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Abstract: Pore-scale flow velocity is an essential parameter in determining transport through porous
media, but it is often miscalculated. Researchers use a static porosity value to relate volumetric or
superficial velocities to pore-scale flow velocities. We know this modeling assumption to be an over-
simplification. The variable fraction of porosity conducive to flow, what we define as hydrodynamic
porosity, θmobile, exhibits a quantifiable dependence on the Reynolds number (i.e., pore-scale flow ve-
locity) in the Laminar flow regime. This fact remains largely unacknowledged in the literature. In this
work, we quantify the dependence of θmobile on the Reynolds number via numerical flow simulation
at the pore scale for rectangular pores of various aspect ratios, i.e., for highly idealized dead-end
pore spaces. We demonstrate that, for the chosen cavity geometries, θmobile decreases by as much
as 42% over the Laminar flow regime. Moreover, θmobile exhibits an exponential dependence on the
Reynolds number, Re = R. The fit quality is effectively perfect, with a coefficient of determination (R2)
of approximately 1 for each set of simulation data. Finally, we show that this exponential dependence
can be easily fitted for pore-scale flow velocity through use of only a few Picard iterations, even
with an initial guess that is 10 orders of magnitude off. Not only is this relationship a more accurate
definition of pore-scale flow velocity, but it is also a necessary modeling improvement that can be
easily implemented. In the companion paper (Part 2), we build upon the findings reported here and
demonstrate their applicability to media with other pore geometries: rectangular and non-rectangular
cavities (circular and triangular).

Keywords: hydrodynamic porosity; cavity; dead-end pore; pore velocity; volumetric velocity;
Reynolds number; groundwater remediation

1. Introduction

Fluid flow and transport through porous media are ubiquitous to natural and engi-
neered systems including groundwater remediation, surface water treatment, and various
other industrial processes. Recent studies underscore the importance of considering pore-
scale flow dynamics and structures, namely dead-end pores, in elucidating fluid transport
mechanisms within porous media and describing macroscale trends.

In the study of porous media, the pore space is typically broken down into two
regions: mobile and “immobile” zones, as described by van Genuchten and Wierenga [1] in
application to groundwater flows. In the mobile zone, solute transport occurs via advection
and dispersion. The immobile zone is defined by isolated volumes of cavities or dead-
ended pore space adjacently located to well-connected, mobile regions. In these zones, fluid
recirculates in eddies, and solute transport is limited to the mechanism of vortex-enhanced
diffusion. By this definition, the “immobile” label is a misnomer—fluid in the cavity space
is technically mobile; it does not, however, move through the pore space. Thus, the fluid in
this zone remains immobile relative to the flow in the mobile zone. We illustrate these zones
for an arbitrary matrix subject to an imposed flow in Figure 1, below. Magnification “A”
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provides an example of a mobile zone, and magnification “B” contains an example of an
immobile zone in the form of a dead-end pore. The model we use to study this dead-end
pore volume is pictured in Figure 2.
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Figure 1. Mobile zone composed of well-connected pore space (A), and an immobile zone in the 
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Figure 2. Mobile–immobile zone model of the dead-end pore space (left), boundary-driven condi-
tion, and vortex-enhanced diffusion (middle), shear-driven boundary condition yielding a deform-
able, mobile separatrix (right). 

The relevance of the dead-end pores pictured in Figure 1, though media-specific, can 
be profound, especially in unwashed media such as glacial till or fractured rock. Indeed, 
the presence of dead-end pores has been shown to be abundant in the subsurface. For 
example, Lee et al. [2] found the fraction of immobile water content in an undisturbed soil 
core to range from 0.42 to 0.82, while Casey et al. [3] measured the average fraction to be 
0.62 in the field. Testing in the 1960s revealed the significance of dead-end pores in reser-
voir rock: Fatt et al. [4] estimated a total volume of 20% in limestone and shellstone core 
samples, whereas Coats and Smith [5] estimated a volume of roughly 10% in sandstone 
core samples. 

Typically, a substantial immobile zone volume results in solutes favoring preferential 
flow paths (i.e., well-connected pore volumes), bypassing immobile zones and dead-end 
pores. Models neglecting immobile zones and preferential flow paths may underestimate 
solute movement by half, as indicated by Jaynes et al. [6], highlighting the significance of 
considering dead-end pores in fluid transport dynamics. Dead-end pores have also been 
implicated in other macroscopic phenomena. Leismann et al. [7] discuss tailing in large-
scale propagation processes, attributing it to pollutant persistence in immobile zones or 
dead ends of the pore space. Lake [8] identifies viscous fingering instabilities and stagnant 
areas, or dead-end pores, as critical limiting factors in miscible displacement processes in 
porous media, impacting remediation, CO2 sequestration, and energy extraction. 

Figure 1. Mobile zone composed of well-connected pore space (A), and an immobile zone in the form
of a poorly connected/dead-end pore (B).
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and vortex-enhanced diffusion (middle), shear-driven boundary condition yielding a deformable,
mobile separatrix (right).

The relevance of the dead-end pores pictured in Figure 1, though media-specific, can
be profound, especially in unwashed media such as glacial till or fractured rock. Indeed,
the presence of dead-end pores has been shown to be abundant in the subsurface. For
example, Lee et al. [2] found the fraction of immobile water content in an undisturbed
soil core to range from 0.42 to 0.82, while Casey et al. [3] measured the average fraction
to be 0.62 in the field. Testing in the 1960s revealed the significance of dead-end pores in
reservoir rock: Fatt et al. [4] estimated a total volume of 20% in limestone and shellstone
core samples, whereas Coats and Smith [5] estimated a volume of roughly 10% in sandstone
core samples.

Typically, a substantial immobile zone volume results in solutes favoring preferential
flow paths (i.e., well-connected pore volumes), bypassing immobile zones and dead-end
pores. Models neglecting immobile zones and preferential flow paths may underestimate
solute movement by half, as indicated by Jaynes et al. [6], highlighting the significance of
considering dead-end pores in fluid transport dynamics. Dead-end pores have also been
implicated in other macroscopic phenomena. Leismann et al. [7] discuss tailing in large-
scale propagation processes, attributing it to pollutant persistence in immobile zones or
dead ends of the pore space. Lake [8] identifies viscous fingering instabilities and stagnant
areas, or dead-end pores, as critical limiting factors in miscible displacement processes in
porous media, impacting remediation, CO2 sequestration, and energy extraction.
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Recent studies have delved further into the impact of dead-end pores on fluid flow and
macroscopic transport phenomena (e.g., see Bordoloi et al. [9]). Gao et al. [10] find that im-
mobile water in dead-end pores not only affects solute transport processes but also crucially
regulates breakthrough and tailing in soil columns. Yuan et al. [11] observe that dead-end
pores impede the efficient removal of non-aqueous phase liquids from the pore space due
to slow mass transfer rates between the mobile and immobile zones. Nguyen et al. [12]
discuss the effect of dead-end pores on porous battery electrode performance, underscoring
the importance of understanding their role in optimizing electrode design. Following an
abundance of such evidence, Khuzhayorov et al. [13] conclude that zones of immobile
liquid significantly influence transport in porous media.

