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Abstract: Accurate runoff prediction is crucial for watershed water resource management, flood
prevention, and hydropower station scheduling. Data-driven models have been increasingly applied
to runoff prediction tasks and have achieved impressive results. However, existing data-driven
methods may produce unreasonable predictions due to the lack of prior knowledge guidance. This
study proposes a multivariate runoff prediction model that couples knowledge embedding with
data-driven approaches, integrating information contained in runoff probability distributions as
constraints into the data-driven model and optimizing the existing loss function with prior probability
density functions (PDFs). Using the main stream in the Yellow River Basin with nine hydrological
stations as an example, we selected runoff feature factors using the transfer entropy method, chose a
temporal convolutional network (TCN) as the data-driven model, and optimized model parameters
with the IPSO algorithm, studying univariate input models (TCN-UID), multivariable input models
(TCN-MID), and the coupling model. The results indicate the following: (1) Among numerous
influencing factors, precipitation, sunshine duration, and relative humidity are the key feature factors
driving runoff occurrence; (2) the coupling model can effectively fit the extremes of runoff sequences,
improving prediction accuracy in the training set by 6.9% and 4.7% compared to TCN-UID and
TCN-MID, respectively, and by 5.7% and 2.8% in the test set. The coupling model established through
knowledge embedding not only retains the advantages of data-driven models but also effectively
addresses the poor prediction performance of data-driven models at extremes, thereby enhancing the
accuracy of runoff predictions.

Keywords: knowledge embedding; data driven; transfer entropy; loss function; IPSO algorithm;
runoff prediction

1. Introduction

Against the backdrop of global warming, the Yellow River Basin is facing a series of
extreme climate issues, including floods and droughts [1]. River runoff is a key component
of the hydrological cycle and has undergone substantial changes due to human activi-
ties [2]. The Lvovich method, proposed by Soviet hydrologist Mikhail Lvovich, integrates
precipitation, evaporation, runoff, and groundwater to establish a water balance model.
This model simulates water volume changes under different conditions, analyzing the
spatiotemporal distribution characteristics of water resources. Using the Lvovich method
for analysis, results indicate that the annual base flow at Changshui Station showed a highly
significant decreasing trend from 2000 to 2019, while Longmen Town Station and Baima
Temple Station exhibited a noticeable increasing trend in the spring [3]. Over the past
60 years, the number of tributaries in the Serbian Black Sea Basin has increased, while the
number of tributaries in the Adriatic Sea Basin has decreased by 5.5%, and in the Aegean
Sea Basin by 8.8% [4]. With the intensification of climate warming and human activities,
global runoff, particularly in arid regions, has significantly decreased [5]. This has had
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a severe impact on the development and utilization of water resources as well as on the
ecological environment [6]. Water scarcity has become a major challenge faced by many
countries. It is estimated that by 2030, global water demand will reach 160% of the total
available water resources [7]. By 2050, nearly 6 billion people will face water scarcity [5].
Human activities have altered the spatiotemporal distribution of water resources, resulting
in complex ecological and socioeconomic consequences [2]. Global warming has led to
reduced precipitation, increased evaporation, and intensified drought in the Yellow River
Basin [8]. Research shows that since the 1980s, actual runoff in the Yellow River Basin
has continuously declined due to surface acidification and a general decrease in basin
precipitation [9]. Reduced runoff can lead to a series of environmental issues, such as
the degradation of downstream aquatic ecosystems, increased flood threats and urban
waterlogging, and shortages of water for domestic, industrial, and agricultural use [10].
However, the complex nonlinear and non-stationary characteristics of runoff time series
often result in traditional linear time-series models providing unsatisfactory predictive
accuracy. Additionally, the limited scope for improving model methods further exacerbates
the challenge of runoff prediction. Given this, there is an urgent need to develop runoff
prediction models that are both highly accurate and reliable to address these challenges
and meet practical application needs.

Over the years, runoff prediction models have been mainly classified into two cate-
gories: process-driven models and data-driven models. Process-driven models are based
on hydrological principles and rely on extensive hydro-meteorological data to simulate
runoff processes and river channel evolution using mathematical models for hydrological
forecasting [11]. Among them, commonly used process-driven models by scholars include
the SWAT model, BASINS watershed modeling system [12], SWIM model [13], and others.
The Xin’anjiang model is a popular conceptual hydrological model that has been widely
used for rainfall-runoff simulation and prediction in China’s humid and semi-humid re-
gions. However, its application is limited in basins with limited data [14]. The TOPMODEL
is a rainfall-runoff model that predicts the watershed’s response to rainfall distribution by
leveraging hydrological similarity between different points in the catchment. Compared to
the Xin’anjiang model, TOPMODEL is equally efficient but requires calibration of fewer
parameters, many of which have a physical basis. For flood simulation, TOPMODEL
offers a simpler and more convenient parameter calibration process than the Xin’anjiang
model [15]. Cai et al. [16] made appropriate modifications to the SWAT runoff module
and calibrated key sensitive parameters. The improved SWAT model was able to better
simulate monthly runoff variations. Introducing a dynamic river network method into the
Distance Dynamic Model (DDD) can effectively enhance the model’s accuracy in predicting
flood peaks [17].

In runoff prediction models, data-driven approaches have become increasingly pop-
ular as they focus on capturing the nonlinear relationships between input and output
parameters without considering the entire physical process [18]. These include models,
such as Long Short-Term Memory (LSTM) [19], convolutional neural networks (CNNs) [20],
Gated Recurrent Units (GRUs) [21], Support Vector Machines (SVMs) [22], Extreme Gradi-
ent Boosting (XGB) [23], and Bidirectional Long Short-Term Memory (BiLSTM) [24]. Guo
et al. [25] combined physical mechanism models with Long Short-Term Memory (LSTM)
networks and proposed 16 different runoff prediction model combination strategies. This
approach effectively enhanced the daily runoff prediction performance of individual LSTM
models. Yao et al. [26] proposed a hybrid model based on CNN-LSTM and GRU-ISSA
to predict runoff volumes using historical meteorological and runoff data. Using the
Bailongjiang Basin as a case study, the model achieved an RMSE of 2.17, significantly
outperforming other benchmark models. Liu et al. [27] proposed a Least Squares Support
Vector Machine (LS-SVM) model that corrects initial errors based on monthly runoff data
from the Fuyu hydrological station. This model partially corrected the overestimation of
actual runoff predictions. Chen et al. [28] proposed a Tree-State Long Short-Term Memory
(treeLSTM) multilayer spatiotemporal model based on daily runoff data from the Hanjiang
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Basin. This model integrates the temporal dependencies of historical hydrological data with
the spatial correlations of hydrological variables, enhancing the physical interpretability of
machine learning algorithms.

However, data-driven models heavily rely on training data and do not incorporate
decades of accumulated empirical knowledge. Moreover, these models lack “common
sense” or an understanding of the physical mechanisms in the real world, making them
prone to generating unreasonable or unrealistic predictions. For example, Dong et al. [29]
found that convolutional neural networks do not truly detect semantic objects (for instance,
the model fails to learn the concept of birds when identifying them in images). Conse-
quently, for certain artificially generated adversarial samples, such as specifically designed
beer bottle images, despite their completely different visual appearance, neural networks
may mistakenly classify them as birds. Similarly, in subsurface flow problems, ground-
water and related data are used as input variables to establish a mapping relationship
with neural networks. Based on this relationship and data, future groundwater volumes
can be predicted. However, previous studies have shown that traditional data-driven
neural networks perform poorly with noisy observations, which is inevitable in practice.
Additionally, due to the absence of these time steps in the training data, the models cannot
accurately predict future flow fields [30].

