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Abstract: Analyzing the changes in vegetation under different factors is crucial for ecological protec-
tion in arid areas. The spatial-temporal variations of vegetation in the lower reaches of the Tarim
River (LRTR) from 2000 to 2020, were analyzed using the Theil-Sen estimator and the Mann-Kendall
test. The future trends of NDVI are projected to use the Hurst exponent method. The driving
mechanisms of vegetation changes were analyzed using the GeoDetector method and multivariate
residual analysis. The NDVI values in the LRTR significantly increased during the study period,
indicating good vegetation recovery. The overall vegetation level remains poor and was primarily
concentrated around the riverine areas. There is still a risk of vegetation degradation in most areas of
the future LRTR. Compared to climate change, vegetation was more affected by human activities.
Human activities have helped restore the riparian vegetation and prevented the degradation of
vegetation far from the river. Therefore, distance from river channels is the strongest explanatory
factor (q = 0.078) for vegetation changes, followed by precipitation, and temperature, while changes
in slope have minimal impact on vegetation. Statistics have found that when two factors are com-
bined, their impact on vegetation change is stronger. These findings are beneficial for identifying
vegetation evolution patterns in LRTR and providing theoretical support for the government to carry
out ecological restoration.

Keywords: vegetation dynamics; remote sensing; environmental restoration; driving mechanisms;
Geodetector method

1. Introduction

Vegetation plays a crucial role in regulating the regional climate, and maintaining soil
and water conservation, making it a vital component of the ecological environment [1].
Because of the intensification of climate change and frequent human activities, ecological
problems in arid areas are becoming increasingly severe [2]. Evaluating vegetation dynam-
ics and further analyzing the driving mechanisms behind them have become crucial for the
management and restoration of ecosystems in arid areas [3]. In order to achieve sustainable
development and ecological conservation, the issue of vegetation restoration has garnered
widespread attention worldwide [4–6].

In the study of vegetation dynamics, remote sensing data are widely used due to the
advantages of continuous time series, wide coverage, and high spatial resolution [7,8]. By
performing statistical analysis on the Normalized Difference Vegetation Index (NDVI),
information on vegetation coverage and growth conditions can be obtained [9,10]. The
Theil-Sen median estimator [11] coupled with the Mann-Kendall test [12,13] is a commonly
used method for analyzing spatiotemporal changes in vegetation. This method is less
susceptible to the influence of outliers and can more accurately describe the spatial and
temporal variation characteristics of surface objects. Emamian et al. [14] discovered that
NDVI in northern Iran exhibited a declining trend from 2004 to 2015. Sun et al. [15]
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indicated that in the Haihe River Basin, NDVI increased in 2000–2013. Therefore, exploring
the driving mechanisms behind vegetation spatiotemporal changes has become a new
research focus.

Residual analysis is utilized to examine the driving factor that influences NDVI, [16,17]
and has been widely applied to research the contributions of human activity and climate
change to vegetation cover changes. Yang, et al. [18] found that in the Han River Basin,
human activity and climate change have generally promoted NDVI increase in non-urban
areas. Liu, et al. [19] analyzed that climate change is the primary influence factor of NDVI
increase on the Qinghai-Tibet Plateau, accounting for 68.05% of the observed increase.
The Geodetector method is commonly used to analyze the spatial changes of vegetation
and accurately identify the driving factors behind them [20]. Numerous researchers have
employed the Geodetector method to investigate the impact factors driving the spatial
and temporal changes of NDVI in different areas, such as Inner Mongolia [21], the Loess
Plateau [22], and the Heihe River Basin [23]. This statistical method uncovers the factors in-
fluencing the temporal and spatial changes of vegetation cover, providing a comprehensive
analysis of the variables [24].