Building upon the insights gained from studies on dead-end pores and pore-scale flow
dynamics, the concept of effective porosity emerges as a central focus in understanding
fluid transport in porous media. However, the interpretation of effective porosity has
been mired in ambiguity across different disciplines, leading to varying definitions and
applications. Take, for example, the definition of effective porosity assigned by the textile
industry. In the context of hernia meshes, effective porosity is meant to define changes to the
pore morphology after implantation of the mesh in situ (Jacombs et al. [14]). This is quite
different from the definition used by Sevee [15] in a study on the effective porosity of marine
clay. In this study, effective porosity describes the void space in the clay that participates
in advective transport. Still, other definitions describe it as the difference between the
total porosity minus the soil water content at 0.33 bar (Helalia [16]; Timlin et al. [17]).
Readers are directed to Hapgood et al. [18], Flint and Selker [19], Cartwright et al. [20], and
Ma et al. [21] for additional, alternative definitions. This ambiguity necessitates a more
nuanced approach to characterize the portion of porosity influencing fluid transport.

In this work, we introduce the concept of hydrodynamic porosity, denoted as θmobile,
to specifically capture flow-driven fluctuations in the pore volume conducive to through-
flow. The objective of our analysis is to provide a more precise understanding of the
dynamics underlying fluid and contaminant transport within porous media. The concept
of hydrodynamic porosity not only differs from the many definitions of effective porosity,
but also from that of dynamic porosity, which describes the shrinking or swelling of porous
media (Sheng et al. [22]; McDonald et al. [23]), and dynamic effective porosity, which
describes variably saturated porous media around the capillary fringe (Luo et al. [24]). By
delving into the physics of pore-scale flow, we lay the theoretical groundwork for our study,
aiming to provide a comprehensive analysis of hydrodynamic porosity and its implications
for modeling fluid flow and transport in porous media, with particular emphasis on the
role of dead-end pores.

1.1. Effective Porosity

Among the authors who define effective porosity as the portion of constant porosity
used to transmit fluid through porous media are Li et al. [25], Kabala and Kim [26], Kim [27],
Lindsay [28], and Werth [29]. Here, we note that while these authors qualitatively consider
its hydrodynamic nature, they do not quantify it. For example, Li et al. [25] qualitatively
note the dependence of effective porosity on flow velocity in a study of sedimentary rock
flows. The authors attribute the observed decrease to the presence of selective pathways
(i.e., fissures and cracks) in the studied rock formation. They do not discuss an explicit
relationship between what they term effective porosity and flow velocity. Further, the
morphology of the rock formation studied in this work is starkly different than that of
granular media.

In his doctoral dissertation at Duke and a publication with his advisor, Kim [27]
and Kabala and Kim [26] provide the most thorough discussion on the hydrodynamic
quality of effective porosity; the authors state a dependence of effective porosity on both
pore geometry and Reynolds number, Re = R. They demonstrate this dependence in the
same idealized pore space we study in this work using the FIDAP software. The authors
show that effective porosity varies by at least an order of magnitude for creeping flows
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and postulate that it may “vary by as much” for non-creeping flows but do not develop
an explicit relationship between effective porosity and Reynolds number (Kabala and
Kim [26]).

Other authors have qualitatively considered the impact of dead-end pores on effective
porosity. Lindsay [28] notes that in water-saturated paper, flow can be restricted by mechan-
ical obstructions in the form of isolated and dead-end pores. The author also discusses the
development of stagnant zones in high Reynolds number flows, and the absence of these
zones in creeping flows due to the ability of the flow to closely follow abrupt changes in
medium geometry. In effect, the author contemplates the dependence of effective porosity
on the Reynolds number, Re = R, but does not account for it in his analysis. The concept
of flow-dependent porosity also appears in a study on baleen, though in a much different
context. Werth [29] describes a linear relationship between fringe porosity and incident
flow velocity until a certain limiting velocity is reached, at which point the effective porosity
of the baleen decreases. Given that the application of this work is to learn more about
the mechanical properties of baleen to better understand the feeding behaviors of various
whale species, the spatial scale and flow path morphology are fundamentally different than
those studied in this work.

1.2. Cavity Flows

As we discuss in the next section, flow past cavities (also known as dead-end or blind
pores), which serve as the theoretical basis for this research, are a popular research topic
and comparatively well explored. There are ample publications concerning contaminant
transport and flow manipulation and instabilities in dead-end pores. The bulk of this
work pertains to the geometric manipulation of pore geometry to determine the effect on
the induced flow (Moffatt [30]; Coats and Smith [5]; Higdon [31]; Shen and Floryan [32];
Fang et al. [33]).

Three review articles cover the field well (Meier et al. [34]; Worthington [35];
Yan et al. [36]), but there are many other notable works, e.g., Li et al. [37], Yuan and
Rezaee [38], Foroughi et al. [39], Verbovšek [40], Fenni et al. [41], Kango et al. [42], and
Yao et al. [43].

Studies on flow modulation have also been published, though they are relatively less
explored (Jana and Ottino [44]; Howes and Shardlow [45]; Horner et al. [46]; Kahler and
Kabala [47]). Most of this work is geared at industry for the guise of expediting rate-limited
manufacturing processes (e.g., etching, finishing, cleaning, etc.) that are applied to surfaces
with cavities (Chilukuri and Middleman [48]; Alkire et al. [49]; Fang et al. [50]).

In this work, we leverage the same physical theory that describes flows past cavities
to define a hydrodynamic porosity function θmobile

(
vpore

)
= θmobile(R). Previously, Kahler

and Kabala [47,51,52] used the same approach to describe contaminant transport in porous
media—likening duct or surface flow to flow through a series of well-connected pores, and
flow past grooves and cavities on surfaces to flow past dead-end pores in granular media.
Such results are crucial to understanding how phenomena like contaminant rebound in
groundwater reservoirs post-remediation can be mitigated. Although Kahler and Kabala
implied the hydrodynamic nature of porosity, they did not quantify it. In this paper, we
demonstrate and quantify, explicitly, this relationship for the first time. We also illustrate
the ease with which this relationship can be incorporated into flow and contaminant
transport models. To understand why contaminant rebound after traditional pump-and-
treat groundwater remediation takes place, and how it could be mitigated, researchers need
to account for hydrodynamic porosity, θmobile.

2. Pore Scale Flow Modeling

Here, we are solving the continuity equation (mass conservation) and the Navier–Stokes
equation (the evolution of momentum) for incompressible Newtonian fluid (water) subject
to no-slip and no-penetration boundary conditions on the walls of the channel and cavity.
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The pressure is specified at the outlet. The imposed inlet velocity distribution is parabolic,
as in a fully developed channel flow (analogous to Hagen–Poiseuille flow).
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· u = 0

ρ

(
∂u
∂t

+ u ·
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p + µ
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2u

u((x, y) = wall) = 0

p(x = channel length, y) = 0

where u is a 2D velocity vector, ρ is density, t is time, p is pressure, and µ is dynamic
viscosity. The Navier–Stokes equation is solved for steady state, i.e., the time derivative of
the velocity is zero. Since we do not refer to these equations later, we list them unnumbered.

We assume a (quasi) steady-state, laminar flow in our model. It is typical for ambient
groundwater conditions, which may vary on a time scale of weeks, as well as for pump-
and-treat remediation conducted predominantly with a constant/fixed pumping rate. The
ambient flow is usually characterized by Re = R < 1, whereas forced-gradient flows typically
do not exceed Re = R < 100 even near a pumping well and thus are also laminar. For our
numerical experiments, we chose Reynolds numbers that span this range: 1, 10, 50, and
100; they help us demonstrate the variability of hydrodynamic porosity. We further discuss
our selection of Reynolds numbers in Section 3 Methods.

