Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland
Abstract
:1. Introduction
- The IBI (Index of Biotic Integrity) [7]—based on the abundance of different species and groups of fish classified as sensitive to ecosystem conditions;
- The RFAI (Reservoir Fish Assemblage Index) [10]—an extension of the IBI indicator for reservoirs;
- The FBI (fish-based index) [11]—developed for the European Water Framework Directive and based mainly on trophic fish groups for reservoirs;
- The FAII (fish assemblage integrity index) [14]—based on the fish species and classes expected to be present in fish habitat segments for rivers.
- Undisturbed quality structure of fish;
- Undisturbed quantitative structure of fish;
- Presence of all the fish species sensitive to trophic changes;
- The multidimensional classification of formed fish communities using principal component analysis of biomass and abundance data (for example, using principal component analysis (PCA) or multidimensional scaling (MDS));
- The classification of variability in the fish occurrence in different age classes;
- Correlation analysis for CPUE (catch per unit effort) was performed for the total biomass, the total abundance, and the same variants for different species separately between the selected pressure indicators [21].
- Determination of the typical ichthyofauna composition of dam reservoirs in Poland and a detailed comparison of the studied reservoirs;
- Determination of the state of taxonomic biodiversity of the ichthyofauna of the studied dam reservoirs;
- The testing of various fishing gear for use in dam reservoirs under local conditions;
- The selection of fish species and communities correlated with the pressure indicator;
- Preliminary scaling of the developed indicator to the state of ecological potential.
2. Materials and Methods
2.1. Area of Research
2.2. Fishing Effort and Technique
2.3. Physical and Chemical Parameters
2.4. Characterizing and Comparing Fish Communities
- 12—~12 h of fishing gear exposure;
- S—one gill net.
2.5. Determination of the Correlation between the Composition of Ichthyofauna and the Selected Pressure TSI Index
- Species-abundance~TSI-index (all-net type (1), type (2), type (3));
- Species-biomass~TSI-index (all-net type (1), type (2), type (3));
- Species-abundance~TSI-index (bottom nets—type (1));
- Species-biomass~TSI-index (bottom nets—type (1));
- Species-abundance~depth range~TSI-index (bottom nets—type (1));
- Species-biomass~depth range~TSI-index (bottom nets—type (1));
- Family (Cyprinidae and Percidae)—abundance~TSI index (all-net type (1), type (2), type (3));
- Family (Cyprinidae and Percidae)—biomass~TSI index (all-net type (1), type (2), type (3));
- Family (Cyprinidae and Percidae)—abundance~TSI index (bottom nets—type (1));
- Family (Cyprinidae and Percidae)—abundance~depth range~TSI index (bottom nets—type (1));
- Family (Cyprinidae and Percidae)—biomass~depth range~TSI index (bottom nets—type (1));
3. Results
3.1. Characterization of the Physical and Chemical Parameters of the Studied Reservoirs
3.2. Characteristics of Ichthyofaunal Communities in the Studied Reservoirs
3.3. Fish Index Development
3.3.1. Factor Correlation with the Pressure Indicator
3.3.2. Stages to Development of Fish-Based Indicator Components
3.3.3. Preliminary Proposal for Indicator Scaling
- Good, 0.00–0.40, predominance of the Percidae fish family;
- Moderate, 0.41–1.00, for the level of equalization of the ratio of fish families;
- Poor, 1.01–2.00, for a level of predominance of fish from the Cyprinidae family;
- Bad, ≥2.01, indicating a double predominance of fish from the Cyprinidae family.