The research area of this article is located in the lower reaches of the Tarim River
(LRTR) in northwest China. The local drought and water shortage have led to a very
fragile ecosystem [25]. Since 2000, the basin management organization has implemented
ecological water conveyance (EWC) to artificially intervene in the vegetation of the LRTR,
aiming to restore the degraded ecological environment. This paper investigates the spa-
tiotemporal change process of NDVI in the LRTR using the Theil-Sen Median estimator
coupled with the Mann-Kendall test. The impact of human activities and climate change on
vegetation change was quantitatively evaluated through residual analysis. The impact of
different driving factors on vegetation spatial change was evaluated using the Geodetector
method, which helped clarify the mechanisms driving vegetation change and the research
results provide theoretical support for the implementation of ecological restoration and
management in LRTR.

2. Study Area and Data Processing
2.1. Study Area

The Tarim River, situated in northwest China, is the longest inland river in the coun-
try [26,27]. The climate in the basin is arid, with low annual precipitation (116 mm), high
average annual temperature (10 ◦C), and extremely high evaporation (2200 mm) [28]. The
geographical scope of LRTR is the area between the Daxihaizi Reservoir and the Taitema
Lake. The local vegetation is dominated by species such as Populus euphratica and Hip-
pophae rhamnoides, with a low vegetation coverage rate [29,30]. Vegetation growth heavily
relies on groundwater, rendering the ecological environment extremely fragile. The Tarim
River divides into two channels at the Daxihaizi Reservoir. The northern channel is called
the Qiwenkuoer River, while the southern one is the Old Tarim River. These two channels
converge at Alagan. Since the late 20th century, because of the unreasonable exploitation
and allocation of water resources in the upstream area [31], the available water volume in
the downstream has sharply decreased. This has led to serious ecological problems such
as the decline of groundwater level, the reduction of vegetation, and the decrease of the
area of the terminal lake [29,32]. In 2000, the Tarim River Basin Authority launched EWC
to restore the ecosystem in the LRTR [33], conveying water from the Daxihaizi Reservoir
through the old Tarim River and Qiwenkuoer River, to the downstream area. The river
water ultimately flows into the terminal Taitema Lake, playing a pivotal role in restoring
riparian vegetation [34]. See Figure 1.
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Figure 1. Schematic diagram of the LRTR: (a) geographical location of the Tarim River Basin in 
China; (b) geographical location of the LRTR in the Tarim River Basin; (c) elevation and river distri-
bution in the LRTR. 

2.2. Data Source and Preprocessing 
This study utilized high-resolution NDVI data (16-day, 500 m) from the MOD13Q1 

product, and analyzed vegetation changes by calculating the annual average NDVI data. 
The precipitation and temperature data (monthly, 1 km) were sourced from the National 
Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed on 
28 July 2024) [35,36]. This study converted the monthly scale data to an annual scale in 
order to calculate the influence of climatic factors on vegetation.  

The DEM data (90 m resolution) was obtained from the Geospatial Data Cloud web-
site (https://www.gscloud.cn, accessed on 28 July 2024). ArcGIS 10.4 software was used to 
calculate slope data using the DEM data. Further calculations were made to determine the 
distance between different grids and river channels, in order to analyze the impact of EWC 
on riparian vegetation. The Tarim River Basin Authority provided the EWC data, includ-
ing the volume and the duration. The time range of this study spanned from 2000 to 2020, 
and the grid accuracy is unified at 1 km. See Figure 2. 

Figure 1. Schematic diagram of the LRTR: (a) geographical location of the Tarim River Basin in China;
(b) geographical location of the LRTR in the Tarim River Basin; (c) elevation and river distribution in
the LRTR.

2.2. Data Source and Preprocessing

This study utilized high-resolution NDVI data (16-day, 500 m) from the MOD13Q1
product, and analyzed vegetation changes by calculating the annual average NDVI data.
The precipitation and temperature data (monthly, 1 km) were sourced from the National
Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn, accessed
on 28 July 2024) [35,36]. This study converted the monthly scale data to an annual scale in
order to calculate the influence of climatic factors on vegetation.

