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Abstract

:

An informed search strategy based on random statistical analysis was developed for synchronous recognition of groundwater pollution source information and aquifer parameters. An informed search iterative course (ISIC) was accordingly designed, and each iteration included the determination of attempt point and state transition. In this paper, two improvement techniques were first adopted for choosing attempt points and judging state transition in ISIC to improve search efficiency and precision. The first improvement was that the variable radius free search method was applied to choosing the attempt point, and the size of the search radius was constantly adjusted in ISIC, taking the search ergodicity and efficiency into account. The second improvement technique was a Tsallis formula used for state transition judgment, and the controlled factor in the Tsallis formula was regulated continuously so that the search could consider ergodicity and efficiency simultaneously. Furthermore, frequent calls to the groundwater pollution numerical simulator to calculate the likelihood have inflicted a huge computational burden during ISIC. An effective way is to construct a substitute for emulating the simulator with a low calculating load. However, the mapping relation between the import and export of the numerical simulator was complex and had many variables. The precision of the substitute based on shallow learning is low sometimes. Therefore, we adopted the deep learning method and built an improved deep confidence network (DCN) substitute to emulate the highly nonlinear simulator. Finally, the synchronous recognition results for groundwater pollution source information and aquifer parameters were gained when ISIC ceased. The above-mentioned methods were verified in a case involving groundwater pollution. The consequence indicated that the ISIC with an improved DCN substitute can synchronously recognize groundwater pollution source information and aquifer parameters with a high degree of precision and efficiency.
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1. Introduction


Groundwater pollution source recognition (GPSR) has an important practical demand for the reasonable design of groundwater pollution remediation programs and accurate recognition of pollution responsibilities [1,2,3,4]. For practical GPSR cases, the actual situation of groundwater pollution is relatively complex, and there are several unknown factors [5,6,7,8]. The condition of groundwater pollution source and aquifer is unknown and should be recognized accurately. Therefore, partial groundwater pollution source information (release intensity in the first three periods) and aquifer parameters (the hydraulic conductivity of six zones in the research region and the longitudinal and transverse dispersity) were considered as unknown variables and synchronously recognized in this work [9,10,11].



The random statistical analysis based on the Bayesian formula is a popular method for GPSR [12,13,14]. Moreover, informed search refers to a search strategy that considers how to introduce relevant information in the search process to reduce the search scope and seek a solution as soon as possible. Based on the informed search theories and random statistical analysis, an informed search strategy for recognizing the unknown variables was first proposed in this paper. An informed search iterative course (ISIC) was accordingly arranged, and each iteration included attempt point selection and state transition judgment. The start point of ISIC (the first iteration) was mainly ascertained by professional experience. The start point of the following iterations was ascertained by the judgment of state transition. If the state transition happened, the attempt point was taken as the start point in the next iteration. Or the start point of the current iteration was taken as the start point in the next iteration. Thus, ISIC started from the original state (preliminary estimate of unknown variables) and ultimately reached the goal state (truth values of unknown variables).



Compared with previously informed search strategies, two improvement techniques were adopted in this work to attempt point selection and state transition judgment in ISIC to improve search efficiency and precision. The first improvement concerned the selection of attempt points. The attempt point was stochastically drawn from the neighborhood of the start point [15] in previous research, which generated a single attempt point with the poor ergodic property. Hence, the variable radius free search method was first exploited to acquire several attempt points, and the size of the search radius was constantly adjusted in ISIC considering the search ergodicity and efficiency. The second improvement was about the criterion for state transition. The common practice is to compare the ratio of the posterior probability of the attempt point and start point with a random number to judge whether to carry out a state transition [16]. To enhance the search ergodicity and efficiency, the Tsallis formula was applied to state transition judgment in each iteration, and the controlled factor in the formula was regulated continuously so that ISIC could take ergodicity and efficiency into account.