Despite the rich research achievements in previous studies, there are still many limita-
tions in runoff prediction research. Process-driven models have too many parameters and
require extensive hydrological, meteorological, and potential surface conditions. Due to the
high cost of data collection, the applicability of these models is limited [31]. Data-driven
models also require large amounts of data, and without sufficient data, the reliability of
these models can be severely compromised [30]. Furthermore, data-driven models rely
solely on large amounts of data and do not incorporate domain knowledge in their con-
struction, which may result in unreasonable predictions. Consequently, data-driven models
can be significantly affected by data noise, leading to completely incorrect results [32].

To overcome the aforementioned limitations, incorporating scientific knowledge or
practical experience into deep learning models has become an emerging paradigm for
many scientific problems. For example, Karpatne et al. [33] proposed a physical-guided
neural network (PGNN) model, which incorporates physics-based loss into the learning
objective function of the neural network to achieve scientifically consistent results. This
method was then applied to the problem of lake temperature simulation. He et al. [34] pro-
posed a theory-guided fully convolutional neural network (TgFCNN) model to solve the
inverse problem of subsurface contaminant transport. TgFCNN can construct robust and
reliable surrogate models with limited training and further be used for inverse modeling
tasks, achieving good accuracy in estimating unknown contaminant source parameters
and permeability fields. Chen et al. [35] developed a hard-constrained model within a
theory-guided framework to ensure that the model outputs adhere to known govern-
ing equations. In 2019, Raissi [36] designed a method called Physics-Informed Neural
Networks (PINNs), which incorporate nonlinear partial differential equations (PDEs) as
regularization terms in the loss function. Wang et al. [30] proposed the Theory-Guided
Neural Network (TgNN), which uses subsurface flow governing equations as domain
knowledge to guide neural network predictions. Unlike purely data-driven models that
can only interpolate within the range of training data, theory-guided models can extrapo-
late based on physical mechanisms, predicting data outside the range of training data and
expanding the model’s applicability.

To overcome the aforementioned limitations, this study proposes a runoff prediction
model that couples knowledge embedding with data-driven approaches, aiming to establish
a dual-driven model. This coupled model breaks the “black box” nature of neural networks,
effectively addressing the poor prediction performance of data-driven models at runoff
extremes, ensuring that runoff predictions conform to the probability density function of
runoff, thereby improving model accuracy.

This study contributes from three main aspects:
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(1) Using the transfer entropy method to select the characteristic factors of runoff and
incorporating them as input variables ensure the reliability of the model’s input variables.

(2) Using the Improved Particle Swarm Optimization (IPSO) algorithm for model param-
eter optimization to enhance computational efficiency of the model.

(3) Constructing a coupled knowledge-embedding and data-driven runoff prediction
model, the performance of the coupled model improved by 5.7% and 2.8% on the
training and testing sets, respectively, compared to traditional data-driven models.

2. Research Methodology
2.1. Research Area

The Yellow River originates from the Qinghai-Tibet Plateau and flows through nine
provinces and autonomous regions: Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia,
Shanxi, Shaanxi, Henan, and Shandong. It has a total length of 5464 km and a basin
area of 79.5 × 104 km2, covering 8% of China’s land area [37]. The Yellow River basin
features diverse terrain and landscapes, with mountainous terrain dominating the upper
and middle reaches and plains dominating the middle and lower reaches. The terrain slopes
from west to east, forming three distinct terraces. The first terrace is the Qinghai-Tibet
Plateau, with an average elevation of over 4000 m. The second terrace is primarily the
Loess Plateau, with relatively flat terrain and elevations ranging from 1000 to 2000 m. The
third terrace is mainly the North China Plain, characterized by flat terrain [38]. The main
stem of the Yellow River includes nine hydrological stations, such as Tangnaihai. In recent
years, there has been a trend of decreasing runoff at hydrological stations in the Yellow
River Basin [39]. The precipitation characteristics of the Yellow River basin include sparse
rainfall in spring, abundant rainfall in summer, and cold, dry winters. Evaporation within
the basin is significant, and annual rainfall distribution is uneven. It is one of the most
water-scarce regions in China, and variations in runoff directly affect the watershed’s water
supply security [40]. Studies have shown that over the past 60 years, annual runoff in each
sub-basin of the Yellow River has exhibited a significant downward trend, with an increase
in the frequency and severity of extreme drought events [41]. The ecological environment
of the basin is extremely fragile and highly sensitive to climate change and human activities.
In recent years, the over-exploitation of water resources has led to a dramatic reduction in
surface runoff, a continuous decline in groundwater levels, and a deterioration in water
quality, among other ecological and environmental issues [42]. Therefore, research on
runoff prediction in the Yellow River basin has attracted considerable attention. Improving
the accuracy of runoff prediction within the basin is crucial for agricultural decision making,
water resource management, and disaster assessment [43]. The study area is shown in
Figure 1.

2.2. Data

This study focuses on the Yellow River basin and conducts runoff prediction research
based on hydrological and meteorological data. The hydrological data include monthly
runoff (R) data from January 1964 to December 2023, spanning 60 years, obtained from nine
main hydrological stations along the main stem of the Yellow River. Meteorological data
consist of monthly data from January 1964 to December 2023 for nine influencing factors:
rainfall (RF), atmospheric pressure (AP), wind velocity (WV), temperature (T), tempera-
ture anomaly (TA), vapor pressure (VP), hours of sunshine (HS), relative humidity (RH),
and sunshine percentage (SP). The data are sourced from the Yellow River Conservancy
Commission of the Ministry of Water Resources (http://www.yrcc.gov.cn/, accessed on 1
January 2024) and the National Meteorological Information Center (NMIC) at the China
Meteorological Administration (CMA) (https://data.cma.cn/, accessed on 1 January 2024).
The data are reliable and valid, as detailed in Table 1.

http://www.yrcc.gov.cn/
https://data.cma.cn/
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Table 1. The datasets.

Data Data Type Data Length Data Source Stations

Rainfall

Meteorological data January 1964–December 2023

The China
Meteorological Data

Service Centre
(https://data.cma.cn/,

accessed on 1 January 2024)

Tongde/Gaolan/Zhongwei/
Huinong/
Yuncheng/
Sanmenxia/
Zhengzhou/
Heze/Kenli

Atmospheric pressure
Wind velocity
Temperature

Temperature anomaly
Vapor pressure

Hours of sunshine
Relative humidity

Sunshine percentage

Runoff Hydrological data January 1964–December 2023

Yellow River Conservancy
Commission of the Ministry

of Water Resources
(http://www.yrcc.gov.cn/,
accessed on 1 January 2024)

Tangnaihai/Lanzhou/
Xiaheyan/Shizuishan/

Longmen/
Sanmenxia/

Huayuankou/
Gaocun/Lijin

3. Materials and Methods

The structure and flowchart of the model framework are shown in Figure 2. Sections 3.1
and 3.2, respectively, introduce the spatiotemporal characteristics of runoff, including
standardized runoff index and cross-wavelet analysis. Sections 3.3–3.5 present transfer
entropy, IPSO algorithm, and the coupled knowledge embedding with data-driven model,
along with three metrics to evaluate the model’s accuracy, reliability, and stability.

https://data.cma.cn/
http://www.yrcc.gov.cn/
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3.1. Calculation of the SRI

The Standardized Precipitation Index (SPI), proposed by McKee in 1993 [44], describes
natural precipitation using the Gamma function and normalizes it to quantify the severity
of meteorological drought through precipitation probabilities. The calculation method for
SPI is as follows:

(1) Let the precipitation amount be a random variable x that follows a Gamma distribu-
tion, with g(x) representing the probability density function.

g(x) =
1

βΓ(α)
xα−1e−

x
β (x > 0) (1)
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where α represents the shape factor, β represents the scale factor, and Γ(α) represents
the Gamma function. These parameters can be estimated using Maximum Likelihood
Estimation (MLE):

α =
1 +

√
1 + 4A/3
4A

β =
x
α

A = In(x)−

n
∑

i=1
In(xi)

m
(2)

where x represents the average precipitation amount, and n denotes the length of the
sequence.