2.1. Total Porosity

The total porosity of a medium, θ, is defined by the cumulative volume of the mobile
and immobile zones; and more specifically, as the ratio of the total pore space volume to
the total volume of the media, V. In an isotropic or 2D medium, like the ones we study in
this work, this definition can be written in terms of cross-sectional areas:

θ =
Vpore

V
=

Apore

A
(1)

We note that V = Vbulk = Vtotal and A = Atotal . In the analysis that follows, we
represent the pore volume (or area) by the dead-end pore model, which we illustrate in
Figure 2. As a result, the pore volume can be defined in terms of mobile and immobile
zones. Again, we provide the cross-sectional area expression for an isotropic medium or
2D media.

Vpore = Vmobile + Vimmobile → Apore = Amobile + Aimmobile (2)

Thus, we can define the total porosity of the medium, θ, as a function of mobile and
immobile zone porosities, θmobile and θimmobile, respectively, by dividing Equation (2) by the
total volume of the medium, V (or cross-sectional area, A):

θ =
Vmobile + Vimmobile

V
= θmobile + θimmobile (3)

2.2. Pore-Scale Flow Velocity

An expedient (and reductive) way to define the pore-scale flow velocity is to use the
volumetric velocity, also known as the superficial or Darcy/Forchheimer velocity. This
quantity is equivalent to the flow velocity of a fictitious fluid flowing through an entire
cross section of the medium rather than just through the void space conducive to flow:

vvolumetric = v =
Q
A

= q (4)



Water 2024, 16, 2158 6 of 26

where Q is the volumetric flow rate, A, is the cross-sectional area of the medium, and q,
is the “flux.” Neglecting inertial effects, Darcy’s law relates the volumetric velocity to the
pressure gradient applied to the medium (Brutsaert [53]; Muljadi et al. [54]; Bear [55]):

−
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p =
µ

k
v ⇔ −
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h =
1
K

v (5)

where p is the pressure, h is the pressure head, k is the permeability of the medium, K
is the hydraulic conductivity, γ is the specific weight of the fluid, and µ is its viscosity.
The equivalences we show here are to illustrate the preferred forms in oil and gas reser-
voir modeling (left) and groundwater hydrology (right). When inertial effects cannot be
neglected, as is the case for high Reynolds number flows, we must utilize the quadratic
correction term, introduced by Èstudes [56] and Forchheimer [57]. Given this adjustment,
Darcy’s law becomes the Forchheimer–Dupuit law:

−
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k
v + Bρv2n ⇔ −
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h =
1
K

v + B
1
g

v2n (6)

where n is a unit vector in the direction of the volumetric velocity, ρ the flow density, and B,
a coefficient that can be found experimentally (Chen et al. [58]). Depending on the flow
conditions, the volumetric velocity can be estimated experimentally from Equation (5) or
Equation (6) (i.e., from Darcy’s law or the Forchheimer–Dupuit law, respectively). To attain
the true pore-scale flow velocity, which would be needed to determine quantities such as
contaminant transport time, the volumetric velocity must be modified by the medium’s
porosity (Bear [55]):

vpore =
v
θ

(7)

Back-of-the-envelope calculations may simply use the total porosity of the medium.
If the mobile zone porosity is known, then θmobile would instead be used, but as a static
quantity. This would also be suitable for washed media without any cavities or other
effectively immobile zones. Equation (7) can be derived from a simple conservation of
mass analysis:

vpore Apore = vA ⇔ vpore =
A

Apore
v ⇔ vpore =

1
θ

v

Given the fact that immobile zones do not contribute to through-flow, we know that
use of the medium’s total porosity is an oversimplification. Pore-scale flow velocity should
instead be defined by the total volume that is conducive to flow—a quantity that is itself
dependent on pore-scale flow velocity. Equation (7) should instead read

vpore =
v

θmobile
(
vpore

) =
v

θmobile(R)
(8)

where, rather than being modeled as static quantity, as is typically the case, θmobile is itself
a function of pore-scale flow velocity, and thus, we proceed with the following notation:
θmobile(R). The implicit nature of Equation (8), while seemingly more difficult to solve than
Equation (7), is quickly resolved by a few Picard iterations. Not only is Equation (8) a more
accurate description of pore-scale flow velocity, but it is also a necessary improvement in
the modeling of induced subsurface flows that can be easily implemented.

2.3. Defining the Pore-Space Partitioning Coefficient

Given that the pore space can be broken down into mobile and immobile zones, we
can define a pore-space partitioning coefficient, ξ, to describe the ratio of pore space conducive
to through-flow:
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ξ =
Vmobile
Vpore

=
Amobile
Apore

(9)

We note that the pore-space partitioning coefficient is related to the hydrodynamic
porosity of the medium, θmobile(R), by

ξ =
Vmobile
Vpore

= θmobile(R)
V

Vpore
=

θmobile(R)
θ

(10)

In the analysis that follows, it is the behavior of the pore-space partitioning coefficient
that we numerically quantify as a function of the Reynolds number. We are able to use our
results to describe the hydrodynamic porosity, θmobile(R), of the medium because of the
direct proportionality between these two quantities.

2.4. The Dead-End Pore Model

To geometrically simplify the pore space of a porous medium, we study a single cavity
or dead-end pore, as pictured in Figure 1. The idea of a poorly connected, or dead-end pore
was first explored by Turner [59], who studied channel flow with distributed pockets of
stagnant fluid. Although Turner admitted such pore spaces would play a role in diffusion
throughout the pore space, other researchers such as Fatt [60] and Goodknight et al. [61]
initially regarded dead-end pore spaces as regions through which diffusion could not
occur. Deans [62] noted that the division of pore space into flowing and stagnant regions,
separated by a “resistance to mass transfer” is an “extreme limit” that can only be justified
on the grounds of simplicity. Following this conclusion, Coats and Smith [5] relaxed the
definition of the dead-end pore to account for diffusion, but still referred to the dead-end
pore volume as stagnant. Physically, we know this enforcement to be an oversimplification
of the recirculatory flow within the dead-end pore space. Chilukuri and Middleman [48]
corrected for this oversimplification by describing mass transport from dead-end pores
as a result of vortex-enhanced diffusion—a conclusion that coincides with a series of
publications that detail the vortex structures within dead-ended pores (Moffatt [30]; Mehta
and Lavan [63]; O’ Brien [64]; Shen and Floryan [32]; Kang and Chang [65]; Fang et al. [33]).
The evolution of the dead-end pore model is illustrated in Figure 2, below.

Separation of the mobile and immobile zone volumes is described by the boundary- or
shear-driven flow models; we refer to the boundary between these zones as the separatrix.
In application to flow, the idea of a separatrix was first postured by Elderkin [66], who
describes the boundary as a trajectory that is topologically abnormal in comparison to
nearby trajectories. Weiss [67] later used this concept to describe the defining limit between
free and trapped fluid regions. Other publications refer to this boundary as a dividing
(Moffatt [30]; O’ Brien [64]; Higdon [31]) or separating streamline (Shen and Floryan [32];
Alkire et al. [49]). The modeling and experimental work on which we build, i.e., Kahler
and Kabala [47,51,52], and even earlier publications such as Horner et al. [46], use this
same terminology (the separatrix) to describe the fluidic boundary between the mobile and
immobile zones in the idealized dead-end pore space.