The DEM data (90 m resolution) was obtained from the Geospatial Data Cloud website
(https://www.gscloud.cn, accessed on 28 July 2024). ArcGIS 10.4 software was used to
calculate slope data using the DEM data. Further calculations were made to determine the
distance between different grids and river channels, in order to analyze the impact of EWC
on riparian vegetation. The Tarim River Basin Authority provided the EWC data, including
the volume and the duration. The time range of this study spanned from 2000 to 2020, and
the grid accuracy is unified at 1 km. See Figure 2.

http://data.tpdc.ac.cn
https://www.gscloud.cn
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Figure 2. Diagram of the study data: (a) average NDVI; (b) annual precipitation (mm); (c) annual 
average temperature (°C); (d) elevation (m); (e) slope (°); (f) distance to the river channel (m). 
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dataset. The overall trend within the NDVI changes is represented by the median slope 
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Figure 2. Diagram of the study data: (a) average NDVI; (b) annual precipitation (mm); (c) annual
average temperature (◦C); (d) elevation (m); (e) slope (◦); (f) distance to the river channel (m).

3. Method
3.1. Theil-Sen Estimator

The Theil-Sen estimator is recognized as a reliable non-parametric approach for trend
analysis [37], and was proposed by Pranab K. Sen [38]. In contrast to approaches that rely
on time series conformity, this method adeptly manages minor outliers and missing data.
This study used it to compute the slope between successive data pairs within the NDVI
dataset. The overall trend within the NDVI changes is represented by the median slope
computed from the following calculations:

SlopeNDVI = Median
( xj − xi

j − i

)
, ∀j > i (1)

where SlopeNDVI represents the median of all slope data. If SlopeNDVI > 0, reveals a
growing tendency in NDVI; if SlopeNDVI < 0, shows a decline in NDVI over time. xi and
xj represent the two variables at time i and j, respectively.

3.2. Mann-Kendall (M-K) Significance Test

The Mann-Kendall significance test is combined with Theil-Sen estimator to assess
the significance of time series trends [39,40]. In this study, it was employed to evaluate
vegetation trends which were calculated as follows:

Z =


S√

V(S)
(S > 0)

0(S = 0)
S + 1√

V(S)
(S < 0)

(2)
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S =
n−1

∑
i=1

n

∑
j=i+1

Sign
(
xj − xi

)
(3)

V(S) =
n(n − 1)(2n + 5)

18
(4)

sign(NDVIj − NDVIi) =


1, NDVIj − NDVIi > 0
0, NDVIj − NDVIi = 0
−1, NDVIj − NDVIi < 0

(5)

where n refers to the length of the dataset. If the |Z| is greater than 1.65, 1.96, or 2.58
respectively, it indicates that the trend has passed the significance test at a confidence level
of 90%, 95%, and 99%, respectively.

The integration of the Theil-Sen estimator and the M-K significance test effectively
captured the diverse spatial distribution of vegetation change characteristics. By overlaying
the Sen’s slope results with those of the M-K test, the changes in NDVI can be classified
into nine categories. See Table 1.

Table 1. The classification of NDVI changes.

Sen’s Slope Z Value Trend Characteristics

β > 0

2.58 < Z Extremely significant increased
1.96 < Z ≤ 2.58 significant increased
1.65 < Z ≤ 1.96 slightly significant increased

Z ≤ 1.65 Non-significant increased
β = 0 0 No changes

β < 0

Z ≤ 1.65 Non-significant decreased
1.65 < Z ≤ 1.96 slightly significant decreased
1.96 < Z ≤ 2.58 significant decreased

2.58 < Z Extremely significant decreased

3.3. Hurst Exponent Method

The Hurst exponent, originally established by Hurst [41] and later improved by
Mandelbrot [42], is a measure used to assess the persistence of changes in time series. It is
calculated using the rescaled range analysis (R/S) method and assisted in revealing the
autocorrelation within the time series, particularly emphasizing long-term trends that are
might otherwise remain concealed. Recent research has increasingly incorporated this
exponent into the analysis of long-term vegetation dynamics over time [43–45]. The process
for conducting R/S analysis encompasses the following steps:

