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Abstract: Complex terrain features such as mountains and hills can obstruct the airflow and force
upward motion, thereby altering local atmospheric circulation patterns. During the rainy season,
these terrain characteristics are more prone to causing intense local precipitation, leading to geological
hazards such as floods and debris flows. These phenomena are closely linked to the intricate
influence of terrain on wind fields, highlighting the necessity for in-depth research into wind field
characteristics under complex terrain conditions. To address this, we propose a neural-network-
based model leveraging terrain data and horizontal wind speed data to predict atmospheric motion
characteristics and terrain uplift effects in specific terrain conditions. To enhance the generalization
ability of the model, we innovatively extract key physical information from the horizontal wind
vector data as training parameters. By comparing with the results of the Fluent model, we validate
the model’s capability in dynamic downscaling and flow field modeling. Experimental outcomes
demonstrate that our model can generate terrain-adapted convective warning data with a high
accuracy, even when terrain features are altered. Under unoptimized conditions, the results at a
maximum resolution of 50 m require only 26 s, and the computation time can be further reduced
with algorithmic improvements. This research on adaptive wind field modeling under complex
terrain conditions holds significant implications for local wind field simulation and severe convective
weather forecasting.

Keywords: terrain wind field; over-mountain airflow; neural network; terrain-adapted wind;
precipitation warning

1. Introduction

The diversity of Earth’s surface terrain directly influences the complexity of atmo-
spheric circulation and the evolution of local meteorological systems. Varied terrain fea-
tures, ranging from towering mountain ranges to expansive plains, induce significant
changes in air flow patterns, thereby shaping climate patterns worldwide and continually
driving the occurrence and development of local weather processes.

In complex terrain conditions such as mountainous and hilly regions, the undulating
topography induces non-uniformity in wind fields and complexity in turbulent structures.
Terrain obstruction, slope flows, and turbulent generation significantly influence wind
patterns, precipitation distribution, and the formation of local air quality. During the rainy
season, warm and moist air masses are forced to ascend due to terrain obstruction, where,
upon ascent [1], cooling and condensation occur [2], triggering short-duration intense
precipitation events [3]. It can be argued that terrain obstruction leads to notable changes
in local wind field characteristics, potentially fostering localized precipitation processes [4].

The terrain-induced uplift process refers to the obstruction of airflow by terrain fea-
tures, causing the air to ascend. Many precipitation events result from the interaction of
large and mesoscale atmospheric dynamics with complex terrain. Specifically, mesoscale
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weather processes often involve low-level jets [5], which, under terrain obstruction condi-
tions, can be forced to ascend, leading to the formation of severe convective weather [6].
Therefore, simulations of wind fields in complex terrain play a crucial role across various
meteorological scenarios and precipitation processes [7].

Given the close relationship between terrain-induced wind fields and weather pro-
cesses [8], it is imperative that we develop predictive models tailored for small watersheds
or canyon terrain. The model design incorporates the following steps: a. employing large-
scale and mesoscale, relatively coarse horizontal wind speeds as input parameters for the
model; b. integrating high-resolution local terrain data into the model; and c. establishing
algorithmic procedures to calculate the interaction between horizontal wind speeds and
terrain features, thereby determining the corresponding vertical velocities under specific
terrain conditions.

Traditionally, when addressing the characteristics of convective wind fields in com-
plex terrain, the industry has predominantly relied on physical models [9] such as the
widely adopted weather research and forecasting (WRF) [10] model in meteorology and
computational fluid dynamics (CFD) [11] models like Fluent. These models [12], based
on the principles of atmospheric dynamics and fluid mechanics [13], enable the effective
simulation of wind field features in complex terrains [14]. Nonetheless, physical models are
computationally intensive and are typically run on servers or in the cloud, which constrains
their utility in real-time and lightweight applications.

It is necessary to develop an algorithmic model that can promptly issue convective
weather alerts and estimate adaptive wind field data in complex terrain conditions based on
existing coarse-resolution station data or meteorological reanalysis data. This advancement
will improve real-time weather alerts for small watersheds, enabling timely and accurate
responses to convective weather events.