4. Discussion
4.1. Pressure Indicator
4.2. Fishing Tools and Techniques
4.3. Data Type and Scope
4.4. Fish-Based Index Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chybowski, Ł.; Białokoz, W.; Wołos, A.; Draszkiewicz Mioduszewska, H.; Szklarski, J. Przewodnik Metodyczny do Monitoringu Ichtiofauny w Jeziorach; Główny Inspektorat Ochrony Środowiska: Warszawa, Poland, 2016; p. 52. ISBN 978-83-61227-81-6. [Google Scholar]
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/ec). In Guidance Document No. 7—Monitoring under the Water Framework Directive Produced by Working Group 2.7 (EU 2003a); Office for Official Publications of the European Communities: Luxembourg, 2003; 160p, ISBN 92-894-5127-0.s. [Google Scholar]
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/ec). In Guidance Document No 4 Identification and Designation of Heavily Modified and Artificial Water Bodies Produced by Working Group 2.2—HMWBs (EU 2003b); Office for Official Publications of the European Communities: Luxembourg, 2003; 118p. [Google Scholar]
- Persoone, G.; De Pauw, N. Systems of Biological Indicators for Water Quality Assessment. Biological Aspects of Freshwater Pollution. In Proceedings of the Course Held at the Joint Research Centre of the Commission of the European Communities, Ispra, Italy, 5–9 June 1978; pp. 39–75. [Google Scholar]
- Hartmann, J. Fischwachstum bei Oligo-, Mesound und Eutrophie des Bodensees. Schweiz. Z. Hydrol. 1978, 40, 32–38. [Google Scholar]
- Nümann, W. Versuch einer Begründung für den Wandel in der qualitativen und quantitativen Zusammensetzung des Fischbestandes im Bodensee während der letzen 60 Jahre und eine Bewertung der Besatzmaßnahmen. Schweiz. Z. Hydrol. 1973, 35, 206–238. [Google Scholar]
- Karr, J.R. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Pieckiel, P.; Bubak, I. Zarys ewolucji wskaźników do oceny stanu ekologicznego środowiska morskiego Morza Bałtyckiego na podstawie ichtiofauny. Chrońmy Przyrodę. Ojczystą. 2013, 69, 494–498. [Google Scholar]
- Souza, G.B.G.; Vianna, M. Fish-based indices for assessing ecological quality and biotic integrity in transitional waters: A systematic review. Ecol. Indic. 2020, 109, 105665. [Google Scholar] [CrossRef]
- Jennings, M.J.; Fore, L.S.; Karr, J.R. Biological monitoring of fish assemblages in Tennessee Valley reservoirs. Regul. Rivers Res. Manag. 1995, 11, 263–274. [Google Scholar] [CrossRef]
- Oberdorff, T.; Pont, D.; Hugueny, B.; Porcher, J.P. Development and validation of a fish-based index for the assessment of ’river health’ in France. Freshw. Biol. 2002, 47, 1720–1734. [Google Scholar] [CrossRef]
- Pont, D.; Hugueny, B.; Beier, U.; Goffaux, D.; Melcher, A.; Noble, R.; Rogers, C.; Roset, N.; Schmutz, S. Assessing river biotic condition at the continental scale: A European approach using functional metrics and fish assemblages. J. Appl. Ecol. 2006, 43, 70–80. [Google Scholar] [CrossRef]
- Pont, D.; Hugueny, B.; Rogers, C. Development of a fish-based index for the assessment of river health in Europe: The European Fish Index. Fish. Manag. Ecol. 2007, 14, 427–439. [Google Scholar] [CrossRef]
- Kleynhans, C.J. The development of a fish index to assess the biological integrity of South African rivers. Water SA 1999, 25, 265–278. [Google Scholar]