Xt,a =
t

∑
z=1

xz,a − ea, t = 1, 2, · · · , n (6)

Ra = max(Xt,a)− min(Xt,a), 1 ≤ t ≤ m (7)

(R/S)m =
1
A

A

∑
a=1

Ra/Sa (8)

(R/S)m = D × mH (9)

Xt,a denotes the cumulative deviation; x is the annual NDVI; ea is the average NDVI;
Ra is the extreme deviation; and Sa is the sample standard deviation. H ranges from 0 to
1 and can be categorized into three types. When H = 0.5, the future changes of NDVI
are random. When H > 0.5, the future changes of NDVI remain the same as in the past.
Conversely, if H < 0.5, the future changes of NDVI are opposite to the past.

By combining the Theil-Sen median slope with the Hurst exponent method, the trend
of vegetation changes in the future can be analyzed. The classification indicators are as
follows (Table 2):



Water 2024, 16, 2157 6 of 16

Table 2. Classification of vegetation change trends.

Hurst Sen’s Slope Future Trends

0.5 < H < 1
β > 0 Improvement
β < 0 Degradation

H = 0.5 - Uncertain

0 < H < 0.5
β > 0 Degradation
β < 0 Improvement

3.4. Multivariate Residual Analysis

The impact of human activities and climate change on vegetation changes was eval-
uated using multivariate residual analysis. This approach is based on the premise that
changes in vegetation primarily driven by human activities can be discerned once the
influence of climate factors has been eliminated as seen in the following:

NDVICC = a × P + b × T + c (10)

NDVIHA = NDVIobs − NDVICC (11)

where a and b are the regression coefficients, and c is the constant. P represents the
precipitation time series and T represents the temperature time series. NDVICC represents
the calculated NDVI data with the regression equation, NDVIobs represents the observed
NDVI data, and NDVIHA represents the result of subtracting observed from the calculated
NDVI data. After conducting residual analysis, the factors influencing vegetation can be
categorized into six classes. The classification criteria used are shown in the following
(Table 3):

Table 3. Classification criterion of the driving factors of NDVI change.

Slope (NDVIobs) Driving Factors

Division Criteria Contribution Rate/%

Slope (NDVICC) Slope (NDVIHA) Climate Change
(CC)

Human Activity
(HA)

>0
CC&HA >0 >0 Slope(NDVICC)

Slope(NDVIobs)

Slope(NDVIHA)

Slope(NDVIobs)
CC >0 <0 100 0
HA <0 >0 0 100

<0
CC&HA <0 <0 Slope(NDVICC)

Slope(NDVIobs)

Slope(NDVIHA)

Slope(NDVIobs)
CC <0 >0 100 0
HA >0 <0 0 100

3.5. Geodetector Method

The Geodetector model, which can be freely downloaded from https://www.geodetector.
cn/ (accessed on 28 July 2024), was utilized in conjunction with Excel. The model com-
prised of three types of detections: factor, ecological, and interactive. The factor detector
identified the spatial differentiation of NDVI and quantified the extent to which a driving
factor explained this differentiation. By calculating the q-values of various driving factors,
the relative strength of their impacts on NDVI changes can be compared. The specific
calculation process is as follows:

q = 1 −

L
∑

h=1
Nhσ2

h b

Nσ2 (12)

where L represents the variable of NDVI, Nh and σ2
h represent the number of units and

variance of layer h, respectively, N and σ2 refer to the number of units and overall variance.

https://www.geodetector.cn/
https://www.geodetector.cn/
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The range of the q value is [0,1]. The magnitude of the q value and driving factors on NDVI
is positively proportional. At the same time, interaction detection identifies the interplay
between various influencing factors and assesses the explanatory power when double
driving factors interact.