In the case of the boundary-driven model (which is essentially the commonly studied
driven-lid problem), the geometric boundary between the mobile and immobile zones also
serves as the fixed location of the separatrix. With an increase in Reynolds number of the
adjacent through-channel flow, the vortex structures within a cavity translate and smear
in the direction of the imposed boundary condition movement. Such results have been
illustrated by many and summarized by Shankar and Deshpande [68]. In shear-driven
flows, the separatrix is free to move about the cavity space. As discussed by Fang et al. [50]
and Kahler and Kabala [47], the exact location of the separatrix depends on the Reynolds
number of the adjacent through-channel flow in the mobile zone. This means that, unlike in
the case of the boundary-driven flow condition, the mobile and immobile zones cannot be
defined based on the geometry of the pore space alone. Instead, the volumes of these zones
must be defined as flow dependent. In application to square cavity flow, a comparison
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between the enforcement of the boundary-driven and shear-driven flow conditions is
provided in Figure 3 below.
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Figure 3. Vortex location for the mobile and immobile separatrix (left and right, respectively). The
location of the mobile separatrix is determined from a shear-driven flow condition. The location of
the immobile separatrix is determined from a boundary-driven flow condition. These results are
generated for the idealized pore space provided in Figure 4 for Re = R = 10, see Section 3.2.2.

In the study of flow past cavities, it is standard practice to enforce the shear-driven
boundary condition. Researchers who initially studied these flows, e.g., Moffatt [30],
immediately identified through-flow penetration into the cavity space upon investigation.
O’Neill [69] and Wakiya [70] found that attachment of the separatrix to the cavity wall
occurs at some depth into the cavity and as Higdon [31] states, not at the sharp, leading
edge of the cavity. In fact, for rectangular cavities exceeding a given depth ratio, researchers
found that the downstream attachment of the separatrix, or dividing streamline, occurs at
the bottom of the cavity wall, mimicking the behavior of a sudden-expansion flow (Shen
and Floryan [32]; Alkire et al. [49]). Enforcement of the boundary-driven flow model would,
in this application, yield significant error.

With these findings considered, we again refer to the discussion presented by
Li et al. [25] wherein the effective porosity of the studied medium is found to be flow
dependent. The authors of this study explain that this dependence is a result of physical
macrostructures that act as preferential flow paths during high flow volumes. What the
authors do not discuss, is the hydrodynamic behavior of the immobile zones within the
medium—a behavior that is driven by separatrix movement in to and out of each effectively
dead-end pore. As flow volumes increase, the separatrix moves toward its neighboring
through channel, and the immobile zone it defines grows. The result of an increase in flow
volume is a decrease in hydrodynamic porosity, θmobile(R). It is only when the shear-driven
flow condition is applied to the dead-end pore that this behavior is observed. If the mo-
bile and immobile zones are improperly defined by the simplified boundary-driven flow
condition, this behavior is missed.

3. Methods

To determine the hydrodynamic porosity, θmobile(R), of a porous medium, we study
the medium at the pore scale and assume an idealized dead-end pore geometry. The
movement of the separatrix is tracked over a range of interstitial Reynolds numbers to
determine the relative magnitudes of the mobile and immobile zones, which we then use
to calculate the value of the pore-space partitioning coefficient, ξ = θmobile(R)/θ .
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3.1. Numerical Flow Solver

To observe movement of the separatrix in the idealized pore space, we use Mathemat-
ica’s numerical differential equation solver, NDSolve, to solve the continuity equation (mass
conservation), Navier–Stokes equations (momentum evolution), and associated boundary
conditions. The solver domain is a replica of the idealized pore space utilized by Kahler
and Kabala [47] and is similar in geometry to the domain commonly used in the study of
flow past cavities (Chilukuri and Middleman [48]; Higdon [31]; Fang et al. [33]). For the
sake of simplicity, the flow is modeled as being two-dimensional. The height of the through
channel is the same as the depth and width of the dead-end pore (i.e., the dead-end pore
has a depth ratio of 1:1). In the study of flow past cavities, this geometry is by far the most
prevalent, as noted by Shankar and Deshpande [68]. The through channel is extended past
the dead-ended pore by twice the channel height to eliminate any end effects associated
with the outflow boundary condition. Finally, the dead-ended pore is located one-fourth of
the way into the through-channel given the need to input a fully developed flow profile
at the through-channel inlet. To exaggerate the movement of the separatrix as a function
of the Reynolds number, the solver domain is manipulated such that the through channel
becomes much narrower than the depth and width of the cavity space.

The idealized flow geometry is discretized through use of the ElementMesh func-
tion, which, by default, generates a second-order, triangular element mesh. The interior
and boundary mesh elements are further refined by specifying upper limits on the Max-
CellMeasure and MaxBoundaryCellMeasure. A brief convergence analysis of the interior and
boundary mesh cell sizes is provided in the Supplemental Materials. Further, a refinement
region is specified at the geometric boundary of the channel–cavity interface to ensure
proper resolution of the separatrix.

The solver itself is defined by the system of equations that describe steady-state
flow through the idealized pore space (i.e., the incompressible form of the continuity and
Navier–Stokes equations), as well as the boundary conditions that are assigned to the solver
domain. These equations are normalized by the channel height, h, and the average inlet
flow velocity, U. The flow is assumed to be a steady state and restricted to the laminar flow
regime. A set of Dirichlet conditions are applied to the boundaries of the solver domain
(i.e., the no-slip condition at the domain walls and a uniform pressure condition, wherein
the pressure is arbitrarily set to zero, at the domain outlet). The inlet velocity profile is
defined by the Hagen–Poiseuille model for fully developed channel flow. Finally, flow is
assigned to the entire idealized pore space given that the application of this work is to fully
saturated porous media. The properties of water at standard conditions are assigned to
the fluid.

We note that the non-dimensional form of the Navier–Stokes equations is used in this
analysis. The scaling on the pressure term is appropriate for flows that are dominated by
convective action (i.e., flows in which viscous effects are relatively negligible). This choice
was made to replicate the scaling utilized by Kahler and Kabala [47], who studied flows
with channel-based Reynolds numbers of Re = R = 0.01–10. Fang et al. [33] used the same
scaling, though for admittedly higher channel-based Reynolds numbers in the range of
50–1600. For our case, and the work on which we build, this scaling is justified because
these studies aim to capture flow phenomena driven by convective action (i.e., changes in
momentum to the bulk flow). When the Reynolds number approaches 0, and the flow can
be approximated as creeping, the scaling on the pressure term can be achieved through use
of the flow viscosity.

For this system of equations, NDSolve utilizes the Finite Element Method (Wolfram
Finite Element Method [71]) to arrive at a solution. In general, the solver method is automat-
ically determined by the results of symbolic analysis. The use of the Finite Element Method
is triggered by specific user inputs. For example, specification of the Navier–Stokes equa-
tion using the “Inactive” operator or boundary conditions defined by the DirichletCondition
function prompt the use of this solver method. Implementation of this solver method can
be verified by validating that the solution contains an ElementMesh (Wolfram Symbolic and
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Numerical Computation [72]). The outputs of the solver are three interpolating functions
that describe the pressure and velocity fields within the flow domain. Streamlines are
visualized through the use of the built-in StreamPlot command. The error associated with
each solver output is determined by the solver mesh (i.e., domain discretization), assigned
working precision, and solver method.

The above-mentioned functions are very well documented in the Wolfram Language
(Mathematica) Documentation [72,73] and in Wolfram Numerical Solutions of PDEs [74].
Furthermore, in Supplemental Materials, we provide the code used in this study. The main
errors are numerical, but our convergence analysis, also included in Supplemental Materials,
demonstrates that they are negligible. The adopted 2D flow simplifying assumption is
consistent with flow through fractured-rock medium with wide fractures, and thus is not
severely limiting—moreover, it is invoked by numerous studies in the literature (see further
discussion at the end of Section 6).

3.2. Data Collection

In this work, we vary the Reynolds number of the through-channel flow (i.e., the
flow in the mobile zone), and the depth ratio of the idealized dead-end channel–cavity
geometry. As noted by Fang [75] and others, the location of the separatrix is a function of
both Reynolds number and geometry (Mehta and Lavan [63]; O’Brien [64]; Higdon [31];
Kim [27]).