(2) The probability density function of the precipitation amount x is given by:

G(x) =
1

βγΓ(γ)

x∫
0

xγ−1e
−

x
β dx, x > 0 (3)

When the precipitation amount is 0, the probability distribution is estimated as:

G(x = 0) =
m
n

(4)

where m represents the number of samples with zero precipitation, and n denotes the
total number of samples.

(3) By normalizing the Gamma distribution, the Standardized Precipitation Index (SPI) is
obtained as follows:

SPI = S
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
(5)

where t =
√

ln 1
G(x)2 . When G(x) > 0.5, G(x) is given by 1 − G(x), S = 1. When

G(x) ≤ 0.5, S = −1. c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, d3 = 0.001308.

Since the calculation process and classification of the Standardized Runoff Index (SRI)
are consistent with those of the Standardized Precipitation Index (SPI), the SRI can be
obtained by replacing precipitation data with runoff data and describing drought severity
using runoff probabilities. Based on the aforementioned equation, this study calculates
the monthly SRI for each hydrological station and analyzes the hydrological drought
conditions in the Yellow River Basin over the past 60 years, providing a data foundation
for subsequent runoff prediction. The drought classification standards for SRI (Table 2)
are established according to the “Meteorological Drought Classification” issued by the
National Meteorological Center of the China Meteorological Administration.

Table 2. SRI-base drought classification.

Type Grade SRI Value

1 No drought −0.5 < SRI
2 Light drought −1.0 < SRI ≤ −0.5
3 Moderate drought −1.5 < SRI ≤ −1.0
4 Severe drought −2.0 < SRI ≤ −1.5
5 Extreme drought SRI ≤ −2.0

3.2. Cross-Wavelet Transform (XWT)

XWT decomposes time-series data into different components, analyzes the correlation
between different time series based on continuous wavelet transform, and explores potential
causes, reflecting the phase characteristics between sequences in both time and frequency
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domains [45]. The cross-wavelet transform (XWT) of time series x(t) and y(t) is given by
the following formula [46]:

WXY(α, τ) = CX(α, τ)C∗
Y(α, τ) (6)

where CX(α, τ) represents the wavelet transform coefficient of x(t), and C∗
Y(α, τ) represents

the complex conjugate of the wavelet transform coefficient of y(t).
Wavelet coherence (WTC) analyzes the dependence between two signals by examining

the amplitude and phase information of time-series signals [46]. The calculation formula is
as follows:

R2(α, τ) =

∣∣S(α−1WXY(α, τ)
∣∣2

S(α−1|WX(α, τ)|2) · S(α−1|WY(α, τ|2)
(7)

3.3. Transfer Entropy Theory

Transfer entropy (TE) reflects the degree of correlation between variables, measuring
the causal relationship of information transfer in terms of magnitude and direction [40].
It is a method to measure causality in time series. The fundamental assumption of TE is
that the cause of events in time precedes the effect. In fact, TE is an improvement upon
Granger causality analysis. Granger causality requires that any variable in the system
can be linearly expressed by lagged variables and error terms of the system. In contrast,
transfer entropy makes no assumptions about the underlying structure of the data; thus, it
can detect both linear and nonlinear causal relationships. However, calculating transfer
entropy for high-dimensional data or long time series may increase computational time.
Additionally, the estimation of transfer entropy depends on the sample size, and insufficient
samples can affect the results.

3.3.1. Conditional Mutual Information

Given event ZK, the mutual information obtained about event yj after knowing event
xi is defined as:

I(yj; xi|zk) = log
p(yj

∣∣xi, zk)

p(yj
∣∣zk)

(8)

To find the conditional average mutual information of X on Y given Z, we compute
the expectation over variables X, Y, and Z:

I(Y; X
∣∣Z) = E[I(yj; xi

∣∣zk)]

=
N
∑

j=1

N
∑

i=1

N
∑

k=1
p(yj, xi, zk) log

p(yj
∣∣xi, zk)

p(yj
∣∣zk)

=
N
∑

j=1

N
∑

i=1

N
∑

k=1
p(yj, xi, zk) log p(yj|xi, zk)−

N
∑

j=1

N
∑

i=1

N
∑

k=1
p(yj, xi, zk) log p(yj|zk)

= H(Y|Z)− H(Y|X, Z)

(9)

3.3.2. Transfer Entropy

Given discrete variables Xi and Yj, i = 1, 2, · · · , N, of equal length and interacting, the
transfer entropy from X to Y reflects the information transfer from the past states of X to Y,
expressed as:

TEX→Y= ∑ p(Yi+1, Xi, Yi) log
p(Yi+1|Xi, Yi)

p (Yi+1|Y) i

= ∑ p(Yi+1, Xi, Yi) log p(Yi+1
∣∣Xi, Yi)− ∑ p(Yi+1, Xi, Yi) log p(Yi+1

∣∣Yi)

= H(Yi+1|Yi)− H(Yi+1|Xi, Yi)

(10)

According to the definition of transfer entropy, log p(Yi+1|Yi) represents the probabil-
ity of Yi+1 occurring given the state of Yi, thereby excluding the influence of Y past states
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on its future information, achieving the purpose of accurately measuring the information
transmitted from X to Y by TE. Conditional mutual information measures the dependency
between variables X and Y, considering the information provided by variable Z. Therefore,
based on the relationship between conditional mutual information and transfer entropy,
this study proposes the following formula:

TEX→Y = I(Yi+1; Xi|Yi) (11)

TEX→Y represents the information transfer from X to Y, indicating the extent of
influence. If TEX→Y > TEY→X, it means that the influence of variable X on Y is greater
than the influence of Y on X, thereby identifying X as a driving factor for Y. By calculating
the transfer entropy between meteorological data and runoff, and comparing the values of
TEX→Y and TEY→X , meteorological driving factors related to runoff can be identified.

3.4. Data-Driven Methods
3.4.1. IPSO

Particle Swarm Optimization (PSO) is a stochastic optimization algorithm proposed
by Eberhart and Kennedy in 1995. It simulates the collective behavior of birds, achieving
optimal foraging behavior through information sharing among individuals. During the
iterative process, particles move randomly according to certain rules, searching for the
optimal solution within a specified range. When particles approach a local optimum, it
induces the entire swarm to migrate towards that local optimum [40]. However, Particle
Swarm Optimization (PSO) is prone to issues such as local optima and premature conver-
gence. Therefore, this study introduces the concept of adaptive mutation and proposes an
Improved Particle Swarm Optimization algorithm (IPSO). This algorithm aims to enhance
the optimization capability of the swarm by improving the selection of classical weights
and utilizing nonlinear weights, thereby reducing the randomness of particle position
updates in the population as the number of iterations increases.

ω = ωmax − (ωmax − ωmin)× tanh(
4π

4tmax
) (12)

The tanh function constrains the weight ω to [ωmin, ωmax]. When the number of itera-
tions is small, ω approaching ωmax ensures that particles not only enhance the inheritance
of initial velocity information at the beginning of iterations, thereby accelerating the search
speed, but also maintain global search capability. As t increases, ω decreases nonlinearly
towards but does not equal ωmin, enhancing the flexibility of particles, ensuring the al-
gorithm’s local search capability. Moreover, particles in the later stages of iteration are
more influenced by the global optimal position, aiding in the determination of the global
optimum [40].