In recent years, deep-learning technology has been applied to wind field estimation
in complex terrains [15]. It possesses strong non-linear modeling and adaptive learning
abilities [16,17], enabling accurate estimation by automatically classifying and extracting
features from meteorological data [18–20]. Deep-learning techniques, compared to tradi-
tional physical solving methods [21], quickly capture complex relationships and non-linear
features in meteorological systems [22,23], improving the accuracy and stability of the wind
field estimation [24].

Deep-learning models have made certain progress in the field of fluid simulation,
providing new avenues for simulating complex fluid phenomena, but there are still some
shortcomings [25]. Firstly, the generalization ability of deep-learning models needs further
enhancement to address the simulation requirements under different fluid conditions and
complex terrains. Secondly, deep-learning models typically require significant computa-
tional resources for computational fluid dynamics.

The objective of this study is to enhance the generalization capability of deep-learning
models in simulating wind fields over complex terrains [26]. Employing a streamlined and
efficient methodology [27], the goal is to devise a model that accepts the initial wind field
data as input and rapidly generates terrain-adapted wind field models as output [28]. By
conducting this research, we aspire to offer a more efficient and pragmatic approach for
convective warning in complex terrain scenarios [29], thereby augmenting the precision of
localized precipitation predictions [30].

2. Experimental Design and Model Introduction
2.1. Physics Equations

Neural network models have made significant strides in simulating atmospheric flow
characteristics, with representative models such as physics-informed neural networks
(PINN). The focus of this study is to build upon previous research by simplifying the
computational complexity of the model and enhancing its generalization capability.

This study employs a neural network model to compute wind field characteristics
under terrain conditions. The model design utilizes a z-co-ordinate system to formulate
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equations and compute the distribution of wind field characteristics on the x–z plane in
2D terrain.

During atmospheric motion, air masses are influenced by wind field disturbances,
leading to fluctuations in air pressure and, thus, altering their motion states. Assuming that,
within a unit of time, an air mass undergoes expansion or compression in the x-direction,
the change in volume of the air mass can be expressed as follows [31]:

V1 = V0·
(

1 +
∂u
∂x

)
(1)

Therefore, the volume change in the air mass due to expansion or compression in the
x and z directions is [32]:

V1 = V0·
(

1 +
∂u
∂x

)
·
(

1 +
∂w
∂z

)
(2)

According to the equation p0·V0 = p1·V1, it is evident that pressure changes are related
to volume changes. Thus, p1 = p0·V0/V1 can be derived as follows:

p1 = p0·
V0

V1
=

p0(
1 + ∂u

∂x

)
·
(

1 + ∂w
∂z

) ≈ p0

1 + ∂u
∂x + ∂w

∂z

(3)

The pressure difference before and after the change in the state of the air mass within
a unit of time can be obtained as follows:

∂p
∂t

=
1
δt
·(p1 − p0) =

1
δt
·( p0

1 + ∂u
∂x + ∂w

∂z

− p0) =
1
δt
·
−p0·

(
∂u
∂x + ∂w

∂z

)
1 + ∂u

∂x + ∂w
∂z

≈ − p0

δt
·
(

∂u
∂x

+
∂w
∂z

)
(4)

Here, ∂p/∂t is referred to as the disturbance amount of pressure within a unit of time,
and the disturbed pressure can also be approximated as:

δp = −p0·
(

∂u
∂x

+
∂w
∂z

)
·δt (5)

In general, in the natural environment, the compression and expansion of air masses
occur within an extremely short period of time, so δt takes a very small value. Here, in
calculating the disturbed pressure of the air mass, it is necessary to introduce the definitions
of the deformation gradient C and the deformation tensor J [33]:

C = ∇·
→
V =

∂u
∂x

+
∂w
∂z

(6)

J = 1 + C·δt (7)

When the deformation tensor J > 1, it indicates the expansion of the air mass; when
J < 1, it indicates the compression of the air mass; and, when J = 1, it indicates no change
in the volume of the air mass. Then, wind speed changes are calculated based on the
Navier–Stokes equations (NS):