3.2.1. Reynolds Numbers

Below a Reynolds number of 1, the separatrix remains stationary (Kahler and Ka-
bala [47]). Flows of this nature are classified by the creeping flow regime, where viscous
effects dominate. It is not until we study Reynolds numbers within the inertial flow regime
that we observe a mobile separatrix. This is because the location of the separatrix is dictated
by the inertia of the adjacent through-flow. For this reason, we impose the following
Reynolds number, Re, ranges to the through-flow:

• Re = R = 0.01–1
(to verify the stationary nature of the separatrix in the creeping flow regime)

• Re = R = 1–100
(to illustrate the mobility of the separatrix in the laminar flow regime)

To remain within the laminar flow regime, we limit our Reynolds number to a max-
imum of 100. This choice is admittedly arbitrary, given that transition to turbulence in
pipe flow typically occurs over a diameter-based Reynolds number of 2000 and at least one
order of magnitude above the particle-based Reynolds number at which the deviation from
Darcy’s Law occurs in porous media (Bear [55]); deviation from Darcy’s Law generally
occurs between a particle-based Reynolds number of 1 and 10.

In terms of particle-based Reynolds numbers, there is ample evidence that the on-
set of transitionary behavior occurs around 100. For columns of packed spheres, Jolls
and Hanratty [76] report the onset of transitionary behavior within the range of 110–150.
Wegner et al. [77] found a slightly lower range of 90–120 for beds of packed spheres. Lat-
ifi et al. [78] encountered transitionary behavior at 110, also for a bed of packed spheres;
however, the authors did note unsteady laminar flow behavior until 370. A similar study
conducted by Rode et al. [79] reports transitionary behavior in the range of 110–150. Finally,
Bu et al. [80] define a critical particle-based Reynolds number of 100 as the cutoff for laminar
flow, with the onset of turbulence occurring between 230–400.

If we instead consider the interstitial Reynolds number, which is based on average
pore size and average pore-scale flow velocity, we encounter the commonly cited Reynolds
number ranges provided by Dybbs and Edwards [81], summarized in Table 1 below.

We can easily imagine representing our system in terms of the interstitial Reynolds
number. Given our assumption that the medium is homogeneous, we know the average
pore size. Pore-scale flow velocity is typically calculated by dividing the flux through the
medium by the porosity of the medium, but in our case, we will impose it directly by
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assigning a mean velocity to the through-channel flow. Capping our Reynolds number at a
value of 100 keeps our analysis within the steady laminar flow regime.

Table 1. Reynolds number ranges corresponding to pre-turbulent flow regimes, as provided by
Dybbs and Edwards [81].

Flow Regime Reynolds Number Range

Creeping/Darcy 0–1

Inertial 1–10

Laminar, non-linear 10–150

Laminar, unsteady 150–300

3.2.2. Flow Geometries

The effect of pore geometry manipulation has been extensively studied in the literature.
In these studies, the authors vary the type of cavity (i.e., rectangular, circular, etc.), the
depth ratio of the cavity, and the size of the cavity relative to the size of the adjacent through
channel. To replicate the results obtained by Kahler and Kabala [47], we use an idealized
geometry wherein the height of the through channel is equivalent to the depth and width
of the cavity geometry, as provided in the top-left quadrant of Figure 4. To exaggerate the
mobility of the separatrix in the laminar flow regime, the depth and width of the cavity,
relative to the through channel, are equally increased in magnitude. These geometries are
provided in Figure 4, below, and referred to by channel–cavity depth ratios (i.e., 1:1, 3:4, 1:2,
and 1:4). For example, the depth ratio 1:2 corresponds to the geometry in which the cavity
depth and width are twice that of the through-channel height.
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Figure 4. Study geometries 1:1 3:4, 1:2, and 1:4; specified by their depth ratio (i.e., channel height to
cavity depth/width) in non-dimensional space.

We note that in this paper (Part 1), we consider rectangular pores of various aspect
ratios, i.e., a highly idealized case of the dead-ended pore spaces. In the companion paper
(Part 2), we build upon our findings from this paper and demonstrate their applicability
to media with other geometries: rectangular and non-rectangular cavities (i.e., circular,
and triangular).

3.3. Measurement Method

To determine the value of the pore-space partitioning coefficient, ξ = θmobile(R)/θ ,
and therefore the hydrodynamic porosity, θmobile(R), for each inlet flow condition, we use
the following procedure:
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1. Generate a monochromatic stream plot of the flow.
2. Draw the separatrix in the area between the bulk flow in the through channel and

the recirculatory flow in the dead-end pore space in a contrasting color, using the
streamlines in the stream plot for guidance.

3. Use an interpolating function to mathematically describe the location of the separatrix.
4. Define the area below the separatrix as the immobile zone, and the area above as the

mobile zone and use numerical integration to quantify the magnitude of these regions.

To draw the separatrix, we use a DynamicModule in Mathematica to generate an inter-
polating function that includes five points (or more) of our choosing between the mobile
and immobile zones. This process is pictured below in Figure 5. To determine the sizes of
the mobile and immobile zones, we apply numerical integration to the resulting interpolat-
ing function.
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Figure 5. A DynamicModule automatically places five points on a monochromatic stream plot in
the vicinity of the separatrix (left). Given user input (i.e., movement of these five points to the
approximate location of the separatrix), the DynamicModule produces an interpolating function that
can be used to describe the location of the separatrix (right).

Given that the shape and location of this interpolating function are a direct result of
user input, there is an inherent error built into the measurement process that we are unable
to precisely quantify. Additional errors in the measurement process result from the chosen
resolution of the stream plots which is in turn limited by the quality of the solver mesh and
working precision assigned to the numerical solver method.

4. Results
4.1. Separatrix Movement

Because the cavity flow is driven by the adjacent through-channel flow, we start by
providing a stream plot of the entire dead-end pore geometry adjacent to the corresponding
cavity flow in Figure 6. We then provide stream plots for each cavity geometry at Reynolds
numbers of 1, 10, 50, and 100 in Figure 7.
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for Reynolds numbers (1, 10, 50, and 100 from left to right).

With the flow in the flow-through channel (shown in Figure 6) from the left to the
right, note in Figure 7 clear inertial effects: with the increasing Reynolds number the center
of the cavity vortex moves to the right and rises up.

The corresponding movement of the separatrix as a function of Reynolds number was
first explored by Kahler and Kabala [47]. In their work, the authors track the bottom-most
point of the separatrix to determine its maximum penetration depth into the dead-end pore.
To confirm the numerical accuracy of the results produced in this work, we replicate this
plot, which is provided in the Supplemental Material. We expand upon this plot by tracking
the movement of the separatrix for three additional flow geometries, as pictured below.

The results obtained by Kahler and Kabala [47] reveal an immobile separatrix in the
creeping flow regime (i.e., Re < 1), and a mobile separatrix in the inertial flow regime. In
the former, the bottom-most point of the separatrix does not exceed 25% of the depth of the
idealized pore space. Our results replicate the separatrix behavior observed by Kahler and
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Kabala [47] and are within, at most, a 2% difference. Over the range of Reynolds numbers
plotted in Figure 8, the maximum penetration depth of the separatrix diminishes by 20%.
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Figure 8. Maximum relative penetration depth of the separatrix into the dead-end pore space as a
function of Reynolds number, Re.