The specific steps of the IPSO optimization algorithm are as follows:

(1) Initialize the positions X = (x1, x2, · · · , xD) and velocities V = (v1, v2, · · · , vD) for all
particles. The historical best position for each particle is pbest = (p1, p2, · · · , pD), and
for the swarm, it is gbest = (g1, g2, · · · , gD).

(2) Calculate the fitness of each particle. If the current value is better than the particle’s
historical best value, update pbest. If the current value is better than the global
historical best value, update gbest.

(3) Update the position and velocity of each particle using the following equations:

vt+1
d = ωvt

d + c1r1(pbestt
d + xt

d) + c2r2(gbestt
d − xt

d) (13)

xt+1
d = xt

d + vt+1
d (14)

where ω represents the inertia weight, typically initialized within the range [0.4, 0.9],
to maintain the particle’s motion inertia and the ability to explore search space. c1
and c2, respectively, denote the individual learning factor and swarm learning factor,
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with values in the range [0, 4], used to balance the influence of individual and swarm
experience information on the optimization process. r1 and r2 have values in the
range [0, 1], used to increase the randomness of the search process.

Function (13) consists of inertia, individual cognition, and social cognition. Inertia
represents the particle’s habit from previous iterations, inheriting its own velocity. Individ-
ual cognition represents the inheritance of past positions by the particle. Social cognition
ensures shared information among particles, representing collective experience.

(4) Adaptively mutate particle positions and adjust the mutation probability prob based
on the optimization search process. Additionally, when the D-dimensional position
changes, the particle’s position randomly varies within its range, as shown in the
following formula:

prob = 0.5 × t
max_iter

+ 0.5 (15)

xt+1
d = r3(max(xd)− min(xd)) + min(xd) (16)

where prob represents the particle mutation probability, which decreases with increas-
ing iteration count. max_iter denotes the maximum number of iterations, max(xd) and
min(xd) are, respectively, the maximum and minimum values of the D-dimensional
vector. The range of values for r3 is [0, 1].

To prevent particles from getting stuck in local minima during the search process and
to increase variability in selecting positions, a mutation factor (15) is introduced in the
IPSO algorithm. This allows some particles to ignore the individual best positions selected
in historical iterations and initialize randomly. As the number of iterations increases, the
mutation probability for random particles decreases.

(5) If the iteration count reaches max_iter or the global best fitness value is less than a
specified value, terminate the process; otherwise, proceed to step (2). Validate the
effectiveness of the improvement using the Sphere test function.

Sphere : f (x) =
n

∑
i=1

x2
i (17)

Apart from the selection of the inertia weight ω, both algorithms are set with identical
parameters. As seen from Figure 3, compared to the standard Particle Swarm Optimization
algorithm, the IPSO algorithm, improved with inertia weight, demonstrates stronger
optimization capabilities as the number of iterations increases, with a more stable trend.
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3.4.2. Temporal Convolutional Network

The Temporal Convolutional Network (TCN) is an emerging model proposed by
Shao Jie Bai et al. [47] in 2018. It consists of modules such as causal convolution, dilated
convolution, and residual connections. TCN is commonly used to address multidimen-
sional time-series problems and offers advantages such as higher computational efficiency,
more stable gradients, and smaller training memory footprint. A notable feature of TCN
is that it does not incorporate information from future time steps, thereby avoiding data
leakage issues.

(1) Causal convolution

As a time-series prediction model, TCN introduces causal convolution, allowing
time-series problems to be transformed into predicting y1, y2, · · · , yt using x1, x2, · · · , xt.
As shown in Figure 4, for convolution kernel F = ( f1, f2, · · · , fk) and sequence

X = (x1, x2, · · · xt) the causal convolution at xt yields (F × X)xt
=

k
∑

i=1
fixt−k+i . Assum-

ing the last two nodes of the input layer are xt−1, xt, the last node of the first hidden
layer is yt, and the convolution kernel is F = ( f1, f2), according to the formula, we have
yt = f1xt−1 + f2xt. For causal convolution, the value at the previous layer at time t
depends only on the values at the current layer at time t and earlier, without extracting
future data information. TCN employs a one-dimensional fully convolutional network
with a stride of 1 and zero-padding size of k − 1 (where k is the kernel size), ensuring
that the input and output sizes of the model are equal.

(2) Dilated convolution
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Figure 4. Causal convolution.

Introducing dilated convolutions in TCN addresses the problem of limited receptive
fields. As shown in Figure 5, dilated convolutions insert gaps into the receptive field of
CNNs. The dilation factor d increases exponentially by powers of 2, significantly enlarging
the receptive field index of TCN. This allows shallow layers to capture larger receptive fields,
and the output at the top layer can receive input information from a broader range [48].
The receptive field size of dilated convolution is (k − 1)× d + 1, which can be expanded by
increasing the kernel size k or the dilation factor d.

(3) Residual connection
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Figure 5. Dilatational convolution.

When TCN introduces causal convolution and dilated convolution to expand the
receptive field, the problem of gradient vanishing or gradient explosion can occur as the
number of network layers increases [49]. To address this issue, this study introduces
residual modules for analysis, as shown in Figure 6. Residual connections transmit infor-
mation across layers by adding the input sequence X of the model to the output sequence
F(X) of the convolution computation. The residual module consists of two sets of dilated
convolution layers, weight normalization layers, ReLU activation functions, and Dropout
layers [50]. Unlike the general ResNet model, TCN directly adds the input sequence X to
the output sequence F(X) of the residual module while simultaneously processing X with
convolution to ensure that F(X) and X have the same dimensions.
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3.4.3. IPSO-TCN

The Improved Particle Swarm Optimization (IPSO) algorithm has efficient search and
generalization capabilities and is easy to combine with machine learning models. However,
due to the numerous parameters of TCN, complex debugging, and the lack of strict and
accurate parameter selection methods, it is challenging to use in practical applications [51].
Therefore, the IPSO algorithm is combined with TCN for runoff prediction. Figure 7 shows
the modeling process of the IPSO-TCN model.
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As shown in Figure 7, the modeling steps of the IPSO-TCN model are as follows:

(1) Standardized data of runoff driving factors.
(2) Construction of a multi-input single-output TCN model.
(3) Select hyperparameters to be optimized for the TCN model.
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(4) Initialize the positions and velocities of the particle swarm in the IPSO algorithm.
(5) Calculate the fitness of the particle swarm.
(6) Update the positions and velocities of the particle swarm.
(7) Evaluate termination conditions; if not met, continue optimizing hyperparameters

using the IPSO algorithm.
(8) Reconstruct the TCN model using the computed optimal hyperparameters.
(9) Output model prediction results and conduct model evaluation.

The IPSO-TCN model has numerous parameters. To enhance efficiency, we optimize
the hyperparameters that significantly impact model performance. Based on prior expe-
rience, this study selects the number of convolution kernels, kernel size, Dropout factor,
and InitialLearnRate as the parameters to be optimized, with ωmax = 0.9, ωmin = 0.4,
c1 = 1.5, c2 = 1.5 and a maximum of 10 iterations. On the basis of the established TCN
model, we set the optimization range for each parameter, randomly generating values
between the lower and upper bounds of the parameters according to Formulas (13) and (16)
to determine the initial positions and velocities of the particles and compute their fitness
values. Through iterative and cyclic processes, the optimization results are eventually
determined. Additionally, runoff influence factors are selected as input variables, with
runoff as the output variable. Based on this, a multivariate IPSO-TCN runoff prediction
model is established.