∂u
∂t

= −λ·1
ρ
·∂δp

∂x
(8)

∂w
∂t

= −λ·1
ρ
·∂δp

∂z
(9)
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Here, λ represents the grid parameter, indicating a proportional relationship between
the calculation of pressure gradients and the grid size. Substituting the deformation tensor
J into the motion equation yields:

∂u
∂t

= −λ·1
ρ
· ∂

∂x
(p0·(J − 1)·δt) (10)

∂w
∂t

= −λ·1
ρ
· ∂

∂z
(p0·(J − 1)·δt) (11)

Let M = p0·(J − 1)·δt. Substituting into Equations (10) and (11), and expanding using
the finite difference method, we obtain Equations (12) and (13).

un+1 − un

∆t
= −λ·1

ρ
·
Mn

i+1 − Mn
i

∆x
(12)

wn+1 − wn

∆t
= −λ·1

ρ
·
Mn

k+1 − Mn
k

∆z
(13)

The grid parameter λ is obtained from model training. The algorithm described above
draws inspiration from the computational method of the physics-informed neural network
(PINN) model. However, considering the substantial computational burden of the PINN
model, this paper simplifies the algorithm based on the PINN model.

2.2. Model Architecture

In general, lightweight wind field models employ simplified computational processes,
requiring only an initial wind speed input. Subsequently, the neural network model
calculates the adapted wind field based on the terrain features, without the need to consider
iterative processes of wind speed over time. Therefore, this paper adopts a simplified
algorithm, aiming to minimize the time iteration process of the model, thereby reducing
the intensity of model training.

The approach employed in this study to address complex terrain wind fields involves
not directly training the wind vector (u, w), but rather identifying a key variable. This
variable is then trained using a neural network model, and the trained key variable is
subsequently introduced into the fluid equations to compute the characteristics of terrain-
adaptive wind fields. The advantage of this approach is the avoidance of vector operations,
thereby reducing the training difficulty of the neural network model.

After testing, this study selected the deformation tensor J as the key variable for model
training, thereby estimating changes in the wind field based on the variations of J, thus
simplifying the calculation process of the physics-informed neural network (PINN) model.

As shown in Figure 1, this study selects the deformation tensor J as an intermediate
variable in the neural network model. Based on the initial wind field, the deformation
gradient C is calculated to determine the initial deformation tensor Jinit. Subsequently, Jinit
is introduced into the neural network model to compute the variation of Jinit with respect
to the flow field, denoted as Jout. Finally, the wind field characteristics under a complex
terrain are inferred based on the flow field deformation represented by J.

As shown in Figure 2, the PINN model employs neural network training to compute
the iterative relationship between wind speed and air pressure, thereby obtaining the
final wind field results. Conversely, the simplified model inherits the algorithmic process
of using air pressure to calculate the wind field from the PINN model. However, the
key distinction lies in the fact that the simplified model does not compute the final air
pressure, pout, by iteratively calculating the relationship between the wind speed and air
pressure. Instead, it utilizes neural networks to compute the variations in deformation
tensors, consequently deriving the final air pressure, pout. Subsequently, the wind field
under complex terrain conditions is inferred through deduction.
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experimental model in this study.

The advantages of using the deformation tensor J to compute flow field variations
include the following:

A. The value of the deformation tensor J is close to 1, while the deformation gradient
C is close to 0. Computing the deformation gradient C is susceptible to interference from
positive and negative signs and zeros, whereas using the deformation tensor J ensures
numerical stability.

B. The spatial convection of the deformation tensor J adheres to physical laws. When
air masses are compressed or stretched, deformation occurs, and the deformation tensor J
exerts force on adjacent regions, thus generating a propagation mechanism.

C. The deformation of air masses results in changes in flow field characteristics. Using
the deformation tensor J facilitates the convenient computation of flow field pressure
gradients and wind speeds.

Compared to the PINN model, predicting diffusion through the deformation tensor J
significantly simplifies the computational workload of the model.