Furthermore, the numerical simulator needed to be called each iteration while calculating likelihood during ISIC, which resulted in a huge calculated load. Employing a substitute for the simulator can greatly reduce the calculated load. The frequently used modeling methods were basically shallow learning methods. Nevertheless, the shallow learning methods cannot fit the complex mapping relation between the import and export of the numerical simulator with a great many variables, and the approaching precision of substitute to simulator was sometimes low [17,18,19]. Recently, the deep learning method has shown great potential in fitting complex mapping relations [20,21,22]. Therefore, the deep confidence network (DCN) was introduced in this paper to build a substitute for the simulator. Two improvements for DCN were first proposed in this paper to further enhance the fitting capacity of complex mapping relations. Accordingly, an improved DCN substitute was established for the simulator to improve the approaching precision of the substitute to the simulator. The first improvement was to propose a hybrid training method combining unsupervised and supervised training in the pre-training phase. This practice could greatly enhance the feature extraction ability of input data. The second improvement was the use of the Levenberg–Marquardt (LM) algorithm after pre-training, which could particularly fine-adjust the network parameters of DCN globally. The validity of the proposed ISIC with an improved DCN substitute was tested by a hypothetical example of groundwater pollution.



Several novel approaches were taken in this study. (1) The variable radius free search method was first proposed for attempt point selection to substantially improve the search ergodicity. (2) The Tsallis formula was first applied to state transition judgment so that ISIC could take ergodicity and efficiency into account. (3) Furthermore, an improved DCN substitute was established by substituting the numerical simulator to decrease the computing load and enhance the approaching precision of the substitute to the simulator. (4) Finally, a mathematical analysis of groundwater pollution source information and aquifer parameters was conducted for GPSR. The analysis can provide interval estimation and point estimation for unknown variables and help us better understand the real situation of unknown variables for practical GPSR. Figure 1 shows the flow chart of the novel approaches in this paper.




2. Methodology


2.1. The Numerical Simulator


The groundwater contaminant transportation is described by the groundwater flow model and solute transport model. The formula involving groundwater steady flow is described as follows:


    ∂  ∂  x i     (  K  i j      ∂ h   ∂  x j     ) =   0   i , j = 1 , 2  



(1)




where     ∂  ∂ x      denotes gradient operator vector; h represents hydraulic head; and Kij denotes hydraulic conductivity tensor.



The formula involving the solute transport model is described as follows:


     ∂ ( φ c )   ∂ t    =   ∂  ∂  x i     ( φ  D  i j      ∂ c   ∂  x i     ) + −    ∂ ( φ c  v i  )   ∂  x i     +     c s  Q  d    



(2)






   v i  = −     K  i j    φ      ∂ h   ∂  x j       i , j = 1 , 2  



(3)




where  φ  denotes effective porosity; t denotes time;    D  i j     denotes hydrodynamic dispersion tensor;    v i    represents velocity;    c s    represents groundwater solute concentration; and d represents aquifer thickness. The MODFLOW and MT3DMS computing modules were exploited to resolve the mathematical equations controlling the groundwater flow and groundwater pollution transport in this work.




2.2. The DCN Method


The deep confidence network (DCN) was put forward by Hinton (2006) [23], which was a fusion of probabilistic statistics, machine learning and neural networks (Figure 2) (Hinton et al., 2014) [24]. DCN was a complex neural network structure consisting of multiple hidden layers designed to capture high-level abstract features in data. DCN was stacked with Restricted Boltzmann Machines (RBMs) or other types of generative models (Figure 3). Each RBM layer learned the distribution of the input data and attempted to capture features in the data. By stacking, each layer is further abstracted from the features captured in the previous layer, allowing the network to learn more complex data features. Accordingly, DCN was utilized to build a substitute for the numerical simulator. To further enhance the fitting capacity of the nonlinear mapping relation between the import and export of the simulator, two improvements for DCN were proposed in this paper, and an improved DCN substitute was established for the simulator. The first improvement was to propose a hybrid training method (also called partially supervised pre-training) combining unsupervised and supervised training in the pre-training phase. The second improvement was to use the Levenberg–Marquardt (LM) algorithm after the pre-training phase to fine-adjust the network parameters of DCN globally.



The two phases of improved DCN were described as follows:



(1) Partially supervised pre-training.



The pre-training of DCN refers to the layer-by-layer training of RBM. RBM is made up of visible and hidden layers, and the visible and hidden layers are interconnected. The export of the hidden unit can obtain the higher-order correlation of the visible unit.