3.5. Coupled Knowledge Embedding and Data-Driven Runoff Prediction Model
3.5.1. Knowledge Embedding

Knowledge embedding is an important method for integrating knowledge and data.
Through knowledge embedding, barriers between knowledge and data can be eliminated,
enabling the establishment of machine learning models with physical insights to improve
model accuracy and robustness [52]. Knowledge embedding can be applied in many stages
of modeling (Figure 8). For example, during data preprocessing, physical constraints,
domain knowledge, and prior experience can be embedded, which often relates to feature
engineering and data normalization. In the stage of model structure design, the network
or topology structure of the model can be adjusted based on domain knowledge. Embed
domain knowledge into the model optimization and adjustment process to construct a
knowledge-embedded loss function.
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However, currently, most runoff prediction models do not effectively utilize prior
knowledge, experience, and physical mechanisms, greatly limiting the application of
machine learning. Purely data-driven models not only require large amounts of data but
may also produce predictions that violate physical mechanisms [36]. Integrating domain
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knowledge into machine learning models has the potential to overcome barriers between
data-driven and knowledge-driven models.

Knowledge embedding involves several steps:

(1) This study obtained the probability density curve of runoff based on monthly dis-
charge data from hydrological stations spanning from 1964 to 2023, using Gaussian
kernel density estimation. The formula for Gaussian kernel density estimation is
as follows:

f̂ (x) =
1

nh∑n
i=1 K(

x − xi
h

) (18)

where f̂ (x) represents the estimated density at point x, n denotes the number of data
points, h is the bandwidth controlling the width of the kernel function, and K is the

kernel function. This study adopts the Gaussian function K(u) = 1√
2π

e−
u2
2 .

(2) Incorporating the probability distribution information implied by runoff as prior
knowledge, a custom loss function layer is defined to integrate these constraints into
a data-driven model, establishing a coupled knowledge embedding and data-driven
runoff prediction model. Therefore, the loss function of the coupled model can be
reformulated as:

L(θ) = MSEDATA + MSEPDF (19)

MSEDATA =
1

NDATA
∑NDATA

i=1 |ŷi − yi|
2

(20)

MSEPDF =
1

NPDF
∑NPDF

i=1

∣∣ŷ∗i − y∗i
∣∣2 (21)

The total loss of the coupled model is reconstructed as a combination of data loss and
prior loss, as shown in Equation (19). In Equation (20), ŷi and yi represent the predicted
and true values, respectively. In Equation (21), ŷ∗i and y∗i are the probability density values
corresponding to ŷi and yi, respectively. Embedding prior knowledge can assist in the
training process of data-driven models, reducing the likelihood of the model making
physically unrealistic predictions and thereby enhancing model performance.

3.5.2. Coupled Model

Due to the nonlinear and non-stationary characteristics of runoff sequences, incorporat-
ing prior knowledge embedded in these sequences as theoretical guidance for data-driven
models can enhance runoff prediction and reduce the models’ dependence on data. As
shown in Figure 9, the main process of constructing a coupled knowledge-embedded and
data-driven runoff prediction model can be simply represented in the following four steps:

(1) Use transfer entropy to select feature factors.
(2) Calculate the probability density function (PDF) of runoff based on Gaussian kernel

density estimation and combine the runoff PDF with mean squared error (MSE) to
reconstruct the loss function L(θ).

(3) Use the selected feature factors as inputs for the IPSO-TCN model to predict runoff.
(4) Train the data-driven model (IPSO-TCN) using the loss function embedded with

runoff probability density values, continuously testing and validating the results.
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3.5.3. Evaluation Metrics

To evaluate the predictive performance of the model from different perspectives, this
study selects Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Nash–
Sutcliffe Efficiency (NSE) as metrics to assess and compare the model’s performance during
training and testing. These efficiency criteria are defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (22)

RMSE =

√
1
n

n

∑
i=1

|yi − ŷi|2 (23)

NSE = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (24)

In the equation, yi represents the true value, ŷi represents the predicted value, yi is the
mean of the predicted sequence, and n is the length of the sequence.

4. Results
4.1. Spatiotemporal Analysis of Runoff

To study the runoff prediction model, we first analyze the spatial and temporal distri-
bution characteristics of runoff. This study uses monthly runoff data from 1964 to 2023 (a
total of 60 years) based on nine major hydrological stations in the Yellow River Basin to
assess the spatial and temporal variations in runoff data, as shown in Figure 10. By calcu-
lating the Standardized Runoff Index (SRI) for the corresponding 60-month periods and
applying the drought classification standards (Table 2), drought occurrences are identified
when SRI is less than 0.5. The frequency of droughts over the past 60 years in the Yellow
River Basin is obtained by accumulating the number of instances where SRI is less than
0.5, as shown in Table 3. The spatial and temporal variations in drought frequency are
illustrated in Figure 11.
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As shown by the drought evolution trends in Figure 11, the drought conditions in 
the Yellow River Basin were relatively stable from 1964 to 1993, with the fewest drought 
occurrences in the decade from 1974 to 1983. Since 1994, the drought conditions in the 
Yellow River Basin have intensified, with an increase in drought occurrences, but starting 
from 2004, the drought conditions gradually returned to a stable state. Overall, the 
droughts in the Yellow River Basin over the past 60 years show a trend of shifting from 
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Figure 10. Runoff evolution trend. (a) is the spatial and temporal distribution of runoff in the Yellow
River Basin during 1964–1973. (b) is the spatial and temporal distribution of runoff in the Yellow
River Basin during 1974–1983. (c) is the spatial and temporal distribution of runoff in the Yellow
River Basin during 1984–1993. (d) is the spatial and temporal distribution of runoff in the Yellow
River Basin during 1994–2003. (e) is the spatial and temporal distribution of runoff in the Yellow
River Basin from 2004 to 2013. (f) is the spatial and temporal distribution of runoff in the Yellow
River Basin during 2014–2023.
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Table 3. Drought frequency table.

Time
Station

Tangnaihai Lanzhou Xiaheyan Shizuishan

1964–1973 36 57 50 44
1974–1983 22 23 19 18
1984–1993 42 42 42 35
1994–2003 73 63 70 68
2004–2013 36 18 24 28
2014–2023 27 29 23 29

1964–2023 236 232 228 222

Time
Station

Longmen Sanmenxia Huayuankou Gaocun Lijin

1964–1973 31 23 21 16 5
1974–1983 15 17 25 25 18
1984–1993 35 24 26 28 36
1994–2003 67 77 82 84 86
2004–2013 52 57 56 46 35
2014–2023 48 41 39 40 35

1964–2023 248 239 249 239 215

As shown by the runoff evolution trends in Figure 10, the runoff volume in the lower
Yellow River was higher from 1964 to 1993, while the runoff volume in the middle reaches
was higher from 1994 to 2013. The overall runoff volume in the Yellow River Basin has
gradually decreased since 1984. The period from 1994 to 2003 marks the decade with the
lowest runoff volume in the Yellow River Basin over the past 60 years.

As shown by the drought evolution trends in Figure 11, the drought conditions in
the Yellow River Basin were relatively stable from 1964 to 1993, with the fewest drought
occurrences in the decade from 1974 to 1983. Since 1994, the drought conditions in the
Yellow River Basin have intensified, with an increase in drought occurrences, but starting
from 2004, the drought conditions gradually returned to a stable state. Overall, the droughts
in the Yellow River Basin over the past 60 years show a trend of shifting from the upper
to the lower reaches. According to Table 3, Huayuankou station experienced the most
drought occurrences, with 249 instances in the 60 years of monthly runoff data among the
nine stations, making it the chosen example for studying the runoff prediction model.