2.3. Model Data Processing and Training Methods

The model adopts a Z-coordinate system and employs square grids to represent the
terrain and air. Following the illustration in Figure 3, grid points in the flow field are
labeled as either ‘terrain’ or ‘air mass’. After specifying the initial wind speed, the wind
speed values at grid points labeled as ‘terrain’ are kept constant at 0.
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mass compressed; and (b) air mass expanded.

Assuming deformation occurs not only in air grid points, but also in terrain grid
points, as terrain points interact with air masses, deformation in the flow field generates
stretching forces, and such deformation propagates from terrain grid points to nearby areas,
forming a flow field adapted to the terrain. The deformation gradient C of the grid is
computed using finite differences, as described in Equation (14).

C =
∂u
∂x

+
∂w
∂z

=
ui+1 − ui−1

2·∆x
+

wi+1 − wi−1

2·∆z
(14)

According to Equation (7), the deformation gradient C is used to calculate the de-
formation parameter J0. Before inputting J0 into the neural network model, it undergoes
normalization. Let Jinput = 0.5·J0, which is then used as the input layer of the model.

After undergoing processing by the neural network model, the variable Jinput yields
the model training result Jnet. Subsequently, Jnet is subjected to reverse-normalization to
obtain Jout = Jnet·2.

The computed deformation parameter Jout is substituted into Equations (10) and (11)
to calculate the wind field adapted to the terrain features.

It should be noted that the deformation parameter J serves as the training output of
the neural network model in this study. However, the deformation parameter Jout needs
to be substituted into the fluid equations and the terrain-adapted wind field (uout, wout)
computed. Subsequently, the terrain-adapted wind field (uout, wout) is utilized in training
with the target wind field (u, w) to obtain the optimal solution of the neural network model.
The training process is illustrated in Figure 4.
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There have been some achievements in simulating the spatial diffusion of physical
quantities using convolution algorithms [34,35]. The “Using Neural Network” step men-
tioned in Figure 5 employs convolution algorithms, calculating the spatial diffusion of
physical quantities through multi-level convolutions.
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Figure 5. The framework of the neural network model.

The advantage of convolution algorithms lies in their convenience in handling spatial
relationships of physical quantities.

Figure 6 illustrates the operational process of a standard convolution. The convolution
operation transfers and interacts with the data of neighboring grid points, achieving the
spatial transfer of physical quantities.
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2.4. Source of Model Data

The experiment utilized terrain wind fields outputted by the Fluent model as a tool
for model training. Fluent, as a powerful computational fluid dynamics simulation tool,
effectively simulates and predicts atmospheric flow phenomena. Employing advanced
algorithms and physical models, it accurately models the movement, propagation, and
interaction of winds with other meteorological phenomena, providing crucial data support
for meteorological forecasting.

Mainstream meteorological models, such as WRF, focus on mesoscale simulations with
resolutions of typically up to 1 to 3 km. At grid spacings finer than 1 km, these models often
underperform. In contrast, Fluent offers higher resolutions, accurately simulating terrain
flow from 10 m to 500 m. Its precision is particularly noted in complex terrain airflow
simulations. Therefore, Fluent is used by some researchers to dynamically downscale
mesoscale models [36], aiming to enhance the wind field simulation accuracy and reliability.

2.4.1. Fluent Model Theory

In Fluent, the conservation equations for fluid mechanics problems consist of the
mass conservation equation, momentum conservation equation, and energy conservation
equation [37]. These equations can be expressed mathematically as follows [38]:
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The mass conservation equation is as follows:

∂ρ

∂t
+∇·

(
ρ·

⇀
V
)
= 0 (15)

The momentum conservation equation is as follows:

∂(ρui)

∂t
+∇·

(
ρui

⇀
V
)
= ρ

(
∂ui
∂t

+
⇀
V·∇

⇀
V
)

(16)

The motion equation is as follows:

∂u
∂t

+∇·
(

u
⇀
V
)
= ∇·(µ∇u)− 1

ρ

∂p
∂x

+ Fx (17)

∂v
∂t

+∇·
(

v
⇀
V
)
= ∇·(µ∇v)− 1

ρ

∂p
∂y

+ Fy (18)

∂w
∂t

+∇·
(

w
⇀
V
)
= ∇·(µ∇w)− 1

ρ

∂p
∂z

+ Fz (19)

Here, u, v, and w represent the wind speeds in the x, y, and z directions, respectively,
ρ represents the air density, and p represents the air pressure. The energy equation is
as follows:

∂(ρE)
∂t

+∇·[ui(ρE + p)] = ∇·(k∇T) + Q (20)

Here, E represents the system energy, µ represents the fluid viscosity coefficient, and
Q represents the heat input.

