The SSA method decomposes the trend
term into L subsequences, with L set at 20. Following decomposition, the singular entropy
is calculated for each component, as depicted in Figure 7a. It is observed that the entropy
value increment stabilizes after the seventh component, indicating that the first seven
subsequences are significant and retained as denoised trend terms, while the last thirteen
subsequences, being less significant, are discarded.

=&—Entropy value The change in entropy == Entropy value The change in entropy
1 r 1 ¢
08 F S "'"\7‘_, 08 |
0.6 06 |
04/ > oa b
02 02 +
O _‘_‘_I_I—. . ! ! ! ! ! ! ! ! ! ' ! ! e O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
1234567 8 91011121314151617181920 12345678 91011121314151617181920
Sequence number Sequence number
(a) (b)

Figure 7. Entropy maps for ICEEMDAN-SSA. (a) Entropy value and entropy change in trend term.
(b) Entropy value and entropy change in periodic term.

Similarly, the periodic term is decomposed into subsequences, and the entropy values
are calculated for each. As shown in Figure 7b, the entropy increment stabilizes after the
seventeenth component. Thus, the first seventeen subsequences are considered signif-



Water 2024, 16, 2111 10 of 20

icant and reconstructed as the periodic term after denoising, with the remaining three
subsequences being discarded as noise. The reconstructed data are illustrated in Figure 8.

Trend term  ------ Periodic term
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Figure 8. Plot of ICEEMDAN-SSA cumulative displacement results.

4.2. Trend Term Displacement Predictions
4.2.1. ICEEMDAN-LSTM Trend Term Prediction

LSTM models are particularly effective for issues strongly correlated with time series
data, such as the prediction of landslide trend term displacements. In this study, a uni-
variate LSTM model was utilized to predict these trend term displacements [21]. Optimal
parameters were identified through automatic hyperparameter tuning using grid search;
specifically, the model achieved the lowest prediction error with an input sequence length
of 5 and 53 training cycles, resulting in an RMSE of 2.682 mm and an MAE of 2.157 mm.
The fitting results displayed in Figure 9 illustrate that as the number of training samples
increases, the predicted and actual data curves converge significantly. This convergence
reduces the error progressively, especially in the prediction phase post-January 2011, where
the curves overlap closely and the error approaches zero.
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Figure 9. Plot of ICEEMDAN-LSTM trend term prediction results.

4.2.2. SSA-LSTM Trend Term Prediction

In this analysis, a univariate LSTM model was employed to fit the trend term dis-
placements decomposed via SSA. Optimal model parameters were determined through
automatic hyperparameter tuning using grid search, specifying an input sequence length
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of 5 and 52 training cycles. This configuration resulted in the smallest prediction error,
with an RMSE of 2.182 mm and an MAE of 1.751 mm. The model fitting results, illustrated
in Figure 10, show that as the number of training samples increases, the predicted and
actual data curves converge significantly, thereby reducing the prediction error. Notably, in
the prediction phase—post-January 2011—the two curves overlap closely, and the error
approaches zero.
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Figure 10. SSA-LSTM trend term prediction result plot.

4.2.3. ICEEMDAN-SSA-LSTM Trend Term Prediction

In this section, an LSTM model is used to predict the trend term displacements from
the joint ICEEMDAN-SSA decomposition. Through automatic hyperparameter tuning
using grid search, it was determined that an input sequence length of 5 and 53 training
rounds resulted in the smallest prediction error, with an RMSE of 2.677 mm and an MAE
of 2.152 mm. The model fitting prediction results are shown in Figure 11. As the number
of training samples increases, the two curves converge, and the error decreases. In the
prediction part, which includes data after January 2011, the model’s predictions closely
match the actual values, with the error approaching zero. Some of the hyperparameters of
this LSTM model are presented in Table 1.
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Figure 11. Plot of ICEEMDAN-SSA-LSTM trend term prediction results.
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Table 1. Hyperparameters of LSTM model in trend term displacement prediction.

Hyperparameters ICEEMDAN-SSA-LSTM
epochs 53
number of hidden layer units 50
activation function relu
batch size 64
optimizer Adam

4.2.4. Analysis of Results of Trend Term Projections

The trend term prediction errors of the three methods—ICEEMDAN-LSTM, SSA-LSTM,
and ICEEMDAN-SSA-LSTM—are shown in Table 2. The prediction errors for the trend term
across these models are not large, with a relative error of less than 0.01 and an R? value higher
than 0.99, indicating an accuracy of 99% and very precise trend term predictions over time.
The primary reason for this high accuracy is that the LSTM model not only addresses the
vanishing gradient problem but also fully captures the patterns in historical trend term data.
This demonstrates that the LSTM model has significant advantages in predicting time series
data, making it highly suitable for landslide prediction.