4. Results
4.1. Temporal Variation Characteristics of the NDVI

From Figure 3a, it is observed that the annual average NDVI during 2000–2020 was
about 0.007. NDVI exhibited an overall increasing trend, increasing by an average of 0.001
per year. At the same time, the accumulative ecological water conveyance volume (AEWCV)
also increased year by year. In years when the slope of AEWCV increase and decreased,
such as from 2006–2009, when ecological water conveyance volume (EWCV) declined,
NDVI also decreased, this indicated a high correlation between the two. To evaluate areas
with different vegetation cover, NDVI values were divided into three categories: 0–0.1,
0.1–0.2, and 0.2–1. Figure 3b shows that the area of the region with NDVI values between
0.1 and 0.2 significantly increases, while the area with NDVI values between 0.2 and 1 also
showed a small increase. From this, it can be observed that EWC played a significant role
in the vegetation restoration of LRTR.
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the proportion of areas classified by different NDVI.

4.2. Spatial Variation Characteristics of the NDVI

From the vegetation change trends in Figures 4 and 5, it can be observed that vegetation
showed significant recovery during the first period after the initiation of EWC (2000–2005),
with a recovery area proportion reaching 91%. The vegetation in areas proximate to the
river channel has recovered better, indicating that EWC has a positive impact on vegetation
growth. However, as it can be seen in Figure 4b,d and Figure 5b,d, during the periods from
2005–2010 and 2015–2020, vegetation degradation reoccurred across the study area, with the
proportions of degraded areas reaching 71% and 73.2%, respectively. This was associated
with concurrent decreases in EWCV during these periods. Among them, during the period
from 2015 to 2020, the NDVI in 8.5% of the area significantly decreased, indicating that
not only the reduced EWCV but also other combined factors contributed to vegetation
degradation. From Figures 4e and 5e, it can be seen that vegetation has significantly
recovered during 2000–2020, with the restored areas accounting for 88.6% of the total,
mainly concentrated around river channel and tail lake.
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Furthermore, Hurst exponent analysis is used to analyze the vegetation change trend
of future LRTR. Figure 6 illustrates that the spatial distribution of the trends was rather
scattered, with no clear regularity. In total, 33% of the areas had H values between 0
and 0.5, indicating that the future trends would be opposite to the past; 66% of the areas
had H values between 0.5 and 1, indicating that the future trends would continue like
the past trends. Further, the results of the Theil-Sen estimator coupled with the Hurst
exponent method showed three future trends in vegetation change. Among them, 27.8%
of the areas would experience vegetation increase, while 71.5% of the areas would face
vegetation degradation. In terms of spatial distribution, the upper and terminal regions of
the watershed mainly showed an increasing trend in vegetation, while the middle region
of the watershed showed a decreasing trend in vegetation. This serves as a warning for
future ecological protection efforts.
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4.3. Contribution of Climate Change and Human Activity to Vegetation Dynamics

Multivariate residual analysis method was used to evaluate the spatial distribution of
factors affecting NDVI changes. Figure 7 illustrates substantial spatial variability in how
human activity and climate change influence NDVI across the study area. Firstly, it was
evident that the area where NDVI has increased was much larger than the area where NDVI
has decreased. In the areas surrounding the river channel, the increase in NDVI is due
to the combined effects of climate change (CC) and human activity (HA). In contrast, the
areas where climate change and human activity independently contribute to the increase
of NDVI were scattered around the periphery without any regular pattern. Meanwhile,
in areas far from the river channel, NDVI showed a decreasing trend, mostly driven by
human activity.
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Figure 7. Driving factors of NDVI change in different regions.