Given the excellent performance of Fluent in atmospheric dynamic downscaling, this
study employs the Fluent model to simulate wind field characteristics under complex
terrain conditions and outputs wind fields close to steady-state conditions.

2.4.2. Terrain-Adapted Wind Field Data Output from Fluent Model

The advantage of the Fluent model lies in its ability to flexibly set initial wind fields
and simulate wind fields adapted to terrain features.

As shown in Figure 7, a mountain range in the red box of area a is selected, and a 2D
x–z section is extracted as the simulation area. Panel b displays the initial field set by Fluent,
while panel c shows the adapted wind field output reflecting terrain characteristics. The
model is configured for ‘steady-state simulation,’ where the term refers to assuming the
characteristics of fluid flow remain constant throughout the simulation, disregarding the
influence of time. In this simulation, parameters such as the fluid velocity field and pressure
field may vary spatially, but their changes over time at any given point are negligible.

Given the flexibility of the Fluent model in setting initial wind fields, the experimental
design involved using Fluent to simulate terrain-adapted wind fields under specific terrain
conditions and different initial wind speed states. Horizontal wind speeds were set at
1, 2, 3, . . ., 10 m/s, with an initial vertical velocity of 0. Corresponding terrain-adapted
wind fields were obtained. Generally, the highest accuracy of the meteorological model
resolution typically ranges from 400 m to 1 km. Therefore, in this study, Fluent model data
with a higher precision were interpolated onto grid points with a resolution of 400 m to
serve as training data for the neural network model, aiming to investigate methods for the
dynamical downscaling of meteorological models.

The initial wind field settings in the Fluent model and the output terrain-adapted wind
fields served as sample data, which were used as training data for the neural network model.
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2.5. Error Evaluation Formula

The input data for the model are the initial wind field ( u0, w0 ) and terrain mask data.
The target data for model training are the wind field data obtained from Fluent

calculations.
The error evaluation formula used for model training adopts the method outlined in

Equation (21).

MSE =
∑n

i=1
(
yi − y′i

)2

n
(21)

The MSE is used to evaluate the proximity between the model’s predicted values y’
and the true values y. During the training process, when the MSE error falls below the
specified threshold and stabilizes, it can be considered that the model training is completed.

3. Results

In this study, based on the principle that wind speed perturbations induce ‘deforma-
tions’ in the fluid, we predict the overall disturbance characteristics of the terrain on the
flow field using a neural network model. According to these characteristics, we employ
a pressure gradient correction algorithm from fluid models to solve for the wind field
situation after being perturbed by the terrain.
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3.1. Training Performance of the Neural Network Model

In this study, terrain obstacles were introduced into wind fields without considering
terrain conditions, as shown in Figure 8a. It was observed that a wind speed gradient
(denoted as ∇·V) occurred between the airflow and the mountain obstacles. The velocity
difference in the flow field causes fluid elements to be compressed or expanded, leading to
the deformation of the fluid elements.
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Figure 8. (a) Initial wind field; (b) initial deformation characteristics corresponding to the initial
wind field; and (c) deformation characteristics of the flow field after adaptation to terrain (obtained
through training of the neural network model).

Due to the small magnitude of the deformation variable C, a normalization algorithm
based on Equation (22) is employed in Figure 8b,c for better visualization.

Cshow =
C

|Cmax|
(22)

Figure 8b illustrates the deformation characteristics of the flow field corresponding to
the initial wind field, while Figure 8c illustrates the overall deformation characteristics of
the flow field corresponding to the terrain-adapted wind field. From the figure, it can be
observed that the flow field deformation closely follows the variations in topography.