Building upon the test conditions utilized by Kahler and Kabala [47], we observe
movement of the separatrix toward the geometric boundary of the cavity space for Reynolds
numbers approaching 100. Movement of the separatrix within the cavity space is further
exaggerated by manipulation of the flow geometry, as illustrated in Figure 9 below.
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Figure 9. Immobile zone vortex streamlines, corresponding to Re = 1, bounded by the separatrix
(highlighted in yellow) for each channel–cavity depth ratio, 1:1, 3:4, 1:2, and 1:4 (from left to right).
Additional separatrix locations for Reynolds numbers corresponding to 10, 50, and 100 are plotted in
orange, purple, and blue, respectively.

Movement of the separatrix toward the adjacent through channel (and out of the cavity
space) results in a decrease in the pore-space partitioning coefficient, ξ = θmobile(R)/θ , and
therefore, the hydrodynamic porosity, θmobile(R), of the medium. For example, media with
cavities described by the dead-end pore model pictured in the top-left quadrant of Figure 4
experience roughly a 4% reduction in θmobile over the tested Reynolds number range. By
comparison, when the channel–cavity depth ratio is 1:4 (i.e., the cavity depth is four times
that of the through-channel height), θmobile(R) decreases by approximately 42%. See Table 2
for a summary of the changes associated with each channel–cavity depth ratio; note that
given Equation (10), the provided percent-decrease values are the same for the pore-space
partitioning coefficient, ξ, and the hydrodynamic porosity, θmobile(R), of the medium.
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Table 2. Maximum and minimum pore-space partitioning coefficient, ξ = θmobile(R)/θ , values
corresponding to an increase in Reynolds number in each tested flow geometry.

Pore-Space Partitioning Coefficient, ξ = θmobile/θ

Depth Ratio Max. Min. % Decrease

1:1 0.84 0.8 4.34

3:4 0.81 0.75 7.47

1:2 0.79 0.67 15.81

1:4 0.87 0.51 41.50

4.2. Exponential Dependence of Hydrodynamic Porosity on Pore-Scale Flow Velocity

When plotted, the pore-space partitioning coefficient, ξ = θmobile(R)/θ , and therefore
the hydrodynamic porosity, θmobile(R), of the medium, approaches the value suggested by
the boundary-driven model we previously discussed for Reynolds numbers approaching
the upper limit of the laminar regime (Re = R = 100). See Figure 10 below for evidence
of this behavior. In this figure, we also demonstrate that these quantities exhibit a linear
dependence on Reynolds number, in the inertial flow regime (Re = R = 1–10). Extrapolation
of this relationship past Re = R = 10 is provided to illustrate the error that would result from
not utilizing the exponential relationship provided in Equation (12). Again, we remind
readers of the direct proportionality between the partitioning coefficient, ξ = θmobile(R)/θ ,
and the hydrodynamic porosity of the medium, θmobile.
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Figure 10. The pore-space partitioning coefficient, ξ = θmobile(R)/θ , exhibits a linear dependence
on Reynolds number, Re = R, for Re = 1–10 and an exponential dependence for Re = R = 1–100. At
Reynolds numbers approaching 100, the partitioning coefficient of the flow geometry approaches
the value predicted by the boundary-driven flow model. The results pictured here are for the 1:1
channel–cavity depth ratio.

The fit parameters for each channel–cavity depth ratio are provided in Table 3. The
quality of each fit is measured by the coefficient of determination (R2), which is approxi-
mately 1 for each tested depth ratio. In the inertial flow regime, the pore-space partitioning
coefficient, ξ = θmobile(R)/θ , exhibits a linear dependence on Reynolds number. However,
as the Reynolds number increases, the partitioning coefficient deviates from this linear
model. Instead, a nonlinear dependence on Reynolds number explains the calculated
partitioning coefficient values at higher Reynolds numbers, and more significantly, over the
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entire range of Reynolds numbers, Re, in the laminar regime (Re = 1–100). This dependence
is well fitted by an exponential function:

ξ = a + be−cvpore ⇐⇒ ξ = a + be−dR, where d =
c height

ν
(11)

Table 3. Hydrodynamic porosity, θmobile(R), parameters for Reynolds number dependence (d) and
pore-flow velocity (c) defined in Equations (11) and (12).

Equation (12) Exponential Fit Parameters

Depth Ratio R2 a b c (s/m) d

1:1 1.0000 0.80 3.80 × 10−2 25.91 3.19 × 10−2

3:4 1.0000 0.75 6.20 × 10−2 33.62 4.14 × 10−2

1:2 1.0000 0.67 1.26 × 10−1 49.79 6.13 × 10−2

1:4 0.9993 0.50 3.66 × 10−1 77.32 9.52 × 10−2

This expression can be easily re-written using the help of Equation (10) to define the
hydrodynamic porosity of the medium, θmobile:

θmobile
(
vpore

)
=

(
a + be−cvpore

)
θ ⇐⇒ θmobile(R) =

(
a + be−dR

)
θ (12)

where a is the pore-space partitioning coefficient, ξ = θmobile(R)/θ, value approximated
by the boundary-driven model (i.e., Re → ∞), and the quantity ‘a + b’ is the value in the
creeping flow regime (i.e., Re → 0). We note that these values, as written, are the same for
Equations (11) and (12).

Mathematically, the fit parameter, b, drives the exponential behavior of our fit. When
on the order of magnitude of 10−1 the exponential behavior of our fit becomes most
exaggerated. This is exemplified in Figure 11, below, for depth ratios 1:4 and 1:2.
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Figure 11. The exponential decay of hydrodynamic porosity, θmobile(R), as a function of Reynolds
number, Re, for media with cavities of varying channel–cavity depth ratios. For ease of comparison,
θmobile(R) is normalized by the value that corresponds to the mobile–immobile zone model, θMIM.
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In Figure 11, we normalize the hydrodynamic porosity, θmobile(R), by the static mobile-
zone porosity value, θMIM, that results from enforcement of the mobile–immobile zone
model (i.e., the boundary-driven flow condition at the cavity–channel interface) in the
dead-end pore space, defined as

θMIM = ξMIMθ (13)

The geometric pore-space partitioning coefficient, ξMIM, is determined by the relative
magnitudes of the through-channel and cavity volumes of each dead-end pore geometry.
For the 1:1 depth ratio pictured in Figure 4, ξMIM = 4/5. For the 1:2 depth ratio pictured in
Figure 4, however, ξMIM = 8/12. We define these quantities to compare the relative change
in hydrodynamic porosity across the four geometries provided in Figure 4.

5. Calculating Pore-Scale Flow Velocity and Hydrodynamic Porosity Parameters
5.1. Pore-Scale Flow Velocity

We can use this newfound exponential relationship outlined in Equation (12) to fill in
the details of Equation (8):

vpore =
v(

a + be−cvpore
)
θ

(14)

Here, we remind readers that v is the volumetric velocity used in Darcy’s or Forchheimer–
Dupuit’s law (Equations (5) and (6), respectively). To illustrate the ease at which the
exponential relationship in Equation (12) can be incorporated into current models, we
provide a brief example utilizing the idealized pore geometry provided in the top left quad-
rant of Figure 4, the associated exponential fit coefficients (i.e., a = 0.80, b = 3.80 × 10−2,
and c = 25.91s/m), and the properties of water assumed by Kahler and Kabala [47]. In
this example, we assume the volumetric velocity has a magnitude 10−3 (m/s) and a total
porosity (θ) of 0.4—an arbitrary total porosity value in the range typically measured for
unconsolidated, unwashed media (i.e., 20–45%) (Woessner and Poeter [82]).