RBM is a neural network model based on an energy model. vi represents the visible unit, hj represents the hidden unit, and E represents the energy function of RBM:


  E  (   v  ,  h  ;  θ   )  = −   ∑  i = 1  n     ∑  j = 1  m    w  i j    v i   h j      −   ∑  i = 1  n    a i   v i    −   ∑  j = 1  m    b j   h j     



(4)




where    θ  =  {   w  ,  a  ,  b   }   , wij represents the connection weight, ai and bj represent the bias, n and m represent the quantity of visible and hidden units,   E  (   v  ,  h  ;  θ   )    represents energy function,   P  (   v  ,  h  ;  θ   )    represents the joint probability distribution:


  P  (   v  ,  h  ;  θ   )  =     e  − E (  v  ,  h  ;  θ  )       ∑  v , h     e  − E (  v  ,  h  ;  θ  )         



(5)







The conditions of the hidden units in RBM are mutually independent, so the probability that hj is equal to 1 when given the visible vector v is:


  P  (   h j  = 1  |  v    )  = σ  (    ∑  i = 1  n    w  i j    v i  +  b j     )   



(6)




where   σ  ( x )  =   ( 1 +  e  − x   )   − 1     represents the sigmoid activation function.



Given the condition of the hidden unit, the probability that vi is equal to 1 is:


  P  (   v i  = 1  |  h    )  = σ  (    ∑  j = 1  m    w  i j    h j  +  a i     )   



(7)







For the above RBM model, the training dataset is considered a condition of the visible unit. Then, the condition of the hidden unit is computed based on Equation (6), and the updated condition of the visible unit is calculated according to Equation (7)     v  ′  = (   v i  ′  )  . Finally, the updated condition of the hidden unit is computed based on Equation (6), and     h  ′  = (   h j  ′  )  . The updated formula of the parameter is as follows:


   {    Δ  w  i j   =  ε  C D    (   〈   v i   h j   〉  −  〈    v i  ′    h j  ′   〉   )      Δ  a i  =  ε  C D    (   〈   v i   〉  −  〈    v i  ′   〉   )      Δ  b j  =  ε  C D    (   〈   h j   〉  −  〈    h j  ′   〉   )       



(8)




where    ε  C D     represents the study rate and    〈 · 〉    represents mathematical expectation.



The import variable of the substitute for the numerical simulator is continuous data, so the Gaussian–Bernoulli RBM (GB-RBM), whose visible and hidden units are linear random units and binary random units, respectively, was taken as the first RBM in this paper. For GB-RBM, the energy function is described as follows:


  E  (   v  ,  h  ;  θ   )  =   ∑  i = 1  n        (   v i  −  a i   )   2    2  σ i 2      −   ∑  i = 1  n     ∑  j = 1  m    w  i j      v i     σ i     h j      −   ∑  j = 1  m    b j   h j     



(9)




where    σ i    represents the Gaussian noise standard deviation of the visible unit. To simplify the calculation,    σ i  = 1  , Equation (7) can be expressed as:


  P  (   v i   |  h    )  = N  (    ∑  j = 1  m    w  i j    h j  +  a i    , 1  )   



(10)




where vi follows the Gaussian distribution whose mean is     ∑  j = 1  m    w  i j    h j  +  a i      and variance is 1. To simplify the calculation, the variance is set to 1 [25,26].



In this paper, the partially supervised pre-training method was first used to train the first hidden layer, and the unsupervised training was carried out on each layer of DCN subsequently. When training the first layer,    x  = [  x 1  ,  x 2  , ⋯  x n  ]   would be used as the import of RBM1 and    {    w  1  ,   a  1  ,   b  1   }    would be gained. Then, the activation probability function of the hidden unit in RBM1 was considered an import of RBM2 and    {    w  2  ,   a  2  ,   b  2   }    gained based on Equation (8). The activation probability function of the hidden unit in RBM2 was considered as the import of RBM3, and the unsupervised learning was continued based on Equation (8). Afterward, the layers were followed until the top level, and the original values of the weight and bias of DCN could be gained.



(2) Supervised fine adjustment phase based on the LM algorithm.



After pre-training, all parameters in DCN needed an intense adjustment to gain a global optimal solution for the network parameters. Given the training dataset    {    x   ( t )   ,  y  ( t )    }  ( t = 1 , 2 , ⋯ , N )  , the relation of import–export is described as:


    y ^   ( t )   = f (   x   ( t )   ,  θ  )  



(11)




where f represents a nonlinear function,     x   ( t )   = [  x 1  ,  x 2  , ⋯ ,  x n  ]   is the import variable from the tth training dataset,    θ  = [  θ 1  ,  θ 2  , ⋯ ,  θ p  ]   is an unknown vector composed of all parameters of weights and bias, and p is the number of parameters.