3.2. Simulation of Terrain-Adapted Wind Fields

This section presents the training results of the neural network model and compares
them with those of the Fluent model.

Figure 9 illustrates the results, taking an initial wind speed of 2 m/s as an example.
Figure 9a shows the output results of the neural network model, while Figure 9b displays
the computational results from Fluent. Both demonstrate good consistency, particularly in
depicting physical phenomena such as airflow obstruction and forced lifting near the terrain.
Although some differences exist near the surface of the terrain between the two models,
overall, the influence of terrain on wind field disturbance is accurately represented in both
sets of models and can propagate into higher altitudes.

As shown in Figure 10, when the initial wind speed is increased from 2 m/s to 5 m/s,
the wind fields outputted by both the neural network model and the Fluent model maintain
consistency in terms of regularity, with stable distributions of wind vectors. Through
testing and validation, it has been confirmed that, within the wind speed range of 1 to
10 m/s, the overall distribution patterns of terrain-induced wind disturbances computed
by these two models remain consistent.
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3.3. Updraft Effect of Airflow

In terrain wind field models, the simulation of terrain-induced lifting in the wind field
is an important metric in atmospheric modeling.

As shown in Figure 11, representative points are selected in the airspace above the
windward slope, serving as ‘monitoring points’ and ‘monitoring lines’ to observe the
vertical velocity changes near the monitoring points. These changes are used as evaluation
indicators to validate the modeling capabilities of the neural network model.

Figure 12 compares the vertical wind speeds at each monitoring point between the two
models under the same initial wind speed conditions. Upon observation of the bar chart,
the results from both models exhibit close proximity. To further evaluate the computational
outcomes, the calculation formulae for the root mean square error (RMSE) and mean
absolute error (MAE) are introduced, as detailed in Equations (23) and (24), where (Wi*)
represents the computed results from the neural network model and (Wi) denotes the
corresponding results from the Fluent model [39].
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i − Wi| (24)

Table 1 presents the computed root mean square error (RMSE) and mean absolute error
(MAE) results for each monitoring point, with “All” indicating the comprehensive RMSE
across all monitoring points. From Table 1, it can be observed that both the RMSE and MAE
values for the monitoring points fluctuate within the range of 0.1 to 0.35, indicating that the
wind speed error deviations at each monitoring point are within reasonable limits.

The results indicate that the neural network model’s ability to simulate the uplifting
disturbance of the terrain on the airflow field can reach the simulation efficiency of the
Fluent model, albeit with some degree of error. As the initial horizontal wind speed
increases, the terrain uplifting effect strengthens, leading to an increase in the vertical wind
speeds induced by terrain disturbances, which, in turn, amplifies the discrepancies between
the two models.

In order to further investigate the vertical velocity distribution on both sides of the
mountain, this study selects the vertical velocity distribution data at different altitudes
(500 m, 600 m, 700 m, and 800 m) along the dashed lines as shown in Figure 13, and presents
them in Figure 13 to assess the influence of terrain disturbances on the vertical velocity
distribution under the condition of a horizontal initial velocity of 5 m/s. The research
results show that, on the windward slope, the upward airflow motion strengthens as it
approaches the slope surface, while, on the leeward slope, a significant downward airflow
motion is observed near the leeward slope. It is noteworthy that the data output by the
neural network model is generally consistent with the trend of the Fluent model, but there
are some errors in the calculation results, indicating room for improvement.
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conditions. The horizontal axis represents the initial horizontal wind speed before inputting the model
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to H are each associated with the respective monitoring points A to H, as indicated in Figure 11.

Table 1. Statistical performance metrics of the neural network model.

Monitoring Points RMSE MAE

A 0.35 0.31
B 0.31 0.27
C 0.30 0.26
D 0.05 0.05
E 0.06 0.05
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Table 1. Cont.