Table 2. Table of forecast errors for trend terms.

Model RMSE/mm MAE/mm Relative Error/% R%/%
ICEEMDAN-LSTM 2.682 2.157 0.5 99.97
SSA-LSTM 2.182 1.751 0.6 99.83
ICEEMDAN-SSA-LSTM 2.677 2.152 0.5 99.97

4.3. Periodic Term Displacement Predictions
4.3.1. Multivariate LSTM Feature Factor Selection

In this study, the correlation between two continuous variables was assessed using
Pearson correlation analysis. Pearson correlation coefficients range from —1 to 1, where
—1 indicates a negative correlation, 1 indicates a positive correlation, and 0 indicates no
correlation. The closer the value of the correlation coefficient is to zero, the weaker the
correlation between the variables; conversely, the closer the value is to —1 or 1, the stronger
the correlation. Generally, a coefficient less than 0.2 indicates no correlation, between
0.2 and 0.5 indicates a weak correlation, and greater than 0.5 indicates a strong correlation,
as shown in Formula (11):

Xy — EXRY
e 3 N (12)

\/(Z X2 _ (213702) <Zyz _ ():I\)I/)2>

Most landslide deformations are caused by rainfall and changes in reservoir water
levels. As the water level rises, it deforms the landslide, creating numerous cracks in
the ground surface, which facilitates the storage and transfer of surface water within the
landslide. This process significantly increases the impact of rainfall, particularly heavy
rainfall, on landslide activity. Using data from the Baijiabao landslide from November
2006 to December 2011, a Pearson correlation analysis was conducted to examine the
relationships between displacement, rainfall, and the reservoir level. As shown in Table 3,
the Pearson correlation coefficients for the displacement increment in the first two months,
displacement increment in the first three months, rainfall in the current and previous
month, and rainfall in the first two months are all greater than 0.5. This indicates a strong
correlation between these factors and the periodic term of displacement. Therefore, these
five terms are used as valid characterization factors [22].
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Table 3. Impact factors’ Pearson calculations.

Characteristic Factor Pearson Correlation
Cumulative displacement 0.217
displacement Displacement increment for the month 0.312
P Displacement increments in the first two months 0.501
Displacement increments in the first three months 0.638
Rainfall for the month 0.395
vantity of rainfall Rainfall for two months 0.528
! y Rainfall in the previous month 0.552
Rainfall in the first two months 0.646

Reservoir level for the month —0.432

reservoir level Amount of change in reservoir level during the month 0.321
Amount of change in reservoir level in two months 0.273

4.3.2. ICEEMDAN-LSTM Periodic Term Prediction

The multivariate LSTM model not only considers the overall effect of historical dis-
placement data but also incorporates data from other effective characterization factors
when making predictions. This approach improves the accuracy of the variable weights
corresponding to the displacements and enhances the performance of the predictions.
Therefore, this study employs a multivariate LSTM model, incorporating data such as the
displacement increment from the first two months, displacement increment from the first
three months, rainfall from the current and previous month, and rainfall from the first
two months, all with Pearson correlation coefficients greater than 0.5 [23].

To optimize the use of the multivariate LSTM model, the data were divided into
training and prediction sets in a 4:1 ratio. The training set was iteratively trained to
obtain suitable network parameters, and the model’s performance was evaluated using
the prediction set. Through automatic hyperparameter tuning using grid search, it was
determined that the optimal input sequence length was 6 and the number of training
rounds was 500, resulting in the smallest prediction error, with an RMSE of 4.762 mm and
an MAE of 3.833 mm. The model fitting prediction results are illustrated in Figure 12.
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Figure 12. Plot of ICEEMDAN-LSTM cycle term prediction results.

4.3.3. SSA-LSTM Periodic Term Prediction

In this section, a multivariate LSTM model is used to predict the periodic terms,
incorporating the data with Pearson correlation coefficients greater than 0.5. The data were
divided into training and prediction sets in a ratio of 4:1. The training set was iteratively
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trained to obtain suitable network parameters, and the model’s performance was evaluated
using the prediction set. Through automatic hyperparameter tuning using grid search, it
was determined that the optimal input sequence length was 5 and the number of training
rounds was 600, resulting in the smallest prediction error, with an RMSE of 6.472 mm and
an MAE of 4.992 mm. The model fitting prediction results are illustrated in Figure 13.
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Figure 13. SSA-LSTM cycle term prediction result plot.