- Blabolil, P.; Říha, M.; Ricard, D.; Peterka, J.; Prchalová, M.; Vasek, M.; Čech, M.; Frouzová, J.; Jůza, T.; Muska, M.; et al. A simple fish-based approach to assess the ecological quality of freshwater reservoirs in Central Europe. Knowl. Manag. Aquat. Ecosyst. 2017, 418, 53. [Google Scholar] [CrossRef]
- Kalinowska, K.; Ulikowski, D.; Traczuk, P.; Kozłowski, M.; Kapusta, A. Fish Species Richness in Polish Lakes. Diversity 2023, 15, 164. [Google Scholar] [CrossRef]
- Kubečka, J.; Hohausová, E.; Matěna, J.; Peterka, J.; Amarasinghe, U.S.; Bonar, S.A.; Hateley, J.; Hickley, P.; Suuronen, P.; Tereschenko, V.; et al. The true picture of a lake or reservoir fish stock: A review of needs and progress. Fish Res. 2009, 96, 1–5. [Google Scholar] [CrossRef]
- Argillier, C.; Caussé, S.; Gevrey, M.; Pédron, S.; Bortoli, J.; De Brucet, S.; Emmrich, M.; Jeppesen, E.; Lauridsen, T.; Mehner, T.; et al. Development of a Fish-Based Index to Assess the Eutrophication Status of European Lakes; Springer: Berlin/Heidelberg, Germany, 2013; Volume 704, pp. 193–211. [Google Scholar]
- Launois, L.; Veslot, J.; Irz, P.; Argillier, C. Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: Toward the development of a fish-based index (FBI) for French lakes. Ecol. Freshw. Fish 2011, 20, 120–132. [Google Scholar] [CrossRef]
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/ec). In Guidance Document No. 23 Guidance Document on Eutrophication Assessment in the Context of European Water Policies (EU 2009); Office for Official Publications of the European Communities: Luxembourg, 2009; 137p, ISBN 978-92-79-12987-2.s. [Google Scholar]
- Nagelkerke, L.A.J.; van Densen, W. The utility of multivariate techniques for the analysis of Fish community structures and the design of Monitoring Programmes. In Proceedings MTM-III—Multivariate Techniques and Design of Monitoring Programmes, Nunspeet, The Netherlands, 25–28 September 2000; RIZA: Lelystad, The Netherlands, 2001; pp. 323–332. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- CEN-EN 14757; Water Quality-Sampling of Fish with Multi-Mesh Gillnets. European Committee for Standardization: Brussels, Belgium, 2015; Volume 34.
- Šmejkal, M.; Ricard, D.; Prchalová, M.; Říha, M.; Muška, M.; Blabolil, P.; Čech, M.; Vašek, M.; Jůza, T.; Monteoliva Herreras, A.; et al. Biomass and Abundance Biases in European Standard Gillnet Sampling. PLoS ONE 2015, 10, e0122437. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, A.; Anushka; Mishra, A. Effects of dissolved oxygen concentration on freshwater fish: A review. Int. J. Fish. Aquat. Stud. 2022, 10, 113–127. [Google Scholar] [CrossRef]
- Justus, B.G.; Mize, S.V.; Wallace, J.; Kroes, D. Invertebrate and fish assemblage relations to dissolved oxygen minima in lowland streams of southwestern Louisiana. River Res. Appl. 2014, 30, 11–28. [Google Scholar] [CrossRef]
- Blabolil, P.; Ricard, D.; Peterka, J.; Říha, M.; Jůza, T.; Vašek, M.; Prchalová, M.; Čech, M.; Muška, M.; Sed’a, J.; et al. Predicting asp and pikeperch recruitment in a riverine reservoir. Fish. Res. 2016, 173, 45–52. [Google Scholar] [CrossRef]