The expression of the error loss function (sum of the squares of error between the export value of the neural network and the target export value) is:


  E (  θ  ) =   ∑  t = 1  N     e t  2    =   ∑  t = 1  N     (  y  ( t )   − f (   x   ( t )   ,  θ  ) )  2     



(12)




where N represents the number of training samples and    y  ( t )     represents the target export of the tth training sample.



In this paper, LM algorithm was first used after the pre-training phase to adjust the network parameters of DCN globally. A set of parameters of   θ   was acquired to minimize the error loss function on account of the parameters gained in the pre-training phase. If the outcome of the kth iteration was     θ  k   , the updated calculation equation of the parameter vector was as follows:


  Δ   θ  k  = −   [   J  T  (   θ  k  ) J (   θ  k  ) + μ  I  ]   − 1     J  T  (   θ  k  ) E (   θ  k  )  



(13)




where the damping factor is a constant and   μ > 0  . I is the Jacobian matrix, and:


   J  (   θ  k  ) =  [         ∂  e 1  (   θ  k  )   ∂  θ 1            ∂  e 1  (   θ  k  )   ∂  θ 2        ⋯       ∂  e 1  (   θ  k  )   ∂  θ p              ∂  e 2  (   θ  k  )   ∂  θ 1            ∂  e 2  (   θ  k  )   ∂  θ 2        ⋯       ∂  e 2  (   θ  k  )   ∂  θ p          ⋮   ⋮      ⋮         ∂  e N  (   θ  k  )   ∂  θ 1            ∂  e N  (   θ  k  )   ∂  θ 2        ⋯       ∂  e N  (   θ  k  )   ∂  θ p          ]   



(14)







The LM algorithm found the appropriate damping factor by constantly searching for iterations. When   μ = 0  , the algorithm was transformed into the Gauss-Newton method of least squares solution. When the value  μ  was large, the algorithm was transformed into the Fastest Gradient Descent method. Therefore, in the early phase of ISIC, the LM algorithm had the characteristics of large initial descent and rapid convergence of the Fastest Gradient Descent method. In the later phase, the LM algorithm had the characteristics of local convergence of the Gauss–Newton method so that the network parameters could quickly converge to the global optimal solution.




2.3. State Evaluation Function


The state evaluation function can be written as (Lu et al., 2020) [27]:


  η ( X ) = p ( X  | S  ) p ( Y  |  X , S   )  



(15)




where X represents the unknown variable, Y represents contaminant concentration monitoring data, S represents designed concentration monitoring,   p ( X  | S  )   denotes prior probability,   p ( Y  |  X , S   )   and denotes likelihood.




2.4. Variable Radius Free Search Method


The free search (FS) is an algorithm of swarm intelligence algorithm proposed by Penev and Littlefair (2005) [28]. The FS algorithm is not a simple simulation of the living habits of a social animal, but a comprehensive simulation of the biological characteristics and living habits of a variety of organisms. In the process of searching, individuals consider the accumulated experience/knowledge acquired in the past but are not restricted solely to this information and can search freely in any region within the prescribed scope. Flexibility is an important feature of FS algorithms. Individuals can conduct local or global searches and determine the size of the search step by themselves.



In this paper, a linear decreasing variable radius strategy was first introduced to improve the FS algorithm, and the variable radius FS (VRFS) algorithm was first constructed. To enhance the search efficiency and search precision in ISIC, the probe walk strategy in the VRFS algorithm was first used for the attempt point selection in this paper. The size of the search radius constantly changes in ISIC. In the early phase of ISIC, a larger radius was used to reinforce global search with high search ergodicity, and a smaller radius was used to reinforce local search and enhance search accuracy in the later phase.



The operational process of the VRFS algorithm is as follows:



Step 1: Set the range of the search radius   [  R  min   ,  R  max   ]  . The present number is k; the total iteration number is N, and the sum of unknown variables is n.



Step 2: Set the initial value range of each unknown variable and the values of m start points throughout the entire search iteration process.    X 1 k  ,  X 2 k  , ⋯    ,     X m k    is determined based on professional experience. In the first iteration, k = 1. Among the m start points, the jth start point is    X j k  = (  x  j 1  k  ,  x  j 2  k  , ⋯    ,     x  j n  k  ) ,   j = 1 , 2 , ⋯ m  , and the ith unknown variable is      x  j i  k   .