4.2. Cross-Wavelet Analysis

The cross-wavelet transform technique is used to analyze the driving responses be-
tween meteorological drought and hydrological drought, providing a reference for setting
the sliding window in subsequent runoff prediction models. The rainfall and runoff series
are interdependent processes, mutually promoting and interacting with each other. Cross-
wavelet analysis can more sensitively respond to the evolutionary characteristics between
rainfall and runoff series.

To analyze the time–lag relationship between precipitation and runoff, cross-wavelet
analysis is applied to meteorological and hydrological data spanning 60 years (1964–2023),
totaling 720 months. Figure 12 presents the cross-wavelet power spectrum and coherence
spectrum at the monthly scale for the Huayuankou hydrological station in the Yellow River
Basin. The direction of the arrows indicates the phase relationship between meteorological
drought and hydrological drought. An arrow rotating 30◦ signifies that the precipitation
sequence leads or lags the runoff sequence by 1 month. An arrow pointing to the right
indicates a strong positive correlation with the same phase changes between different
sequences, while an arrow pointing to the left signifies a strong negative correlation with
opposite phase changes. If the arrow points downward, it indicates an advance in changes,
and if it points upward, it indicates a lag in changes.
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Figure 11. Drought evolution trend. (a) shows the spatial and temporal distribution of drought fre-
quency in the Yellow River Basin during 1964–1973, and (b) shows the spatial and temporal distri-
bution of drought frequency in the Yellow River Basin during 1974–1983. (c) shows the spatial and 
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Figure 11. Drought evolution trend. (a) shows the spatial and temporal distribution of drought
frequency in the Yellow River Basin during 1964–1973, and (b) shows the spatial and temporal distri-
bution of drought frequency in the Yellow River Basin during 1974–1983. (c) shows the spatial and
temporal distribution of drought frequency in the Yellow River Basin during 1984–1993, (d) shows the
spatial and temporal distribution of drought frequency in the Yellow River Basin during 1994–2003,
and (e) shows the spatial and temporal distribution of drought frequency in the Yellow River Basin
during 2004–2013. (f) shows the spatial and temporal distribution of drought frequency in the Yellow
River Basin during 2014–2023.



Water 2024, 16, 2130 20 of 31

Water 2024, 16, x FOR PEER REVIEW 21 of 33 
 

 

4.2. Cross-Wavelet Analysis 
The cross-wavelet transform technique is used to analyze the driving responses be-

tween meteorological drought and hydrological drought, providing a reference for setting 
the sliding window in subsequent runoff prediction models. The rainfall and runoff series 
are interdependent processes, mutually promoting and interacting with each other. Cross-
wavelet analysis can more sensitively respond to the evolutionary characteristics between 
rainfall and runoff series. 

To analyze the time–lag relationship between precipitation and runoff, cross-wavelet 
analysis is applied to meteorological and hydrological data spanning 60 years (1964–2023), 
totaling 720 months. Figure 12 presents the cross-wavelet power spectrum and coherence 
spectrum at the monthly scale for the Huayuankou hydrological station in the Yellow 
River Basin. The direction of the arrows indicates the phase relationship between meteor-
ological drought and hydrological drought. An arrow rotating 30° signifies that the pre-
cipitation sequence leads or lags the runoff sequence by 1 month. An arrow pointing to 
the right indicates a strong positive correlation with the same phase changes between dif-
ferent sequences, while an arrow pointing to the left signifies a strong negative correlation 
with opposite phase changes. If the arrow points downward, it indicates an advance in 
changes, and if it points upward, it indicates a lag in changes. 

  
(a) (b) 

Figure 12. Cross-wavelet power spectrum and coherence spectrum. (a) is the cross wavelet power 
spectrum of precipitation and runoff, which mainly shows the periodicity of precipitation and run-
off. (b) is the cross wavelet coherence spectrum of precipitation runoff, which mainly shows the 
time-lag relationship of precipitation runoff. 

Based on the cross-wavelet power spectrum and coherence spectrum analysis shown 
in Figure 12a,b, the spectral energy at the Huayuankou station is mainly concentrated be-
tween 10 and 14 a during the periods of 1964–1988 and 2003–2023, indicating a strong 
positive correlation between precipitation and runoff. From the phase perspective, the 
precipitation–runoff relationship exhibits a positive phase, indicating a positive correla-
tion. The phase difference between hydrological drought and meteorological drought 
ranges from 30° to 60°, meaning that hydrological drought lags behind meteorological 
drought by 1 to 2 months. 

4.3. Driving Factors Analysis 
Transfer entropy measures the reduction in the uncertainty of predicting runoff val-

ues by feature factors, excluding the influence of the past states of these factors. It is a 
model-free causal statistic representing the asymmetric information transfer between ran-
dom variables [53]. X YTE →   represents the information transfer from X   to Y  , 

Figure 12. Cross-wavelet power spectrum and coherence spectrum. (a) is the cross wavelet power
spectrum of precipitation and runoff, which mainly shows the periodicity of precipitation and runoff.
(b) is the cross wavelet coherence spectrum of precipitation runoff, which mainly shows the time-lag
relationship of precipitation runoff.

Based on the cross-wavelet power spectrum and coherence spectrum analysis shown
in Figure 12a,b, the spectral energy at the Huayuankou station is mainly concentrated
between 10 and 14 a during the periods of 1964–1988 and 2003–2023, indicating a strong
positive correlation between precipitation and runoff. From the phase perspective, the
precipitation–runoff relationship exhibits a positive phase, indicating a positive correlation.
The phase difference between hydrological drought and meteorological drought ranges
from 30◦ to 60◦, meaning that hydrological drought lags behind meteorological drought by
1 to 2 months.

4.3. Driving Factors Analysis

Transfer entropy measures the reduction in the uncertainty of predicting runoff values
by feature factors, excluding the influence of the past states of these factors. It is a model-
free causal statistic representing the asymmetric information transfer between random
variables [53]. TEX→Y represents the information transfer from X to Y, indicating the
degree of influence. If TEX→Y > TEY→X, it means the influence of variable X on Y is
greater than that of Y on X; thus, X is considered the driving factor for Y.

Given the characteristics of transfer entropy mentioned above, this study collected
data on nine factors related to runoff. These factors are rainfall (RF), atmospheric pressure
(AP), wind velocity (WV), temperature (T), temperature anomaly (TA), vapor pressure (VP),
hours of sunshine (HS), relative humidity (RH), and sunshine percentage (SP). Setting the
variable Y = {Runo f f }, X = {RF, AP, WV, T, TA, VP, HS, RH, SP}, the values of TEX→Y
and TEY→X were calculated. The results are shown in Table 4 and Figure 13.

Based on Table 4 and Figure 13, analysis of the transfer entropy calculations between
X = {RF, AP, WV, T, TA, VP, HS, RH, SP} and Y = {Runo f f } shows that the transfer
entropy values from R to AP, WV, T, TA, VP, and SP are all smaller than those from
these factors to R. This indicates that the direction of information transfer is from R to
the influencing factors, suggesting they cannot be considered as causative factors. Fur-
thermore, TERF→R = 0.5188, TEHS→R = 0.8750, TERH→R = 0.7934, the corresponding
TER→RF = 0.4080, TER→HS = 0.5540, TER→RH = 0.5816. The transfer entropy values of
the former are all greater than those of the latter. This indicates that RF, HS, and RH are
characteristic factors of runoff, namely, R f eature = {RF, HS, RH}.
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Table 4. Transfer entropy value.