Monitoring Points RMSE MAE

F 0.01 0.01
G 0.22 0.19
H 0.26 0.23

All 0.23 0.17
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3.4. The Simulation Results Under Varied Terrain Conditions

To test the adaptability of the neural network model to changes in terrain, two sets of
test experiments were added on top of the case results training:

1. Adjust the position of the mountain in the horizontal translation case and observe the
simulation results;

2. Change the shape of the mountain in the case and observe the simulation results.

Taking 5 m/s as the initial wind speed, the author relocated the mountain’s center
point from x = 7500 to x = 10,000. The wind field results were obtained through simulations
using both the neural network model and Fluent model, and are visualized in Figure 14.
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simulation results; (b) Fluent model simulation results; and (c) Fluent results minus neural network
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In terms of simulating the upward airflow motion, the results of the neural network
model are generally consistent with those of the Fluent tool. However, there is a certain
simulation error on the leeward slope, which can be attributed to the tendency of airflow to
generate turbulence on the leeward slope, a feature not yet incorporated into the neural
network model. Nevertheless, it is worth emphasizing that the neural network model
demonstrates a certain degree of adaptability to changes in terrain conditions.

Taking an initial wind speed of 5 m/s as an example, while keeping the central point
of the mountain at x = 10,000 constant, a representative 2D terrain flow profile was re-
extracted from the mountain range in Figure 7a. Simulations of the terrain flow field for
this profile were subsequently conducted. The simulated results were then compared. For
details of the terrain profile, please refer to Figure 15.
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Figure 15. Wind-speed-monitoring point above the windward slope.

In Figure 15, representative points are selected in the airspace above the windward
slope as ‘monitoring points’ to observe the vertical velocity variations near these points.
These variations serve as evaluation criteria to validate the generalization capability of the
neural network model.

To verify the universality of the neural network model under various terrain condi-
tions, detailed numerical simulations were conducted. As shown in Figure 16, altering the
shape of the mountain resulted in the simulation of flow field characteristics using both the
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neural network model and Fluent tool. It was observed that significant turbulence occurred
near the leeward slope when the shape of the mountain changed. Due to the limitations
of the neural network model in simulating turbulence, there were certain deviations in
the simulation results near the leeward slope compared to Fluent, but it could accurately
simulate the airflow uplift process near the windward slope.
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speed of 5 m/s: (a) neural network model simulation results; (b) Fluent model simulation results;
and (c) Fluent results minus neural network model results.

Figure 17 depicts vertical wind speeds measured at various monitoring points, com-
paring differences between the two models under different initial wind speed conditions.
The results indicate that vertical airflow velocities over terrain correlate positively with
initial horizontal wind speeds. Numerical discrepancies exist between the two models in
simulating updrafts, which amplify with increasing initial wind speeds.
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(Unit: m/s), and the vertical axis represents the vertical velocity (Unit: m/s). The sub-illustrations A
to D are each associated with the respective monitoring points A to D, as indicated in Figure 15.

Table 2 presents the root mean square error (RMSE) and mean absolute error (MAE)
data for each monitoring point, where “All” denotes the comprehensive RMSE across all
monitoring points. From Table 2, it is observed that both the RMSE and MAE values for
the monitoring points fluctuate within the range of 0.1 to 0.4, indicating that the model’s
computed errors are within reasonable limits.

Table 2. Statistical performance metrics of the neural network model.

Monitoring Points RMSE MAE

A 0.19 0.17
B 0.35 0.31
C 0.11 0.10
D 0.21 0.19

All 0.23 0.19

In summary, despite altering the terrain shape, the neural network model can still
accurately simulate airflow characteristics, demonstrating its ability to generalize.

3.5. The Computational Performance of the Model

To compare the computational speeds between Fluent and neural network models, we
specifically recorded the computational times for a sample case. To validate the reliability of
these times, both Fluent and the neural network models were tested on the same computer
hardware (model: Xeon E5 2650) using a single-core CPU. The Fluent model, based on a
C++ framework, reached equilibrium after approximately 500 iterations. We recorded the
time consumption for iterations at 500, 1000, and 1500 cycles. The neural network model,
based on a Python framework, averaged the time consumption across multiple simulations.

Table 3 summarizes the computational time consumption of two models under the
terrain conditions corresponding to Figure 7c.

Table 3. Time consumption under initial terrain conditions.