Step 3: Determine m attempt points corresponding to m start points separately, and the jth attempt point is     X j k  ′   =  (    x  j 1  k   ′  ,      x  j 2  k   ′  , ⋯    ,       x  j n  k   ′  )  .



The calculation formula for the ith unknown is as follows:


     x  j i  k   ′  =  x  j i  k  − Δ  x  j i  k  + 2 Δ  x  j i  k  r a n d o  m  j i  k  ( 0 , 1 )  



(16)






  Δ  x  j i  k  =  R  j i  k  (  x  i max  k  − Δ  x  i min  k  ) r a n d o  m  j i  k  ( 0 , 1 )  



(17)






   R  j i  k  =  R  max   − k (  R  max   −  R  min   ) / N  



(18)







For each set of start and attempt points, the start point for the next iteration is determined based on a certain state transition criterion, and a total of m start points is obtained.



Step 4: Let k = k + 1, go back to step 3 until k > N, stop the iteration, and export all the above values of unknown variables.




2.5. The Tsallis Formula Based on State Evaluation Function


The concept of the Tsallis formula proposed in this paper was originally derived from the simulated annealing (SA) algorithm. The SA algorithm is widely used to solve inverse problems because of its simple principle and ease of operation. To enhance the computing efficiency of the SA algorithm, many improved methods have been proposed, such as the fast simulated annealing (FSA) and very fast simulated annealing (VFSA) algorithms.



In the FSA algorithm, the new acceptance probability expression, i.e., the mathematical expression of the Tsallis formula, is:


  P =   [ 1 − ( 1 − h ) Δ E / T ]   1 / ( 1 − h )    



(19)




where P denotes the acceptance probability;   Δ E   represents the energy difference; T is the temperature; and h is a real number.



The annealing method in the VFSA algorithm is as follows (Robini, 2013) [29]:


  T ( k ) =  T 0  exp ( − C  k  1 / N   )  



(20)




where N is the number of unknown variables, T0 is the initial temperature, k is the number of iterations, and C is the attenuation factor, which is a given constant.



To enhance the search efficiency and precision in ISIC, the Tsallis formula was first constructed to judge the state transition in this paper. We embedded the state evaluation function into the Tsallis formula and used the calculation result of the Tsallis formula to judge the state transition. The approaching degree of the search path to the target state was improved by utilizing the guidance and correction function of the useful information contained in the state evaluation function during ISIC. Moreover, by learning from the annealing method in the VFSA algorithm, the controlled factor in the Tsallis formula was adjusted. By adjusting the size of the controlled factor, the ISIC can take search ergodicity and efficiency into account. The useful information includes field monitoring data and professional experience. The Tsallis formula was computed in each iteration for judging the state transition.



If the condition of state transition was met, the state transition occurred, and the attempted point would be taken as the starting point for the next iteration. Otherwise, the state transition did not occur, and the start point of the current iteration would be taken as the start point for the next iteration.



The judging process of state transition is as follows.



Step 1: Given the initial value T1 of the controlled factor T, the current value Tl and the attenuation factor C   ( 0.7 ≤ C < 1 )   were determined. The sum of unknown variables is n,    T l  =  T 1  exp ( − C  l  1 / n   )  . The number of adjustments of the controlled factor is L, and under the conditions of the same controlled factor T, the number of iterations is N, and the label of the iteration number is k.



Step 2: An initial estimate for each unknown variable is given according to experience, and the start point Xk of ISIC is determined,    X k  = (  x 1 k  ,    x 2 k  , ⋯ ,    x n k  )  . In the first iteration,   k = 1 ,   l = 1 ,   T =  T l     .



Step 3: The attempt point    X  k ′     in this iteration is determined using one method, and the value of the state evaluation function   η ( X )   of the start point and the attempt point is computed,   Δ η = η (  X k  ) − η (  X  k ′   )  . If   Δ η < 0  , then let    X  k + 1   =  X  k ′    , otherwise calculate   β =   ( 1  − ( 1 −  h )    Δ η    T l     )     1  1 − h      ( h > 1 )  . In this study, h = 6. Compare  β  with the random number   u = r a n d ( 0 , 1 )  . If   β > u  , then make    X  k ′   =  X  k + 1    ; otherwise, let    X k  =  X  k + 1    .