Using only 3 Picard iterations with an initial guess of 2 × 10−3 (m/s), we converge to
3 decimal places and a pore-scale flow velocity of 2.99 × 10−3 (m/s). Below, we illustrate
the power of Mathematica’s built-in Nest function, which will, for the same parameter set,
converge for an initial guess spanning twenty orders of magnitude. In the code provided
below, we use the sister, NestList function to quickly determine the number of iterations
needed for convergence.

Incidentally, why only 3 iterations? This is not surprising once one realizes that our
exponential function f(x) fulfills the Lifschitz condition: |xn+1 − xn| < |f’(xn)| |xn − xn−1|
or |f’(xn)| < 1 that is necessary for the mapping, f(x), to be a contraction and thus have a
fixed point—see the Banach Fixed-Point Theorem [83].
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Table 4. The pore-scale flow velocity (m/s) can be determined in only a few Picard iterations.

Pore-Scale Velocity (m/s)

Iteration Number

Initial Guess 1 2 3 4

2 × 10−3 0.00299016 0.00299344 0.00299345 0.00299345

2 × 10−13 0.00298329 0.00299342 0.00299345 0.00299345

2 × 107 0.003125 0.00299388 0.00299346 0.00299345

From this demonstration, we conclude that implementation of Equation (12) is no
more mathematically burdensome to implement than the constant porosity model, which
results in unnecessary error.

5.2. Hydrodynamic Porosity Fit Parameters

In this work, we illustrate how to solve for the exponential fit parameters in Equations
(11) and (12) through numerical simulation. But this is an idealized case—porous media
have an array of randomly distributed and sized pore spaces, not to mention drastic
changes in pore geometry. If we wanted to use the relationship provided in Equation (12),
we would need to quantify the volumetric and pore-scale flow velocities to then be able to
determine the corresponding exponential fit parameters. This could be achieved through
column experiments with a known pressure gradient (to solve for the volumetric flow
velocity), and a measurable tracer pulse (to solve for the pore-scale flow velocity). Given
that Equation (12) contains three unknown parameters, we would need to conduct this
experiment at least three times, each at a different, judiciously selected flow condition. We
note in passing that measuring the pore-scale flow velocity is not trivial and will require
care as demonstrated or implied by Wood et al. [84], Berkowitz and Scher [85], Haggerty
and Gorelick [86], Medina and Carrera [87], Carrera et al. [88], Bolster et al. [89], and
others. Since this issue is not central to the focus of this work, we will address it in the
follow-up paper.

Here we offer only a numerical example and work with an artificial dataset, generated
from use of Equation (14) and the exponential fit parameters we used in our last exam-
ple (i.e., a = 0.80, b = 3.80 × 10−2, and c = 25.91s/m). We assume we have measured
volumetric velocities that correspond to the laminar flow regime (Re = 1–100); for the char-
acteristic height, we assign to the dead-end pore geometry (i.e., 0.001 m), the corresponding
pore-scale velocity range is approximately 0.001–0.1 (m/s). We assume we measure the vol-
umetric flow velocities 0.01, 0.05, and 0.09 (m/s). Given this assumption, we can calculate
the corresponding pore-scale flow velocities:

Moving forward, we assume that we have measured these values experimentally and
that we actually do not know the values of our exponential fit parameters, a, b, and c. We
can use the synthetic dataset provided in Table 5 to calculate them. This is easily achieved
through the use of Mathematica’s FindFit function. Specifying a Newton solution method,
we arrive at the anticipated parameter values, exactly in 100 iterations (the default value
used by the FindFit function).

Table 5. Artificial volumetric and pore-scale flow velocity (m/s) data set, generated from
Equation (13).

Volumetric Velocity (m/s) × 10−2 Pore-Scale Flow Velocity (m/s) × 10−2

1 3.05939

5 15.6122

9 28.1241
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Here we note that we have utilized the arbitrary precision assigned by Mathematica to
generate a set of pore-scale velocity values. Realistically, the precision of our measurements
would be restricted by our measurement device. Thus, we re-run the above calculation,
but this time with only three significant digits rather than the six that we previously used.
This time, we arrive at a, b, and c values of 0.801, 0.0366, and 26.4, respectively. The error
in our estimated values is 0.09%, 3.65%, and 1.73%. If we increase the precision of our
measurements to four significant digits, the error in our estimated values reduces to 0.14%,
0.10%, and 0.25%, respectively. Clearly, accurate estimation of a, b, and c will require
numerical fine-tuning and surplus velocity data. This process will need to be conducted
via numerical and experimental column tests, which we are currently pursuing.

6. Discussion

At scale, the implications of these results are easily observed. For example, consider a
periodic medium well approximated by the dead-end pore model with a measurable total
porosity of 0.4. If we assume the non-dimensional idealized pore space pictured in the top
left quadrant of Figure 4, we know that the entire area of the through channel contributes
to the mobile porosity of the medium. The immobile zone is occupied by the vortex, which
resides within the dead-end pore. For a Reynolds number of 1, the pore-space partitioning
coefficient (ξ) of the dead-end pore geometry is approximately 0.84. Given this value, we
can calculate the hydrodynamic porosity of the medium using Equation (10):

θmobile = ξθ

As a result, the medium has a hydrodynamic porosity of approximately 0.34. If we had
used the boundary-driven flow condition to determine θmobile(R) (provided in Figures 2 and 3),
we would have under-approximated the value at 0.32 by roughly 5%; similarly, we would
have over-approximated the immobile porosity by roughly 20%. For the most exaggerated
channel–cavity depth ratio we test (1:4), use of the boundary-driven model would have
resulted in a 42% error in θmobile. This is due to the deep impingement of the through-
flow into the dead-end pore for this configuration. We summarize these calculations in
Table 6 below:
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Table 6. Error in the mobile–immobile zone model for a periodic medium with a total porosity of 0.4
and cavity geometry pictured in the top left quadrant of Figure 4.

Pore-Space
Partitioning
Coefficient,
ξ = θmobile/θ

Mobile Zone
Porosity,
θmobile

Immobile Zone
Porosity,
θimmobile

Hydrodynamic porosity model 0.84 0.336 0.064

Mobile–immobile zone model 0.8 0.32 0.08

Mobile–immobile zone model error (%) 5% 20%

Comparing the shear-driven and boundary-driven models, we see that the error in the
latter (in terms of the pore-space partitioning coefficient) is largest for flows approaching
the creeping flow regime and does not become less than 1 until a Reynolds number of
roughly 49 for the channel–cavity depth ratio of 1:1. For the exaggerated flow geometries
(i.e., 3:4, 1:2, and 1:4 depth ratios), the Reynolds number must exceed 51, 48, and 45,
respectively. Referring to Figure 3, we see a 17% error associated with the use of the
boundary-driven model.

We note that the exponential relation in (12) along with its excellent fit quality is not
surprising, as its analogs show up in several areas of mathematical physics. Exponential
forms play an important role in the solution of differential equations and are common
in groundwater flow modeling—see the low-velocity non-Darcy flow model in shale
and tight reservoirs (e.g., Wang and Sheng [90]) and the various renditions of the well
function (e.g., Theis [91], Hantush [92]); also, see their applications in the percolation theory
(e.g., Hunt et al. [93]); Gardner’s equation (Gardner [94]) relating hydraulic conductivity
and matric potential in flows through unsaturated porous media (vadose zone); and even
the relationship between soil water content and electrical resistivity (Pozdnyakov et al. [95]).
Furthermore, in nature, an exponential decline in hydraulic conductivity with depth is
considered a hallmark of catchment hydrology (Ameli et al. [96]).