Iteration Count Fluent Neural Network Model

500 136.2 s
26.2 s1000 225.1 s

1500 282.4 s

Table 3 reveals the neural network model’s shorter computation time compared to the
Fluent tool’s for convergence using a single-core CPU, highlighting its immense potential
for computational efficiency.

In Table 4, after altering terrain conditions, the Fluent model requires grid reconstruc-
tion, leading to changes in the model’s computation time.

Table 4. Time consumption after changing the shape of the mountain.

Iteration Count Fluent Neural Network Model

500 283.9 s
26.1 s1000 576.9 s

1500 879.8 s

From the time consumption in Tables 3 and 4, we observe that the computation time
of the Fluent model significantly increases when the terrain complexity changes. This is
because Fluent needs to redraw the flow field grid to adapt to the new terrain conditions,
resulting in an increased computational time as the terrain complexity and grid point
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numbers grow. In contrast, the neural network model employs a fixed square grid with
consistent grid points, leading to minimal variation in computation time.

From Tables 3 and 4, we observe that the neural network model consumes less time
than the Fluent model to reach convergence after 500 iterations when using a single-
core CPU. This indicates significant potential in computational efficiency for the neural
network model.

3.6. Limitations of the Research Papers

The neural network model employed in this study faced certain technical limitations
during training. For instance, while the Fluent model utilized a high-density grid partition-
ing during the simulation, the neural network model employed a comparatively coarse
grid, which somewhat diminished its simulation accuracy. Additionally, there were some
technical imperfections as outlined below:

(I) Limitations of the training data
The model’s training data are derived from Fluent outputs corresponding to Figure 7c,

with the training data having initial wind speeds of 2.5 m/s, 5.5 m/s, and 7.5 m/s, while
the testing data range from 1 m/s to 10 m/s. The model is trained on a small subset of data
and applied to compute a broader range of test data. This training approach may result in
an insufficient representation of training samples.

(II) Limitations of the Fluent model
Compared to mainstream meteorological models like WRF, Fluent exhibits certain

limitations in meteorological applications:
a. Fluent is suitable for simulating small-scale atmospheric flow and diffusion pro-

cesses but may not be suitable for large- and medium-scale meteorological phenomena
such as atmospheric circulation and weather systems.

b. While Fluent can simulate aspects of weather processes such as wind fields and the
condensation of gaseous water into raindrops, it lacks the capability to simulate the entire
weather process.

(III) Unconsidered influencing factors
Turbulence is typically generated on the leeward slope; however, due to the complexity

and diversity of turbulence characteristics, the model in this study inadequately considers
this important influencing factor, potentially leading to an insufficient predictive accuracy
in certain scenarios.

4. Conclusions

In conclusion, addressing the challenges of atmospheric downscaling, terrain-adaptive
wind fields, and convective weather warning simulations in complex terrains, this study
introduces a deep-learning-based approach to simulate the atmospheric lifting process in
such conditions and to apply these insights to the prediction of severe convective weather
alerts. The innovations of this study are summarized as follows:

(I) This experiment innovatively extracts scalar data from the initial (u,w) wind field
vector data as key training parameters, replacing direct training on wind vectors, thereby
achieving the adaptive simulation of wind fields under complex terrain conditions. The
advantage of this approach lies in avoiding direct vector training, reducing the training
difficulty, and enhancing the model’s generalization ability.

(II) This experiment proposes using the fluid deformation variable J as the core param-
eter for model training. The variable J demonstrates good versatility in handling terrain
grid points and fluid grid points, effectively reducing the difficulty of dealing with terrain
grid points in the flow field. Compared to the deformation gradient C, the variable J
avoids the complexity of positive and negative sign operations, thereby eliminating po-
tential disturbances caused by positive and negative signs and zero operations during
training. This further reduces the training difficulty of the fluid model and helps improve
its generalization ability.
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(III) Compared to traditional atmospheric dynamic modeling methods, the approach
using neural network models in this study significantly reduces the complexity of modeling
atmospheric flow fields. By capturing characteristic patterns of terrain conditions, it
simulates wind field features in complex terrains, providing a new method and reference
for addressing meteorological issues in complex terrain conditions.
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