Factors (X)

Values Runoff (R) (Y) Characteristic
FactorTEX→Y TEY→X

Rainfall (RF) 0.5188 0.4080 Yes
Atmospheric Pressure (AP) 0.1203 0.2981 No

Wind Velocity (WV) 0.0357 0.1289 No
Temperature (T) 0.1758 0.4142 No

Temperature Anomaly (TA) 0.1481 0.2142 No
Vapor Pressure (VP) 0.3138 0.4204 No

Hours of Sunshine (HS) 0.8750 0.5540 Yes
Relative Humidity (RH) 0.7934 0.5816 Yes

Sunshine Percentage (SP) 0.4194 0.6072 No
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of meteorological factors on runoff, and (b) is to calculate the degree of influence of runoff on
meteorological factors.

4.4. Analysis of Coupled Model Predictions
4.4.1. Model Parameter Configuration

Analysis from Section 4.3 reveals that using the transfer entropy method identifies RF,
HS, and RH as factors related to runoff. This study investigates three runoff prediction
models: the univariate input data model with runoff as the sole input variable (TCN-
UID), the multivariate input data model with RF, HS, RH, and R as inputs (TCN-MID),
and the coupled knowledge-embedding and data-driven runoff prediction model with
RF, HS, RH, and R as inputs (coupling model). The datasets for all three models are
divided into 85% training and 15% testing sets. Additionally, the computed runoff proba-
bility density function (19) is embedded into the data-driven TCN model to construct the
coupled knowledge-embedding and data dual-driven runoff prediction model (coupling
model). Following Section 3.2, the sliding window step size for all three models is set to
2. Section 3.4.1 guides the adaptive optimization of hyperparameters using IPSO, where
parameters, such as number of convolutional kernels, kernel size, Dropout factor, and
Initial Learn Rate, are optimized. Setting ωmax = 0.9, ωmin = 0.4, c1 = 1.5, c2 = 1.5, with
a maximum iteration of 10, the optimization ranges and initial positions and velocities for
each parameter are determined based on established models, calculating fitness values
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iteratively to ultimately confirm optimization outcomes. The parameter configurations for
all three models are consistent, detailed in Table 5.

Table 5. Parameters of three models.

Parameters Num Filters Filter Size Dropout Factor Num Blocks

Value 32 2 0.01 1

Parameters Optimizer Initial Learn Rate Max Epochs Mini Batch Size

Value Adam 0.01 300 2

4.4.2. Analysis of Model Results

To comprehensively assess the predictive effectiveness of the coupled knowledge-
embedding and data-driven model and underscore its applicability in practical applications,
this study evaluated three models for runoff prediction within the watershed. These
models include the TCN model with univariate input (TCN-UID), the TCN model with
multivariate input (TCN-MID), and the coupled knowledge-embedding and data-driven
runoff prediction model (coupling model). The prediction results and evaluation metrics
for these different models are presented in Figures 14 and 15, as well as Table 6.
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Figure 14. Prediction results of the three models.

Table 6. Model evaluation indicator values.

Data Set Models R2 MAE RMSE NSE

Train
TCN-UID 0.915 6.494 6.764 0.893
TCN-MID 0.934 5.016 5.980 0.917

Coupling model 0.978 2.814 3.459 0.962

Test
TCN-UID 0.892 6.249 6.523 0.841
TCN-MID 0.917 4.767 5.727 0.907

Coupling model 0.943 4.007 4.749 0.951
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From Figures 14 and 15, and Table 6, it is evident that we used data from January 1964
to December 2014 as the training set and data from January 2015 to December 2023 as the
test set within the watershed. The datasets were input into TCN-UID, TCN-MID, and the
coupling model for runoff prediction within the watershed. As shown in Figure 14, the
coupling model exhibits the best-fit performance compared to TCN-UID and TCN-MID,
both in the training and test sets. Even at extreme values, the model accurately predicts
these extremes. Furthermore, as indicated by Figure 15 and Table 6, the coupling model
closely approximates the true values in both training and test sets, showing the strongest
correlation among the three models. Different evaluation metrics demonstrate the superior
performance of the coupling model, highlighting its excellent model performance and
strong stability.

When the model parameters are consistent, the TCN-MID model shows an improve-
ment in performance of 2.08% and 2.8% in the training and validation sets, respectively,
compared to the TCN-UID model. These results indicate that using R, RF, HS, and RH
as input variables helps the model better capture the temporal dependence and periodic
characteristics of runoff sequences. By incorporating multiple features (R, RF, HS, RH) as
inputs, the model can learn the interaction relationships between different features, thereby
capturing dependencies and complementary information among features. This enhances
the model’s sensitivity and adaptability to future data changes, improves its generalization
capability, and ultimately ensures more reliable prediction results.

Similarly, by incorporating the runoff probability density function as prior knowledge
and constructing a new loss function (19), embedded into the data-driven TCN model,
the coupling model for runoff prediction is established with R, RF, HS, and RH as input
variables and R as the output variable. Compared to the TCN-UID and TCN-MID models,
the coupling model shows performance improvements of 6.9% and 4.7% in the training
set, and 5.7% and 2.8% in the test set, respectively. This indicates that the coupling model
exhibits high stability and fault tolerance, reducing the impact of external uncertainties on
the model.

As shown in Figure 16, there are differences among the three models. The TCN-
UID model demonstrates overall good predictive performance but performs poorly at
extremely low values, especially during winter, where reduced runoff may lead to droughts.
Therefore, there is room for further improvement of the TCN-UID model. The TCN-MID
model shows better overall predictive performance compared to TCN-UID, mitigating
the disadvantage of poor performance at extreme low values. However, its predictive
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performance at extremely high values is less satisfactory, potentially causing flooding
during periods of increased summer runoff. Therefore, the TCN-MID model struggles to
effectively capture the nonlinear and non-stationary characteristics of runoff, resulting in
discrepancies between predicted and actual values.
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Figure 16. Comparison of prediction effect of three models. (a–d) shows that the TCN-UID model has
poor prediction effect at the runoff minimum, and the TCN-MID model has poor prediction effect at
the runoff maximum, and the coupling model has the best prediction effect, which can well adapt to
the nonlinear and non-stationary nature of runoff.

In contrast, the coupling model accurately predicts these extreme values, demon-
strating robustness in capturing the nonlinear and non-stationary characteristics of runoff
sequences. It exhibits strong performance even at extreme values, indicating its ability to
mitigate uncertainties and adapt well to varying runoff conditions.

5. Discussion
5.1. The Impact of Climate Change and Human Activities

From 1970 to 2018, drought in the Yellow River Basin began to rise, making it one
of the most drought-affected basins in China [54]. The Yellow River Basin is significantly
influenced by various factors, such as ecosystem conditions, agricultural and pastoral
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development, energy resources, economic composition, population distribution, intensity
of human activities, and runoff utilization patterns within different sections of the basin,
making it a typical basin sensitive to environmental changes [55]. The region suffers from
severe water shortages, highly uneven precipitation distribution, and frequent extreme
weather events such as floods and droughts, which seriously hinder the socioeconomic de-
velopment, ecological protection, and high-quality development of the Yellow River Basin.
Additionally, global warming has intensified the El Niño-Southern Oscillation (ENSO)
phenomenon, leading to highly uneven spatial and temporal precipitation distribution in
the basin, increasing the likelihood of severe droughts [56]. Between 1994 and 2003, there
was a significant decreasing trend in runoff in the Yellow River Basin, with the overall
runoff volume gradually decreasing [57]. Therefore, runoff prediction plays a crucial role
in ensuring water security in the Yellow River Basin [58].