Furthermore, the impacts of human activity and climate change on NDVI changes
were quantified. The study categorized regions into 11 groups based on their varying con-
tribution levels, specifically: [−100, −80), [−80, −60), . . ., (80, 100]. In Figure 8, the warmer
the color tone, the greater the contribution to NDVI changes. Positive contributions indicate
a positive effect on NDVI, while negative contributions indicate a negative effect. Figure 8a
shows that regions where climate change contributes positively to NDVI changes cover
approximately 32.26% of the study area. Notably, areas with contributions falling within
the ranges of 0–20% and 80–100% collectively cover a significant portion, approximately
20.2% of the total area. In contrast, climate change had no observable impact on NDVI
changes in 62% of the regions. Overall, the effect of climate change on NDVI changes in the
LRTR was not significant, with the affected areas being relatively scattered.

As shown in Figure 8b, the effect of human activity on NDVI changes is more pro-
nounced and the affected areas are relatively concentrated. However, the degree of impact
is polarized. The regions where human activity contributed 80–100% were mainly con-
centrated near the river channel. This indicated that in these areas, the NDVI showed
a significant increasing trend, and human activity positively contributed to vegetation
restoration. The areas where the contribution of human activity ranges from −100% to 80%
were mainly concentrated in regions far from the river channel, accounting for 38.15% of the
whole study area. Considering that NDVI showed a decreasing trend, it can be understood
that human activity has had a significant inhibitory effect on vegetation degradation.
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4.4. Detection of Factors Influencing Vegetation Distribution

This study considered five factors to analyze the driving mechanisms of vegetation
spatial variation, as shown in Table 4. These factors were annual precipitation, annual
average temperature, elevation, slope, and distance to the river channel. According to
the factor detection results (Figure 9), the order of the impact of driving factors on NDVI
was: X5 > X3 > X2 > X1 > X4. The distance to the river channel factor has the strongest
explanatory power for NDVI, with a Q value of 0.078, much higher than other driving
factors. The impact of slope on the spatiotemporal variation of NDVI is minimal, with a
Q value of only 0.001.

Table 4. Symbols for each factor.

X1 X2 X3 X4 X5

annual
precipitation

annual average
temperature elevation slope distance to the

river channel
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Ecological detection results (Table 5) show that only the distance to the river channel,
when combined with other factors, showed a significant difference (α = 0.05) in the impact
on the change of NDVI. The combinations of additional driving factors did not exhibit an
insignificant variation in their influence on the spatial distribution of NDVI.

Table 5. The result of ecological detection.

X1 X2 X3 X4 X5

X1 \
X2 N \
X3 N N \
X4 N N N \
X5 Y Y Y Y \

Note: Y indicates a significant difference exists between the two driving factors at the α = 0.05 level, while
N indicates there is none.

The comprehensive impact of driving factors on NDVI is evaluated using the inter-
action detector in the Geodetector method. The interactive detection results (Figure 10)
demonstrated a notable synergistic enhancement effect between different factors, with
the combination of two factors significantly amplifying their influence on NDVI’s spatial
distribution. Among them, the interaction between the distance to the river channel factor
and the precipitation factor, temperature factor, and elevation factor showed better ex-
planatory power for NDVI spatial distribution, with Q values of 0.1101, 0.1099, and 0.1058,
respectively. This result showed that the distance to the river channel was the primary
factor influencing the NDVI changes. The study demonstrated that the driving factors
influencing NDVI were interdependent and exhibited greater explanatory power when
they interacted.
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5. Discussion
5.1. Vegetation Variation Characteristics in the LRTR

This study revealed a continuous increase in NDVI in the LRTR in 2000–2020. Hu
et al. [46] reported a significant vegetation increase in 65.9% of the Tarim River Basin, while
Yu et al. [47] found that the proportion of increasing NDVI in China’s endorheic basins
exceeded the proportion of decreasing NDVI. These findings were consistent with our
results. The restoration in vegetation conditions in the LRTR can be largely attributed to
the EWC [48]. Using the Theil-Sen estimator and the M-K significance test, we analyzed
vegetation changes of the LRTR from 2000 to 2020 and found that the vegetation conditions
in most areas (88.6%) have undoubtedly improved. From this perspective, the Chinese gov-
ernment’s ecological water conveyance has been very successful in effectively preventing
vegetation degradation.

