Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal
Abstract
:1. Introduction
- Investigate if solar-powered desalination can be a sustainable and long-term solution for water scarcity;
- Determine whether investing in solar PV technology is cost-effective for producing desalinated water;
- Create a model to calculate the unit production cost of desalinated water based on plant capacity, electricity prices, and specific energy consumption;
- Provide a tool to estimate desalination costs for planning and designing new desalination facilities.
2. State of the Art Review
2.1. Desalination Technologies
- Intake: Pumps and pipes to take the water from the source and direct it to the desalination facilities;
- Pre-treatment: The filtration of raw water to remove solid components and the addition of chemical substances to reduce salt precipitation, the scaling of equipment surfaces, corrosion inside the desalination unit, and also biological growth and fouling;
- Desalination: The retrieving of freshwater from seawater. This is the most energy-consuming step of the water treatment;
- Post-treatment: Correct the pH by adding selected salts to meet the requirements of the final uses.
2.2. Energy Efficiency
2.3. Desalination Costs
2.4. Environmental Impacts
2.5. Emerging Technologies
2.6. Summary of Technologies
3. Materials and Methods
3.1. Technological Considerations
3.2. Environmental and Geographical Factors
3.3. Case Study Selection and Justification
3.4. Methodology
3.5. Levelized Cost of Energy
3.6. Grid Tariffs
4. Results and Discussion
4.1. The Porto Santo Case Study
4.2. The Algarve Case Study
- Scenario 1—Ensuring basic supply: The World Health Organization (WHO) sets the minimum amount of freshwater for emergency situations at 20 l/day per person. Applied to the Algarve population (467,495 people as of the 2021 Census), this yields 9349.9 m3/day. Considering a plant utilization factor of , a desalination plant to suppress these needs would require a capacity of 10,400 m3/day.
- Scenario 3—Reducing water stress: Water stress in the Algarve region is currently over 80%, meaning that every year the water retrieved from the internal renewable freshwater resources represents 80% of the total available. The criticality ratio that represents water stress is set at 40%; hence, half the water withdrawn in the Algarve yearly is at risk. Given the data available, this scenario will consider that the desalinated water would suppress half the municipal consumption in order to reduce the average water stress to a lower risk level of 40%. Considering a plant utilization factor of , a desalination plant to suppress these needs would require a capacity of 102,850 m3/day.
4.3. Environmental Aspects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN (United Nations). Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 17 January 2024).
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, J.; Henrichs, T.; Rosch, T. World water in 2025: Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century. Kassel World Water Series Report 2. 2000. Available online: http://www.usf.uni-kassel.de/usf/archiv/dokumente/kwws/kwws.2.pdf (accessed on 17 January 2024).
- World Bank Group. Population, Total. 2022. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 17 January 2024).
- World Bank Group. Renewable Internal Freshwater Resources per Capita (Cubic Meters). Food and Agriculture Organization, AQUASTAT Data. 2020. Available online: https://data.worldbank.org/indicator/ER.H2O.INTR.PC (accessed on 17 January 2024).