- Prchalová, M.; Kubečka, J.; Říha, M.; Mrkvička, T.; Vasek, M.; Jůza, T.; Kratochvíl, M.; Peterka, J.; Drastík, V.; Křížek, J. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish Res. 2009, 96, 51–57. [Google Scholar] [CrossRef]
- Minchin, P.R. An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 1987, 69, 89–107. [Google Scholar] [CrossRef]
- Beals, E.W. Bray-Curtis ordination: An effective strategy for analysis of multivariate ecological data. In Advances in Ecological Research; MacFadyen, A., Ford, E.D., Eds.; Academic Press: London, UK, 1984; Volume 14, pp. 1–55. [Google Scholar]
- Clarke, K.R. Nonparametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, T.W.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–473. [Google Scholar] [CrossRef]
- Tóthmérész, B. Comparison of different methods for diversity ordering. J. Veg. Sci. 1995, 6, 283–290. [Google Scholar] [CrossRef]
- Cohen, J. Set correlation as a general multivariate data-analytic method. Multivar. Behav. Res. 1982, 17, 301–341. [Google Scholar] [CrossRef] [PubMed]
- Pieckiel, P. Vallorization and Assessment of the Ichtyocenosis of the Gulf of Puck in the Context of the Ecosystem Approach, from 2011 to 2017. Ph.D. Thesis, West Pomeranian University of Technology, Szczecin, Poland, 2020; 354p. [Google Scholar]
- Argillier, C.; Barral, M.; Irz, P. Growth and diet of the pikeperch Sander lucioperca (L.) in two French reservoirs. Arch. Pol. Fish. 2012, 20, 191–200. [Google Scholar] [CrossRef]
- Korpinen, S.; Meski, L.; Andersen, J.H.; Laamanen, M. Human pressures and their potential impact on the Baltic Sea ecosystem. Ecol. Indic. 2012, 15, 105–114. [Google Scholar] [CrossRef]
- Smoliński, S.; Całkiewicz, J. A fish-based index for assessing the ecological status of Polish transitional and coastal waters. Mar. Pollut. Bull. 2015, 101, 497–506. [Google Scholar] [CrossRef]
- Blabolil, P.; Boukal, D.S.; Ricard, D.; Kubečka, J.; Říha, M.; Vašek, M.; Prchalová, M.; Čech, M.; Frouzová, J.; Jůza, T.; et al. Optimal gillnet sampling design for the estimation of fish community indicators in heterogeneous freshwater ecosystems. Ecol. Indic. 2017, 77, 368–376. [Google Scholar] [CrossRef]
- Irz, P.; Odion, M.; Argillier, C.; Pont, D. Comparison between the fish communities of lakes, reservoirs and rivers: Can natural systems help define the ecological potential of reservoirs? Aquat. Sci. 2006, 68, 109–116. [Google Scholar] [CrossRef]
- Specziár, A.; Erős, T.; György, Á.I.; Tátrai, I.; Bíró, P. A comparison between the benthic Nordic gillnet and whole water column gillnet for characterizing fish assemblages in the shallow Lake Balaton. Ann. Limnol.-Int. J. Limnol. 2009, 45, 171–180. [Google Scholar] [CrossRef]
- Golpour, A.; Šmejkal, M.; Čech, M.; dos Santos, R.A.; Souza, A.T.; Jůza, T.; Martínez, C.; Bartoň, D.; Vašek, M.; Draštík, V.; et al. Similarities and Differences in Fish Community Composition Accessed by Electrofishing, Gill Netting, Seining, Trawling, and Water eDNA Metabarcoding in Temperate Reservoirs. Front. Ecol. Evol. 2022, 10, 913279. [Google Scholar] [CrossRef]
- Sutela, T.; Rask, M.; Vehanen, T.; Westermark, A. Comparison of electrofishing and NORDIC gillnets for sampling littoral fish in boreal lakes. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2008, 13, 215–220. [Google Scholar] [CrossRef]