4.3.4. ICEEMDAN-SSA-LSTM Periodic Term Prediction

In this section, a multivariate LSTM model is employed to predict the periodic terms,
incorporating data with Pearson correlation coefficients greater than 0.5. The data were
divided into training and prediction sets in a ratio of 4:1. The training set was iteratively
trained to obtain suitable network parameters, and the model’s performance was evaluated
using the prediction set. Through automatic hyperparameter tuning using grid search, it
was determined that the optimal input sequence length was 6 and the number of training
rounds was 470, resulting in the smallest prediction error with an RMSE of 4.366 mm and an
MAE of 3.806 mm. The model fitting prediction results are illustrated in Figure 14, showing
that the LSTM predictions closely match the actual results, indicating good predictive
performance. Some of the hyperparameters of this LSTM model are presented in Table 4.
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Figure 14. ICEEMDAN-SSA-LSTM cycle term prediction result map.
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Table 4. Hyperparameters of LSTM model in periodic term displacement prediction.

Hyperparameters ICEEMDAN-SSA-LSTM
epochs 470
number of hidden layer units 50
activation function tanh
batch size 10
optimizer Adam

4.3.5. An Analysis of the Results of the Cyclical Projections

In the prediction model, data from 2007 to 2010 are used as the training set, while data
from 2011 are used as the prediction set. The specific displacement values for 2011 predicted
by the periodic terms of each method are shown in Table 5. The cycle term prediction results
of the three methods—ICEEMDAN-LSTM, SSA-LSTM, and ICEEMDAN-SSA-LSTM—are
depicted in Figure 15, with the corresponding errors listed in Table 6. Among these models,
the ICEEMDAN-SSA-LSTM model yields the best prediction performance, with an RMSE
of 4.366 mm and an MAE of 3.806 mm. These values are lower than the RMSE and
MAE of the ICEEMDAN-LSTM model (4.762 mm and 3.833 mm, respectively) and the
SSA-LSTM model (6.472 mm and 4.992 mm, respectively). Additionally, the R"2 value of
the ICEEMDAN-SSA-LSTM model is 97.5%, which is higher than the value of 96.3% of the
ICEEMDAN-LSTM model and the value of 92.8% of the SSA-LSTM model [24].

Table 5. The specific values of the periodic term prediction for the five methods.

Date Periodic ICEEMDAN- SSA- ICEEMDAN- ICEEMDAN- ICEEMDAN-
Term/mm LSTM/mm LSTM/mm SSA-LSTM/mm  SSA-RNN/mm SSA-SVM/mm
January 2011 —11.852 —13.769 —12.584 —11.999 3.120 —9.514
February 2011 —19.962 —23.744 —20.220 —23.061 —7.082 —11.816
March 2011 —24.160 —28.647 —27.899 —27.211 —13.323 —17.296
April 2011 —31.197 —32.549 —28.817 —30.432 —12.273 —21.824
May 2011 —35.284 —33.642 —18.472 —30.714 —10.422 —27.672
June 2011 0.065 —8.780 —6.120 —7.208 3.693 —30.850
June 2011 32.100 28.183 17.633 28.198 24.615 —16.935
July 2011 36.336 39.592 32.986 38.590 38.167 17.265
July 2011 35.869 33.359 34.191 32.294 36.932 39.823
August 2011 31.061 30.878 30.089 27.140 36.569 32.661
August 2011 31.620 27.691 23.798 23.162 33.503 17.783
September 2011 25.787 24.698 22.390 21.782 30.642 15.408
September 2011 5.400 6.434 15.254 3.458 29.707 17.692
October 2011 —7.295 —1.942 5.707 —4.605 28.662 6.949
November 2011 —9.685 —1.248 —8.176 —4.874 25.294 —12.627
December 2011 —15.806 —6.204 —17.208 —9.367 20.068 —19.491
Table 6. Errors in forecasting periodic terms.
RMSE/mm MAE/mm R%/%
ICEEMDAN-LSTM 4.762 3.833 96.3
SSA-LSTM 6.472 4.992 92.8
ICEEMDAN-SSA-LSTM 4.366 3.806 97.5
RNN 19.945 15.343 723
SVM 16.584 12.748 56.6

The RNN and SVM models were developed to predict the periodic terms, and the
root mean square error (RMSE) and mean absolute error (MAE) were used for evaluation.
The prediction results are shown in Figure 15, and the errors are listed in Table 6. Among
the three models, the LSTM model yielded the best prediction results, with an RMSE of
4.366 mm and an MAE of 3.806 mm. These values are significantly smaller compared to the
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values of 19.945 mm and 15.343 mm for the RNN model and 16.584 mm and 12.748 mm for
the SVM model. Additionally, the R? value of the ICEEMDAN-SSA-LSTM model is 97.5%,
surpassing the value of 72.3% of the RNN model and the value of 56.6% of the SVM model.
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Figure 15. A comparison of the results of the cyclical term predictions.