Step 4: Let k = k + 1, go back to step 3, until   k > N  , perform step 5.



Step 5: Let   l = l + 1 ,   T =  T l   , return to step 3 until   l > L  , cease the iteration and export all the iteration values.



In this study, the original values of the controlled factor T and the attenuation factor were    T 1  = 10 ,   C = 0.98  .





3. Case Study


3.1. Site Overview


This work chose a two-dimensional case of groundwater inorganic pollution. The specific condition of the research region could be seen in Figure 4. The BC border and DA border of the research region were borders of no flow (relative confining borders). The AB border and CD border were borders of varying specified heads, and the variation was nonlinear (the river completely cuts the aquifer). The groundwater flow was unsteady, and the groundwater pollution in this region was conservative. No pollutants were in the research region before the groundwater pollution was released. The simulation time (a total of 24 months) for the groundwater pollution numerical simulator was evenly divided into eight periods, and the research region was divided into six zones in terms of hydraulic conductivity. During the first three periods, the pollution source continuously released pollutants into the aquifer and then stopped. There were three monitoring wells in the research region, and the concentrations of groundwater pollution at each monitoring well were collected. The release intensity in the first three periods, the longitudinal and transverse dispersity, and the hydraulic conductivity in six zones were unknown variables in this research region. Table 1 shows the truth values of unknown variables. Other parameters describing the condition of the groundwater pollution source and aquifer were considered known (Table 2). By importing the truth values of unknown variables into the numerical simulator, the simulator has been operated to obtain the pollution concentration exports at three monitoring wells in eight periods, considered the monitoring data of groundwater pollution (Figure 5).




3.2. Application of the Improved DCN Substitute


The above eleven unknown variables constituted an eleven-dimensional vector as the import vector of the improved DCN substitute for the monitoring well. The groundwater pollution concentrations in eight periods were considered as the exports of the improved DCN substitute. Initially, the import variables in 400 sets of training samples and 100 sets of testing samples were obtained by a sampling approach in their feasible regions. After that, the numerical simulator was operated to acquire the corresponding pollution concentrations (exports), so 500 sets of import–export samples were obtained. Then, 400 import–export training samples were utilized to establish a substitute for three monitoring wells, and the 100 import–export test samples were utilized to test the approaching precision of the substitute to the simulator. The establishment process for the improved DCN substitute in this work was as follows:



(1) Dataset normalization processing.



The import dataset of the substitute was normalized.



(2) Partially supervised pre-training.



We used the training samples to partially supervise pre-train the DCN substitute and ascertain the original network parameters of the DCN substitute. The DCN substitute in this work was composed of a three-layer RBM and a top-level BP neural network. We used the training dataset to train the DCN substitute and ascertained the number of units in the hidden layer. First, we ascertained the optimal quantity of hidden units in the first hidden layer and fixed it. Then, we added a hidden layer and ascertained the optimal quantity of hidden units in the second hidden layer. And so on, until the precision of the network is no longer enhanced. The neuron quantities in the three layers of RBM were finally set to 128, 64 and 64, respectively.



(3) Supervised fine adjustment.



We used the LM algorithm to fine-adjust the weight and bias of the network and obtained the optimal solution for the DCN substitute. The import dataset was imported into the fine-adjusted DCN substitute to gain the export dataset.



(4) Inverse dataset normalization.



We reversely normalized the export dataset in step (3).




3.3. Application of State Evaluation Function


3.3.1. Prior Information


Table 3 shows the prior information on the unknown variables in this work. The start point of ISIC was ascertained according to the prior information.




3.3.2. Likelihood Function


To decrease the huge calculation load in ISIC and maintain the computational precision, rather than the numerical simulator, the DCN substitute was used to obtain the export value of the groundwater pollution concentration in likelihood. The expression of the likelihood can be referred to our previous research [30]. The monitoring well number was 3, and the period number was 8 in this work.