5.2. Effect of Driving Factors on LRTR Vegetation Change

The vegetation cover in the LRTR was affected by the EWC, resulting in a human
activity contribution to NDVI changes significantly outweighing that of climate change.
Due to the scarcity of precipitation in the LRTR, vegetation growth mainly depends on
groundwater. At the same time, the main growth of drought-resistant tree species in the
area has lower leaf evaporation and is less sensitive to high temperatures. Therefore, climate
change has a small impact on vegetation. Meanwhile, human beings have made continuous
efforts in ecological restoration, so under the comprehensive impact of climate change
and human activities, vegetation is showing a trend of growth. Besides meteorological
factors, the distance to the river channel was a key driver of vegetation distribution in the
LRTR. Rivers mainly impact vegetation by recharging groundwater, which significantly
influences NDVI in arid regions [49,50]. The closer the distance to the river channel, the
higher the groundwater level, which better supplements water for plants. Additionally,
elevation is a major factor influencing vegetation distribution. It indirectly affects vegetation
growth by altering precipitation and temperature. However, in arid regions, due to the
scarcity of precipitation, the differences in vegetation growth at varying elevations are not
as pronounced as in humid areas [51]. Additionally, the slope has a weaker explanatory
power for vegetation growth. The study results indicate that slope had little impact on
vegetation distribution in the LRTR. Generally, slope affects vegetation growth through
solar radiation. However, in arid regions, due to intense sunlight and high temperatures,
vegetation growth may be inhibited due to water scarcity instead.

We found that combining low q statistics driving factors with other driving factors
greatly enhances explanatory power. Moreover, interactions between two driving factors
were not simply linear additions; instead, they exhibited nonlinear amplification. Specifi-
cally, factors like distance to the river channel, precipitation, and temperature, which are
significantly correlated with vegetation, exhibited higher explanatory power after inter-
action. This suggests that the factors are not independent of each other and typically act
together to collectively influence vegetation distribution.

6. Conclusions

This study employed multi-source geospatial data and used the Theil-Sen estimator
and the Mann-Kendall significance test to assess historical changes in NDVI in the LRTR.
Despite a gradual increase in vegetation cover from 2000–2020, the NDVI values in the
LRTR remain relatively low. The future trend of NDVI change was analyzed using the
Hurst exponent method. The findings showed that at the upper and lower parts of LRTR,
most areas would further increase in vegetation, while in the middle reaches, vegetation
was more likely to degrade. Subsequently, residual analysis was used for quantitative
evaluation of the contributions of human activity and climate change to NDVI changes.
The results showed that human activities, such as EWC, were the primary contributing
factors to vegetation growth in the LRTR. Meanwhile, the contribution of climate change is
minimal. Using the Geodetector method, we analyzed the driving mechanism of NDVI
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change in the LRTR. The top three driving factors affecting vegetation coverage were
the distance to the river channel, precipitation, and temperature. Slope has the least
effect on vegetation. The interaction effects between different driving factors showed
significant nonlinear enhancement, surpassing the explanatory power of individual factors
for vegetation changes. The study area is a typical arid region, and human intervention in
local vegetation growth is very obvious. The issue of vegetation protection is a common
problem faced by various arid regions around the world. Different human activities affect
whether vegetation is restored or degraded. Research by scholars in northern Oman [52],
the Loess Plateau in China [53], and Central Asia [54] has also confirmed that human
activities are the main factors affecting vegetation growth in arid regions. Due to the
positive impact of river leakage, riparian vegetation that relies on groundwater has emerged
in arid areas, which is significantly denser than vegetation in other regions. Studying
the mechanisms behind vegetation restoration and degradation is of great significance
for protecting fragile ecosystems. These findings offer theoretical support for ecological
conservation and sustainable development in arid areas.
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