- Curto, D.; Franzitta, V.; Guercio, A. A review of the water desalination technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Darre, N.C.; Toor, G.S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and sustainability—An appraisal and current perspective. Water Res. 2016, 89, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Kalogirou, S.A. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 2005, 31, 242–281. [Google Scholar] [CrossRef]
- Jones, E.; Qadir, M.; van Vliet, M.T.H.; Smakhtin, V.; Kang, S.M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Al-Qaraghuli, A.; Kazmerski, L.L. Comparisons of technical and economic performance of the main desalination processes with and without renewable energy coupling. In Proceedings of the World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference, Denver, CO, USA, 13–17 May 2012. [Google Scholar]
- Fritzmann, C.; Lowenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Lindemann, J.H. Wind and solar powered seawater desalination applied solutions for the Mediterranean, the Middle East and the Gulf countries. Desalination 2004, 168, 73–80. [Google Scholar] [CrossRef]
- Ma, Q.; Lu, H. Wind energy technologies integrated with desalination systems: Review and state-of-the-art. Desalination 2011, 277, 274–280. [Google Scholar] [CrossRef]
- Wu, J.; Jin, Q.; Wang, Y.; Tandon, P. Theoretical analysis and auxiliary experiment of the optimization of energy recovery efficiency of a rotary energy recovery device. Desalination 2017, 415, 1–7. [Google Scholar] [CrossRef]
- Dawoud, M.A.; Sallam, G.R.; Abdelrahman, M.A.; Emam, M. The Performance and Feasibility of Solar-Powered Desalination for Brackish Groundwater in Egypt. Sustainability 2024, 16, 1630. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M.; Rosado, P. Energy Mix. Our World in Data. 2020. Available online: https://ourworldindata.org/energy-mix (accessed on 17 January 2024).
- Ghaffour, N.; Lattemann, S.; Missimer, T.; Ng, K.C.; Sinha, S.; Amy, G. Renewable energy-driven innovative energy-efficient desalination technologies. Appl. Energy 2014, 136, 1155–1165. [Google Scholar] [CrossRef]
- Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology review and data analysis for cost assessment of water treatment systems. Sci. Total Environ. 2019, 651, 2749–2761. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tol, R.S.J. Evaluating the costs of desalination and water transport. Water Resour. Res. 2005, 41, 1–10. [Google Scholar] [CrossRef]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef]
- Kress, N. Marine Impacts of Seawater Desalination: Science, Management, and Policy; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Lattemann, S.; Kennedy, M.D.; Schippers, J.C.; Amy, G. Chapter 2 Global desalination situation. Sustain. Sci. Eng. 2010, 2, 7–39. [Google Scholar] [CrossRef]
- Morton, A.J.; Callister, I.K.; Wade, N.M. Environmental impacts of seawater distillation and reverse osmosis processes. Desalination 1997, 108, 1–10. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Kaya, C.; Sert, G.; Kabay, N.; Arda, M.; Yuksel, M.; Egemen, O. Pre-treatment with nanofiltration (NF) in seawater desalination—Preliminary integrated membrane tests in Urla, Turkey. Desalination 2015, 369, 10–17. [Google Scholar] [CrossRef]
- Song, Y.; Su, B.; Gao, X.; Gao, C. Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation. Desalination 2013, 330, 61–69. [Google Scholar] [CrossRef]
- Song, Y.; Gao, X.; Li, T.; Gao, C.; Zhou, J. Improvement of overall water recovery by increasing RNF with recirculation in a NF–RO integrated membrane process for seawater desalination. Desalination 2015, 361, 95–104. [Google Scholar] [CrossRef]
- Xu, P.; Cath, T.Y.; Robertson, A.P.; Reinhard, M.; Leckie, J.O.; Drewes, J.E. Critical review of desalination concentrate management, treatment and beneficial use. Environ. Eng. Sci. 2013, 30, 502–514. [Google Scholar] [CrossRef]
- Zhang, S.; Chung, T.-S. Osmotic power production from seawater brine by hollow fiber membrane modules: Net power output and optimum operating conditions. AIChE J. 2016, 62, 1216–1225. [Google Scholar] [CrossRef]
- Cath, T.; Childress, A.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Noy, A.; Wanunu, M. A new type of artificial water channels. Nat. Nanotechnol. 2020, 15, 9–10. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Mohammadi, T. Sea water desalination using electrodialysis. Desalination 2008, 221, 440–447. [Google Scholar] [CrossRef]
- Landon, J.; Gao, X.; Omosebi, A.; Liu, K. Progress and outlook for capacitive deionization technology. Curr. Opin. Chem. Eng. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Kishizawa, N.; Tsuzuki, K.; Hayatsu, M. Low pressure multi-stage RO system developed in “Mega-Ton Water System” for large-scaled SWRO plant. Desalination 2015, 368, 81–88. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Jones, D.; Hilal, N. An integrated fertilizer driven forward osmosis-renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. Desalination 2019, 471, 114126. [Google Scholar] [CrossRef]
- Wei, Q.J.; McGovern, R.K.; Lienhard V, J.H. Saving energy with an optimized two-stage reverse osmosis system. Environ. Sci. Water Res. Technol. 2017, 3, 659–670. [Google Scholar] [CrossRef]
- Center for Mediterranean Integration (CMI). Desalination Technologies and Economics: CAPEX, OPEX & Technological Game Changers to Come. Technical Report. 2016. Available online: https://kh.aquaenergyexpo.com/wp-content/uploads/2022/09/Desalination-technologies-and-economics-capex-and-opex.pdf (accessed on 17 January 2024).