3.4. Informed Search Iterative Course


We first designed an informed search iterative course (ISIC) and made the best of the guiding function of the groundwater pollution monitoring data, considering search ergodicity and efficiency. The selection of attempt points and judgment of state transition constituted the content of each iteration. For the first iteration, the start points were ascertained by field investigation and specialized knowledge. For the following iterations, the start points were ascertained by the judging criterion of state transition. In each iteration, the attempt points were ascertained by the VRFS method, and the Tsallis formula was calculated to judge whether the state transition occurred. If the condition for state transition was met, the state transition occurred, and the attempted point would be taken as the starting point for the next iteration. Otherwise, the state transition did not occur, and the start point of the current iteration would be taken as the start point for the next iteration. The ISIC is as follows: When the state of termination was met, the overall process ceased. Meanwhile, the recognition results for groundwater pollution source information and aquifer parameters were acquired.





4. Results and Discussion


4.1. Performance of the Improved DCN Substitute


The 100 import–export test samples in the above research were utilized to test the approaching precision of the substitute to the numerical simulator. The improved DCN substitute was calculated based on the 100 imports, and 100 exports of the substitute were obtained. A total of 100 exports involved 800 groundwater pollution concentration values, and the exports from substitute and numerical simulator were compared. The scatter diagram of the numerical simulator exports and substitute exports of three monitoring wells is shown in Figure 6. The scatters were distributed mainly around the line y = x, which proved that the export of the numerical simulator was very close to that of the improved DCN substitute.



The precision evaluation index of the correlation coefficient of the improved DCN substitute was calculated (Table 4). The closer the correlation coefficient value was to 1, the higher the approaching precision of the substitute was to the numerical simulator. The computed outcome of the precision index demonstrated that the improved DCN substitute possessed a high approaching precision to the numerical simulator for three monitoring wells. Therefore, the improved DCN substitute could replace the numerical simulator in the following synchronous recognition of groundwater pollution source information and aquifer parameters.




4.2. Recognition Results


The iteration number in ISIC was 20,000, and the number of start points or attempt points in each iteration was set to five. As a result, the simulator would be operated 100,000 times. Each operation of the simulator took 20 s on a computer, while the improved DCN substitute took only 0.8 s, greatly reducing the computation load. In this work, the scale reduction score was considered as the convergence criterion to judge the occurrence of convergence [31]. Figure 7 shows the variation of the scale reduction score of eleven unknown variables, which are <1.2 at around 15,000 iterations. Hence, ISIC converged at around 15,000 iterations, and the first 15,000 iterations were considered as “burn-in”. In this paper, the last 500 iterations after convergence were selected, the corresponding 2500 values of unknown variables were considered sampled from the distribution of unknown variables, and the statistical analysis of each unknown variable was carried out.



The statistics analysis included the point and interval estimations. For the interval estimation, the posterior probability density function curves were plotted based on 2500 values of all unknown variables (Figure 8), which clearly showed the interval estimations for eleven unknown variables. For the point estimation, the value with the maximum posterior probability density function (PPDF) was considered as the point estimation for each unknown variable. The outcome showed that the point estimations were close to the truth values (Table 5). For the eleven unknown variables, the PPDFs are all concentrated near the truth value. As for the hydraulic conductivity in six zones, there are two peak values in the PPDF. The two peak values are relatively close for K1 and K6 but dispersed for K2~K5. As for the release intensity in the first three periods, the peak values are relatively dispersed for P1 and P2 but more concentrated for P3. Meanwhile, for longitudinal and transverse dispersity, the two peak values are relatively concentrated around the truth value.