As already mentioned in Section 3.2.2 Flow Geometries, in this paper (Part 1) we
consider rectangular pores of various aspect ratios, i.e., highly idealized dead-end pore
spaces. Our main finding is that hydrodynamic porosity can be described by an exponential
function of pore-scale flow velocity (or interstitial Reynolds number). In the companion
paper (Part 2), we build upon this finding and demonstrate its applicability to media with
other geometries: rectangular and non-rectangular cavities (i.e., circular, and triangular).
Furthermore, we show that not only does the exponential relationship hold for media
with a variety of cavity geometries, but it does so almost perfectly with a coefficient of
determination (R2) of approximately 1 for each new set of simulation data. In this way, the
research results have, hopefully, practical value in applications where unwashed porous
media play an important role.

The fit parameters to our exponential relationship are likely to be affected slightly
by numerical errors in the least-square fitting algorithm, which can be minimized by
appropriately choosing tolerance parameters. However, the main source of errors in their
estimation is likely to be anomalous (non-Fickian) tracer transport in column experiments.
How often such transport will be encountered remains to be seen—we will investigate it in
column lab experiments in a follow-up paper.

Naturally, the next steps for this work are an application to groundwater flow models
at the macro-scale and laboratory column experiments. The ability to quantify the exponen-
tial fit parameters for sites needing remediation, as previously discussed, is also necessary
to demonstrate the ease with which this relationship can be tailored to any given media.
We are currently pursuing these research avenues.

As mentioned earlier, we have verified our numerical results by conducting conver-
gence analysis, i.e., refining the numerical grids used by the Mathematica superfunction
NDSolve—see the Supplemental Materials. Our numerical errors related to finite-element
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discretization do not exceed 2% and are likely significantly smaller. Given that our analysis
exactly aligns with the analytical solution for channel flow (i.e., the Hagen–Poiseuille flow
profile), we are confident that our numerical results are excellent approximations of the
true (but unknown) solutions of the Navier–Stokes and continuity equations involved in
our boundary-value problems.

We note that several articles and a dissertation on flow over cavities present results
analogous to ours. Although none of them introduce the concept of hydrodynamic poros-
ity, their results confirm ours qualitatively or even quantitatively (for specific Reynolds
numbers and specific cavity geometries). These papers are mostly limited to a short
range of Reynolds numbers. They include studies of flow in tubes with circumferen-
tial cavities and in 2D channels with cavities. The numerical studies confirming our
results include Takematsu [97]; Friedman [98]; Stevenson [99]; O’Brien, [64]; Higdon [31];
Driesen et al. [100]; and Young et al. [101]. The experimental studies confirming our re-
sults include Taneda [102]; Shankar and Deshpande [68]; and particularly the dissertation
Laskowska [103]. There are also mixed studies (numerical and experimental) confirming
our results: Shen and Floryan [32]; and Pan and Acrivos [104].

7. Study Limitations

The location of the separatrix, the streamline separating the flow in the flow-through
channel from the vortex in the dead-end cavity, is determined by an approximate, yet rela-
tively accurate, hybrid graphical-computational method illustrated in Figure 5. From the
stream plot, the separatrix location, and ultimately the hydrodynamic porosity, θmobile(R),
is determined by means of an interpolation function between 5 (or more) points placed
(graphically) on the smooth separatrix. The area below the separatrix (and above) is then
calculated by analytic integration. The repeatability of this measurement process is rea-
sonably good—for the idealized pore space pictured in Figure 2 (i.e., a channel–cavity
depth ratio of 1:1), and a Reynolds number of 0.01, the maximum penetration depth of the
separatrix was found to vary by 0.005 across five measurements. Relative to an average
penetration depth of 0.25, this variation accounts for less than 2% of the magnitude of
the mean.

Our algorithm for determining the separatrix location is robust and is presented in
our highly legible code available in the Supplemental Materials. Its errors are smaller than
the numerical errors of solving the PDEs. An alternative method could be based on image
processing, but with our robust algorithm, there is no need for it.

Additionally, we consider only the immobile zones generated by dead-end pores and
cavity-like structures that generate flow separation. We do not consider the immobile zones
that result from molecular forces between the media and the flowing solution, nor do we
consider surface tension effects. However, we assume that these immobile zones, just as
the ones studied in this work, would behave similarly so long as the Reynolds number of
the interstitial flow is appropriate, i.e., up to about 100.

Finally, this work focuses on groundwater flow, i.e., flow through fully saturated
porous media with dead-end pores (unwashed sand and gravel, fractured rock, etc.). Con-
sequently, our results do not apply to multiphase flow such as water and air in unsaturated
(vadose) zone. Also, our results are derived for Newtonian, incompressible fluids and thus
do not apply to non-Newtonian, rheological flows.

8. Conclusions

In this work, we explore a physical phenomenon that has been largely neglected
in the literature. Generally, the porosity of a medium that is conducive to through-flow,
what we define as hydrodynamic porosity, θmobile, is still thought to be a static parameter.
Researchers define this quantity using the cumulative volume of the flow through channels
(i.e., mobile zones); cavities and other effectively immobile zones are not considered to
significantly contribute to the through-flow volume. We find this approximation to be
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a notable oversimplification in the creeping and inertial flow regimes, resulting in the
misrepresentation of porous media flows and associated transport processes.

Although a few researchers have previously acknowledged the dependence of what
they analogously define as effective porosity on the flow velocity in rock formations, these
researchers did not quantify this relationship. In this work, we demonstrate and quantify,
explicitly, the dependence of hydrodynamic porosity, θmobile, on pore-scale flow velocity,
for the first time. We begin with a direct replication of the results provided by Kahler
and Kabala [47], wherein the boundaries between the mobile and immobile zones of
porous media are shown to be hydrodynamic in nature. We then study the movement
of this boundary over a range of interstitial, or channel-based, Reynolds numbers in
the laminar flow regime in porous media. The movement of this boundary defines the
pore-space partitioning coefficient, ξ = θmobile(R)/θ (i.e., the fraction of the pore space
conducive to through-flow), and therefore, the hydrodynamic porosity, θmobile(R), of the
medium. Given the direct proportionality between these quantities, we find both to have
an exponential dependence on Reynolds number or pore-scale flow velocity, which we
provide in Equations (11) and (12). Finally, we show that this dependence can be easily
incorporated into porous media flow modeling using only a few Picard iterations, even
with an initial guess that is over 10 orders of magnitude off.

The flow-dependent nature of hydrodynamic porosity, θmobile(R), plays an unmistak-
able role in the transport of contaminants in porous media. Moving forward, our research
opens avenues for further exploration into the impact of dead-end pores on fluid flow dy-
namics and macroscopic transport phenomena. By integrating insights from recent studies
and leveraging advances in modeling techniques, we can advance our understanding of
porous media behavior and contribute to the development of more accurate predictive
models for practical applications in groundwater remediation, surface water treatment,
and various industrial processes.

The exponential relationship and our results reported here can find broad applications:
from groundwater flow to flow-through filters (for example, our work: Young et al. [101])
and flows for cleaning grooved surfaces, such as in the production of computer mother-
boards (e.g., Fang et al. [33,50]; Fang [75]).

Finally, our segmenting of the material into two papers has a guiding logic: Part 1 (this
paper) presents the hydrodynamic porosity as an exponential function of pore-scale flow ve-
locity (or interstitial Reynolds number) for a pore with a square cavity—a highly idealized
case of the dead-ended pore spaces in a porous medium. In contrast, Part 2 (companion pa-
per: Young and Kabala [105]) demonstrates the applicability of the exponential relationship
to media with other cavity geometries: rectangular and non-rectangular (e.g., circular and
triangular). It appears this relationship is widely applicable to porous/fractured media.
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