- Bischof, B.; Mariano, A.J.; Ryan, E.H. The Portugal Current System. 2003. Available online: https://oceancurrents.rsmas.miami.edu/atlantic/portugal.html (accessed on 17 January 2024).
- Global Solar Atlas. Photovoltaic Power Potential (PVOUT). 2023. Available online: https://globalsolaratlas.info/global-pv-potential-study (accessed on 17 January 2024).
- Pereira, N.; Dessalinização de água do mar em Portugal: 42 anos de História. Águas e Resíduos da Madeira (ARM). 2023. Available online: https://www.aprh.pt/16ca/docs/22marco_NunoPereira.pdf (accessed on 17 January 2024).
- Águas e Resíduos da Madeira (ARM). Central Dessalinizadora do Porto Santo. 2023. Available online: https://arm.pt/wp-content/uploads/2022/05/CDPS40_Brochura_vjan23.pdf (accessed on 17 January 2024).
- World Resources Institute (WRI). Aqueduct—Water Risk Atlas. 2019. Available online: https://www.wri.org/data/aqueduct-water-risk-atlas (accessed on 17 January 2024).
- Portal Ambiente Online. Águas do Algarve submete Estudo de Impacto Ambiental para Construir Dessalinizadora 2023. Available online: https://www.ambienteonline.pt/noticias/aguas-do-algarve-submete-estudo-de-impacto-ambiental-para-construir-dessalinizadora (accessed on 17 January 2024).
- Castro, R. Electricity Production from Renewable; Springer International Publishing: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2022. Technical Report 2023. Available online: https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022 (accessed on 17 January 2024).
- IRENA. World Energy Transitions Outlook 2023: 1.5 °C Pathway. Technical Report. 2023. Available online: https://www.irena.org/Publications/2023/Jun/World-Energy-Transitions-Outlook-2023 (accessed on 17 January 2024).
- Exchange Rates UK. US Dollar to EURO Spot Exchange Rates for 2022. 2022. Available online: https://www.exchangerates.org.uk/USD-EUR-spot-exchange-rates-history-2022.html (accessed on 17 January 2024).
- Empresa de Eletricidade da Madeira. Tarifas de Venda a Clientes Finais em MT na Região Autónoma da Madeira em 2023. 2023. Available online: https://www.eem.pt/media/1070800/tarifario_mt_2023-1julho.pdf (accessed on 17 January 2024).
- EDP-SU. Tarifas Média Tensão. 2023. Available online: https://sueletricidade.pt/pt-pt/page/2276/tarifas-media-tensao (accessed on 17 January 2024).
- Águas e Resíduos da Madeira (ARM). Anexo II—Tarifas a Aplicar pela Prestação dos Serviços de Distribuição de água, Saneamento de águas Residuais e Recolha de Resíduos Sólidos na ilha do Porto Santo. 2022. Available online: https://arm.pt/wp-content/uploads/2022/09/FINAL-BAIXA_2022_resumo-publicacao-NET_TARIFARIO-BAIXA_2020_TARIFA_A-PARTIR-DE-1-de-janeiro-de-2022.pdf (accessed on 17 January 2024).