Additionally, beyond climate change, human activities also impact runoff develop-
ment. The continuous population growth and rapid economic development have led to
increased industrial and agricultural production and water resource consumption [59].
This has resulted in over-exploitation of water resources and a series of ecological degrada-
tion phenomena, such as river flow interruption, reduced vegetation cover, and declining
groundwater levels, which in turn affect runoff development in the Yellow River Basin [39].

5.2. A Coupled Knowledge-Embedded and Data-Driven Runoff Prediction Model

Using transfer entropy to identify runoff driving factors, results show that rainfall,
sunshine duration, and relative humidity are the primary influencing factors, consistent
with He’s findings [60]. Employing multivariable input for runoff prediction alleviates the
limitations of using a single variable, as noted by Lin [61]. The IPSO algorithm proposed
in this study automatically optimizes hyperparameters, significantly saving time and en-
hancing model performance, aligning with Lin’s findings. Jin [62] highlighted that due to
global warming and human activities, runoff exhibits nonlinear and non-stationary charac-
teristics, making it difficult for traditional models to adapt. Combining data-driven models
with knowledge reduces severe data dependency. The results indicate that the coupled
knowledge-embedded and data-driven runoff prediction model, which integrates runoff
probability density as prior knowledge into the TCN training, accurately predicts runoff
and addresses poor peak value prediction in deep learning models [63]. The coupled model
considers time-series data and prior knowledge, capturing the nonlinear characteristics
of runoff changes through deep learning. Furthermore, it breaks the “black box” nature
of neural networks, with domain knowledge improving model accuracy, consistent with
Wang’s findings [64].

Despite the advantages of the IPSO-TCN model in handling nonlinear relationships
and large datasets, we also acknowledge its limitations, particularly its high dependency
on data quality and the complexity of model parameter tuning [65]. Overall, this study
provides deeper insights into runoff prediction, which is expected to positively impact the
development of more targeted drought management and response strategies.

5.3. Advantages and Limitations

Despite the positive results achieved by the coupled model in various aspects, it still
faces several challenges. The model requires a substantial amount of data for training,
which may limit its practical application, especially in remote or data-scarce regions [31].
Future research could incorporate other physical laws, control equations, or expert knowl-
edge into the proposed model framework to address runoff prediction issues or other
related engineering problems, such as wind power forecasting [30]. Overall, this study
presents a novel and effective method for runoff prediction, offering new perspectives
not only for runoff forecasting but also for predicting other factors such as temperature,
humidity, and wind speed.

With the advancement of science and technology and societal progress, climate factors
no longer solely influence runoff occurrences; human activities are increasingly playing a
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significant role in runoff variations [66]. Future research aims to include analyses of human
impact factors, such as land use, the South-to-North Water Diversion Project, and reservoir
dams, to explore ways to achieve a win–win situation for both social development and
ecological protection [67].

6. Conclusions

Against the backdrop of intensified climate change and human activities, runoff
patterns have undergone significant changes, posing major challenges to the ecological
environment protection and sustainable development of the Yellow River Basin. This study
selected 60 years of monthly runoff (R) data from January 1964 to December 2023 at nine
main hydrological stations along the main stream of the Yellow River, along with data from
nine meteorological variables. Preliminary GIS analysis was conducted to analyze runoff
variations in the Yellow River basin over the past 60 years, followed by the calculation of
the Standardized Runoff Index (SRI). The hydrological station with the highest frequency
of droughts was chosen as the primary research focus. The transfer entropy method was
employed to select runoff’s influencing factors from the nine meteorological variables. The
Improved Particle Swarm Optimization (IPSO) method was used for model parameter
optimization. The sliding window step was determined through cross-wavelet transform.
Experimental comparisons among the TCN-UID, TCN-MID, and coupling model were
conducted, and the research findings are as follows:

(1) From 1964 to 1983, the overall runoff in the Yellow River basin remained stable, but it
gradually decreased starting from 1984. The period from 1994 to 2003 had the lowest
runoff in nearly 60 years. Over this period, droughts in the Yellow River basin showed
a trend of shifting from upstream to downstream.

(2) The primary cycle of drought in the Yellow River during the study period was
10–14 months, with hydrological drought lagging behind meteorological drought
by 2 months.

(3) RF (rainfall), HS (hours of sunshine), and RH (relative humidity) are the three main
driving factors of runoff.

(4) Using IPSO for model parameter optimization improved the model’s prediction accu-
racy. In model evaluation metrics, the coupling model outperformed the TCN-UID
and TCN-MID models in terms of MAE (Mean Absolute Error), RMSE (Root Mean
Square Error), and Nash–Sutcliffe Efficiency Coefficient (NSE), effectively capturing
the nonlinear and non-stationary characteristics of runoff sequences.

(5) By constructing a loss function based on the runoff probability density function, a
knowledge-embedded and data-driven runoff prediction model was established. This
approach breaks the traditional reliance on data and eliminates barriers between
knowledge and data. Compared to the data-driven model (TCN-MID), the coupling
model shows performance improvements of 6.9% and 4.7% on the training set and
5.7% and 2.8% on the test set. The coupling model not only benefits from data-driven
advantages but also effectively addresses the issue of poor prediction performance at
extreme values, enhancing the accuracy of runoff predictions.

The IPSO algorithm designed in this study enables automatic hyperparameter opti-
mization, significantly reducing time costs and enhancing model prediction accuracy. The
IPSO algorithm is highly portable and can be integrated with any deep learning method.
Comparative experiments with TCN-UID, TCN-MID, and the coupling model demonstrate
that not only does multivariable input improve model prediction accuracy, but it also
strongly affirms the necessity of incorporating prior knowledge into data-driven models.
These findings provide a basis for decision making in ecological protection and high-quality
development in the Yellow River Basin. Considering the probabilistic density knowledge
inherent in runoff, developing feasible data-driven models based on prior knowledge
remains a crucial topic for future research.



Water 2024, 16, 2130 28 of 31

Author Contributions: J.W.: Conceptualization, methodology, software, writing—reviewing and
editing; Y.L.: writing—original draft preparation; Q.S.: formal analysis; and C.H.: investigation. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Scientific Research Projects Plan of Henan Higher
Education Institutions, grant number 24A120009.

Data Availability Statement: The data supporting this study are available through the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
This table lists all the abbreviations and their full forms used in this study.

Abbreviation Full Term
AP atmospheric pressure
BiLSTM Bidirectional Long Short-Term Memory
CMA China Meteorological Administration
CNN Convolutional Neural Networks
DDD Distance Dynamic Model
GRU Gated Recurrent Units
HS Hours of sunshine
IPSO Improved Particle Swarm Optimization
LS-SVM Least Squares Support Vector Machine
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MLE Maximum Likelihood Estimation
NMIC National Meteorological Information Center
NSE Nash-Sutcliffe Efficiency
PDEs partial differential equations
PDF probability density function
PGNN physical-guided neural network
PINN Physics-Informed Neural Networks
PSO Particle Swarm Optimization
R runoff
RF rainfall
RH Relative humidity
RMSE Root Mean Squared Error
SP Sunshine percentage
SPI Standardized Precipitation Index
SRI Standardized Runoff Index
SVM Support Vector Machines
T Temperature
TA Temperature anomaly
TCN Temporal Convolutional Network
TCN-MID multivariable input models
TCN-UID univariate input models
TE Transfer entropy
TgFCNN theory-guided fully convolutional neural network
TgNN Theory-Guided Neural Network
treeLSTM Tree-State Long Short-Term Memory
WTC Cross-wavelet transform
WV Wind velocity
XGB Extreme Gradient Boosting
XTC Wavelet coherence
VP Vapor pressure
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