5. Conclusions


The ISIC was designed for GPSR in this paper, and each iteration included the determination of attempt point and state transition. Two improvements were adopted in this paper in ISIC to improve search efficiency and precision. The first improvement was that the VRFS method was exploited for the attempt point selection, and the size of the search radius was regulated constantly, taking ergodicity and efficiency into account. The second improvement was that the Tsallis formula was used for state transition judgment, and the controlled factor in the Tsallis formula was regulated constantly so that the search could consider both ergodicity and efficiency. Furthermore, to reduce the huge calculation load caused by repeatedly solving the numerical simulator in ISIC, the deep confidence network (DCN) method was introduced to build a substitute for the simulator. An improved DCN substitute was established to improve the approximation precision of the substitute to the simulator further. As ISIC went on, the synchronous recognition results for groundwater pollution sources and aquifer parameters eventually gained when ISIC ceased. The above-mentioned methods were verified through a case of groundwater pollution, and the outcome indicated that the ISIC with an improved DCN substitute could assist in synchronously recognizing groundwater pollution source information and aquifer parameters with high precision and efficiency.
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Figure 1. The flow chart of the novel approaches in this paper. 
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Figure 2. Structure diagram of DCN. 
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Figure 3. Schematic diagram of the RBM structure. 
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Figure 4. Hypothetical aquifer model of the study case. 
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Figure 5. Accurate pollution concentrations at three monitoring wells. 
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Figure 6. Fitting graph of the improved DCN substitute exports and the simulator exports of monitoring wells 1 (a), 2 (b) and 3 (c). 
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Figure 7. Curves of scale reduction score for eleven unknown variables. 
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Figure 8. PPDF curves (blue lines) with true values (vertical dotted red lines) of eleven unknown variables. The black crosses are the point estimations of eleven unknown variables. (a) PPDF curves of K1; (b) PPDF curves of K2; (c) PPDF curves of K3; (d) PPDF curves of K4; (e) PPDF curves of K5; (f) PPDF curves of K6; (g) PPDF curves of P1; (h) PPDF curves of P2; (i) PPDF curves of P3; (j) PPDF curves of aL; (k) PPDF curves of aT. 
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Table 1. Truth values of release intensity of the pollution source, longitudinal and transverse dispersity and hydraulic conductivity. P1, P2, and P3 indicate the release intensity of the pollution source in the first three periods, respectively. K1, K2, K3, K4, K5, and K6 represent the hydraulic conductivity in zones 1, 2, 3, 4, 5, and 6. aL and aT represent the longitudinal and transverse dispersity.
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	Unknown Variables
	Truth Value





	P1 (g/s)
	29.3



	P2 (g/s)
	21.3



	P3 (g/s)
	12.8



	K1 (m/d)
	143.5



	K2 (m/d)
	36.2



	K3 (m/d)
	13.4



	K4 (m/d)
	212.4



	K5 (m/d)
	59.8



	K6 (m/d)
	7.2



	aL (m)
	20



	aT (m)
	4










 





Table 2. Parameters describing the condition of the aquifer for the case study.
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	Parameter
	Value





	Effective porosity
	0.3



	Confined aquifer thickness (m)
	30



	Grid spacing in x-direction (m)
	50



	Grid spacing in y-direction (m)
	50










 





Table 3. Prior information for eleven unknown variables.
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	Unknown Variable
	Preliminary

Estimating Value
	Preliminary Value Range
	Prior

Distribution
	Preliminary

Mean
	Preliminary

Variance





	K1 (m/d)
	100
	(50, 200)
	Normal distribution
	100
	500



	K2 (m/d)
	50
	(20, 100)
	Normal distribution
	50
	200



	K3 (m/d)
	40
	(20, 100)
	Normal distribution
	40
	150



	K4 (m/d)
	150
	(100, 300)
	Normal distribution
	150
	700



	K5 (m/d)
	30
	(10, 70)
	Normal distribution
	30
	100



	K6 (m/d)
	20
	(5, 60)
	Normal distribution
	20
	90



	P1 (g/s)
	5
	(0, 50)
	Normal distribution
	5
	40



	P2 (g/s)
	10
	(0, 50)
	Normal distribution
	10
	80



	P3 (g/s)
	35
	(0, 50)
	Normal distribution
	35
	150



	aL (m)
	30
	(5, 40)
	Normal distribution
	25
	80



	aT (m)
	6
	(1, 8)
	Normal distribution
	4
	30










 





Table 4. Precision evaluation index of the improved DCN substitute of three monitoring wells.
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	Monitoring Well
	Correlation Coefficient





	1
	0.9912



	2
	0.9927



	3
	0.9935










 





Table 5. Relative errors between point estimations and true values of eleven unknown variables.
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	Unknown Variable
	True Value
	Point Estimation
	Relative Error





	K1 (m/d)
	143.5
	139.6
	2.72%



	K2 (m/d)
	36.2
	37.2
	2.76%



	K3 (m/d)
	13.4
	13.7
	2.24%



	K4 (m/d)
	212.4
	216.8
	2.07%



	K5 (m/d)
	59.8
	58.4
	2.34%



	K6 (m/d)
	7.2
	7.4
	2.78%



	P1 (g/s)
	29.3
	28.7
	2.05%



	P2 (g/s)
	21.3
	20.8
	2.35%



	P3 (g/s)
	12.8
	12.5
	2.34%



	aL (m)
	20.0
	20.7
	3.50%



	aT (m)
	4.0
	3.87
	3.25%
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