The forecast results in Table 7 are analyzed from the perspective of forecast time.
The data were divided into periods from January to June and from July to December,
and the corresponding errors were calculated. The error results are shown in Table 5. It
is evident that the error of the ICEEMDAN-SSA-LSTM model from January to June is
significantly smaller than that of the other models, demonstrating the feasibility of this
model for displacement prediction. The error of the ICEEMDAN-SSA-LSTM model from
July to December is generally smaller than that of the other models. Only the MAE of
the ICEEMDAN-SSA-LSTM model from July to December is slightly larger than that of
the ICEEMDAN-LSTM model. When analyzing the error for the entire year of 2011, from
January to June and from July to December, the ICEEMDAN-SSA-LSTM model consistently
outperforms the ICEEMDAN-LSTM model and significantly outperforms the other models.

Table 7. Segmentation errors in model predictions.

January-June January-June July-December July-December

RMSE/mm MAE/mm RMSE/mm MAE/mm
ICEEMDAN-LSTM 4411 3.706 5.019 3.933
SSA-LSTM 8.868 6.368 6.307 4.776
ICEEMDAN-SSA-LSTM 3.937 3.258 4.672 4.231
RNN 14.893 13.368 22.251 16.251
SVM 22.756 16.326 10.839 9.111

To more accurately determine the superiority of the ICEEMDAN-SSA-LSTM model
over the ICEEMDAN-LSTM model, three separate experiments were conducted using
these two models. The resultant errors and average errors are shown in Table 8. It can
be observed that the average RMSE and average MAE of the ICEEMDAN-SSA-LSTM
model are smaller than those of the ICEEMDAN-LSTM model. The average R? of the
ICEEMDAN-SSA-LSTM model is 97.8%, which is larger than the value of 96.9% of the
ICEEMDAN-LSTM model. Therefore, the ICEEMDAN-SSA-LSTM model is superior to the
ICEEMDAN-LSTM model.
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Table 8. Three experimental error results.

ICEEMDAN-LSTM

ICEEMDAN-SSA-LSTM

First RMSE/mm 4.762 4.366
First MAE/mm 3.833 3.806
First R% /% 96.3 97.5
Second RMSE/mm 6.620 5.675
Second MAE/mm 5.300 5.040
Second R?/% 96.8 97.4
Third RMSE/mm 5.602 5.001
Third MAE/mm 4.518 3.289
Third R? /% 97.5 98.4
Average RMSE/mm 5.661 5.014
Average MAE/mm 4.550 4.052
Average R?/% 96.9 97.8

Among all of the prediction models, the RNN model exhibits the largest discrepancy
from the original data and the highest prediction error. This is primarily due to the inherent
limitation of the RNN model, specifically the vanishing gradient problem, which restricts its
memory to short-term sequences and renders it unsuitable for long-sequence data like land-
slide displacement. The SVM model also demonstrates suboptimal prediction performance,
mainly because it cannot effectively utilize historical data and only learns from current data
points. In contrast, the LSTM model achieves the best prediction performance. The LSTM
model not only addresses the vanishing gradient problem but also fully exploits the historical
displacement data, uncovering the connections between displacement data, historical monthly
rainfall, and reservoir levels [25]. This demonstrates that the LSTM model exhibits signifi-
cant advantages in data mining when incorporating influencing factors, thereby proving the
appropriateness of the multivariate LSTM model for landslide displacement prediction [26].

4.4. Cumulative Displacement Prediction

After decomposing the displacement data using the ICEEMDAN-SSA model, the trend
term predicted by the univariate LSTM and the periodic term predicted by the multivariate
LSTM are summed to obtain the cumulative displacement, as illustrated in Figure 16. The aver-
age relative error is calculated to be 0.011, demonstrating the effectiveness of the ICEEMDAN-
SSA decomposition and the LSTM model’s ability to accurately predict landslide displacement
changes. In this study, the univariate LSTM model predicts the trend term displacement, which
remains largely unaffected by other influences, while the multivariate LSTM model predicts the
periodic term displacement, which is influenced by factors such as rainfall and reservoir levels.
This combined approach enhances the prediction accuracy of the model.
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Figure 16. Comparison of cumulative displacement predictions.
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5. Summary and Outlook
5.1. Conclusions

This paper proposes the ICEEMDAN-SSA-LSTM model for predicting landslide dis-
placement data. Firstly, the landslide displacement time series is decomposed into trend
and periodic terms using the ICEEMDAN method. Subsequently, the trend and periodic
terms are processed by singular entropy-improved singular spectrum analysis (SSA) to
obtain the denoised trend and periodic terms. These terms are then predicted using the
LSTM model, resulting in an optimized landslide displacement model. This model demon-
strates higher accuracy compared to models using SSA or ICEEMDAN alone. The joint
decomposition of displacement by ICEEMDAN and SSA is more accurate than that using
ICEEMDAN alone. Furthermore, integrating the LSTM model with the joint ICEEMDAN
and SSA decomposition yields the best prediction results among the three types of models,
aligning more closely with the actual evolutionary characteristics.