- IRENA. Battery Storage for Renewables: Market Status and Technology Outlook. Technical Report. 2015. Available online: https://www.irena.org/publications/2015/Jan/Battery-Storage-for-Renewables-Market-Status-and-Technology-Outlook (accessed on 17 January 2024).
- Agência Portuguesa do Ambiente. Fator de Emissão da Eletricidade. 2023. Available online: https://www.apambiente.pt/sites/default/files/_Clima/Inventarios/20230427/FE_GEE_Eletricidade2023rev3.pdf (accessed on 10 July 2024).
- EUROSTAT. Electricity Prices by Type of User. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/ten00117/default/table (accessed on 17 January 2024).
- Henthorne, L.; Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 2015, 356, 129–139. [Google Scholar] [CrossRef]
UPC (USD/m3) | Capacity | (m3/day) | ||
---|---|---|---|---|
3785 | 18,925 | 37,850 | 189,250 | |
Capital cost | 0.412 (29%) | 0.220 (25%) | 0.173 (21%) | 0.099 (14%) |
Electrical energy | 0.304 (22%) | 0.304 (34%) | 0.304 (37%) | 0.304 (42%) |
Labor | 0.183 (13%) | 0.049 (5%) | 0.031 (4%) | 0.010 (1%) |
Chemicals | 0.065 (5%) | 0.065 (7%) | 0.065 (8%) | 0.065 (9%) |
Membrane replacement | 0.14 (10%) | 0.053 (6%) | 0.053 (6%) | 0.053 (7%) |
Other costs | 0.297 (21%) | 0.202 (21%) | 0.194 (24%) | 0.185 (26%) |
Total O&M | 0.989 (71%) | 0.673 (75%) | 0.647 (79%) | 0.617 (86%) |
TOTAL | 1.401 (100%) | 0.893 (100%) | 0.820 (100%) | 0.716 (100%) |
(EUR/kWh) | 0.1152 | 0.1527 | 0.0622 | 0.0417 |
(kWh/m3) * | 3.3 | 3.3 | 3.3 | 3.3 |
(EUR/m3) * | 0.06 | 0.06 | 0.06 | 0.06 |
Maintenance (EUR/m3) * | 0.09 | 0.09 | 0.09 | 0.09 |
Chemicals (EUR/m3) * | 0.01 | 0.01 | 0.01 | 0.01 |
Labor (EUR/m3) * | 0.11 | 0.11 | 0.11 | 0.11 |
(EUR/m3) | 0.38 | 0.51 | 0.21 | 0.14 |
Total OPEX (EUR/m3) | 0.59 | 0.72 | 0.42 | 0.35 |
(EUR/m3) | 0.65 | 0.78 | 0.48 | 0.41 |
(EUR/kWh) | 0.1531 | 0.0539 | 0.0362 |
(kWh/m3) | 3.5 | 3.5 | 3.5 |
(EUR/m3) | 0.3267 | 0.3267 | 0.3267 |
(EUR/m3) | 0.5359 | 0.1888 | 0.1265 |
0.6000 | 0.3456 | 0.2618 | |
OPEX except energy (EUR/m3) | 0.3572 | 0.3572 | 0.3572 |
(EUR/m3) | 1.220 | 0.873 | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apolinário, R.; Castro, R. Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal. Water 2024, 16, 2140. https://doi.org/10.3390/w16152140
Apolinário R, Castro R. Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal. Water. 2024; 16(15):2140. https://doi.org/10.3390/w16152140
Chicago/Turabian StyleApolinário, Rita, and Rui Castro. 2024. "Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal" Water 16, no. 15: 2140. https://doi.org/10.3390/w16152140
APA StyleApolinário, R., & Castro, R. (2024). Solar-Powered Desalination as a Sustainable Long-Term Solution for the Water Scarcity Problem: Case Studies in Portugal. Water, 16(15), 2140. https://doi.org/10.3390/w16152140