While traditional methods typically employ a single decomposition method, this
study utilizes both ICEEMDAN and SSA to decompose landslide displacement data. The
advantages of accurately decomposing displacements into trend and periodic components
are multifaceted. Firstly, it streamlines the analytical process by facilitating a more intu-
itive grasp of both the overall direction and intricate variations within the data, thereby
mitigating the challenges posed by intricate datasets. Secondly, it enhances forecasting
effectiveness. Comprehending the trend components aids in identifying the long-term
trajectory of the data, whereas recognizing periodic components fosters predictions of
impending cyclical shifts, ultimately refining forecast accuracy. Lastly, it optimizes model
construction, ensuring a more robust and predictive framework. Decomposition provides
deeper insights into how each component affects overall displacement, enabling the con-
struction of more accurate models. In summary, dividing displacements into trend and
cyclic terms constitutes a powerful analytical method. It offers an effective means for the
in-depth interpretation and efficient management of complex data across various fields.

The model developed in this study holds significant practical implications for disaster
management and prediction in real-world settings. By providing accurate and timely
predictions of landslide displacements, it enables authorities and stakeholders to implement
preventative measures, optimize evacuation plans, and allocate resources more effectively.
This proactive approach minimizes potential casualties and economic losses, ultimately
enhancing the resilience of communities to landslide hazards.

5.2. Innovation Point

In this study, landslide displacement prediction modeling is approached from the
perspective of displacement decomposition. The main innovations are as follows:

(1) ICEEMDAN, an improvement of the CEEMDAN method, accurately decomposes
complex and non-smooth signals into a trend term and a series of Intrinsic Mode Func-
tions (IMFs).

(2) Utilizing singular entropy and its increments allows for the easy distinction of
useful information within the sequence. The singular entropy-improved SSA method effec-
tively removes random terms from landslide displacements, extracts effective sequences,
and reconstructs them into trend and periodic terms.

(3) The displacement of the Baijiabao landslide is characterized by a step-up curve.
A Pearson correlation analysis with rainfall and reservoir level data indicates that these
factors significantly influence the Baijiabao landslide.

(4) The multivariate LSTM model not only considers the overall role of historical
displacement data when making predictions, but also integrates historical rainfall and
reservoir level data. This precise adjustment of corresponding displacement weights for
each variable results in improved prediction performance.

(5) The LSTM model addresses the vanishing gradient problem and fully leverages
the historical displacement data’s changing patterns. This makes it particularly suitable for
predicting dynamically changing landslide displacement data.
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5.3. Outlook

This study primarily proposes two models for landslide displacement prediction,
demonstrating superior predictive accuracy for the research objectives outlined herein.
These models contribute to advancing subsequent research in landslide prediction. How-
ever, the actual situation is highly complex, and the models proposed in this study represent
only a small part of the broader field of landslide prediction, which still faces many chal-
lenging issues:

(1) Landslides are influenced by a multitude of factors, including geological condi-
tions, topography, and human activities. This complexity renders landslide prediction
extremely challenging. In this study, only a limited set of conditions were considered. A
key unresolved issue is how to integrate all relevant variables to enhance the accuracy of
landslide predictions.

(2) Time series data exhibit both temporal and spatial characteristics. This study
primarily addresses the temporal characteristics of landslide displacement, integrating
various time series-related models, but it does not account for spatial characteristics. Spatial
characteristics involve extensive geological theories, necessitating a foundational under-
standing of geology. By integrating both temporal and spatial characteristics, more accurate
landslide displacement predictions can be achieved, thereby effectively mitigating the
impact of landslide disasters on human life and property.

In summary, the in-depth study of landslide phenomena remains in an exploratory
phase. To fundamentally address landslide issues and prevent further damage to human
life and property, a comprehensive approach is required. This approach should encompass
theoretical analysis, real-time monitoring, and early warning systems, promoting the
coordinated development of these strategies. The collective wisdom and relentless efforts
of researchers are essential to advancing landslide research to new heights.
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