- Blabolil, P.; Čech, M.; Draštík, V.; Holubová, M.; Kočvara, L.; Kubečka, J.; Muška, M.; Prchalová, M.; Říha, M.; Sajdlová, Z.; et al. Less is more—Basic quantitative indices for fish can be achieved with reduced gillnet sampling. Fish. Res. 2021, 240, 105983. [Google Scholar] [CrossRef]
- Hartmann, J. Fischereiliche, Veränderungen in kulturbedingt eutrophierenden Seen. Schweiz. Z. Hydrol. 1977, 39, 243–254. [Google Scholar] [CrossRef]
- Bousseba, M.; Ferraj, L.; Ouahb, S.; Ouizgane, A.; El Moujtahid, A.; Droussi, M.; Hasnaoui, M. Food preferences of Pike Perch, Sander lucioperca (Linnaeus, 1758) in Morocco. E3S Web Conf. 2020, 150, 02011. [Google Scholar] [CrossRef]
- Tesfaye, M.; Souza, A.T.; Soukalová, K.; Šmejkal, M.; Hejzlar, J.; Prchalová, M.; Říha, M.; Muška, M.; Vašek, M.; Frouzová, J.; et al. Somatic growth of pikeperch (Stizostedion lucioperca) in relation to variation in temperature and eutrophication in a Central Europe Lake. Fish. Res. 2023, 267, 106824. [Google Scholar] [CrossRef]
- Keskinen, T.; Marjomäki, T.J. Growth of pikeperch in relation to lake characteristics: Total phosphorus, water color, lake area and depth. J. Fish Biol. 2003, 63, 1274–1282. [Google Scholar] [CrossRef]
- Lappalainen, J.; Dorner, H.; Wysujack, K. Reproduction biology of pikeperch (Sander lucioperca (L.))—A review. Ecol. Freshw. Fish 2003, 12, 95–106. [Google Scholar] [CrossRef]
- Biró, P. Dynamics of the Pikeperch, Stizostedion lucioperca (L.), in Lake Balaton. Int. Rev. Der Gesamten Hydrobiol. Und Hydrogr. 1985, 70, 471–490. [Google Scholar] [CrossRef]
- Huuskonen, H.; Piironen, J.; Syväranta, J.; Eronen, R.; Biasi, C.; Kiiskinen, P.; Kortet, R.; Vainikka, A. Diet and movements of pikeperch (Sander lucioperca) in a large oligotrophic lake with an exceptionally high pikeperch yield. Ecol. Freshw. Fish 2019, 28, 533–543. [Google Scholar] [CrossRef]
- Andersson, M.; Degerman, E.; Persson, J.; Ragnarsson-Stabo, H. Movements, recapture rate and length increment of tagged pikeperch (Sander lucioperca)—A basis for management in large lakes. Fish. Manag. Ecol. 2015, 22, 450–457. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Cismaş, I.-C.; Bănăduc, D. Management Elements for Two Alburninae Species, Alburnus alburnus (Linnaeus, 1758) and Alburnoides bipunctatus (Bloch, 1782) Based on a Decision-Support System Study Case. Transylv. Rev. Syst. Ecol. Res. 2019, 21, 81–92. [Google Scholar] [CrossRef]
- Radenković, M.D.; Milošković, A.M.; Kojadinović, N.M.; Đuretanović, S.R.; Veličković, T.Z.; Jakovljević, M.M.; Simić, V.M. Diet composition and feeding habits of common bleak (Alburnus alburnus L.) in the Gruža and Gazivode reservoirs. In Proceedings of the 2nd International Conference on Chemo and BioInformatics, Kragujevac, Serbia, 28–29 September 2023; pp. 292–295. [Google Scholar] [CrossRef]
n. | Dam Reservoir Name | Construction Year | River | River km | Distance from Source [km] | River Basin |
---|---|---|---|---|---|---|
1. | Pierzchały | 1936 | Pasłęka | 25.5 | 150 | Bałtyk |
2. | Czorsztyn | 1997 | Dunajec | 173.3 | 50 | Wisła |
3. | Dobczyce | 1986 | Raba | 60.1 | 60 | Wisła |
4. | Żur | 1929 | Wda | 34.3 | 160 | Wisła |
5. | Jezioro Kowalskie | 1985 | Główna | 15.4 | 40 | Odra |
6. | Koszyce II | 1936 | Ruda | 28.7 | 10 | Odra |
7. | Sulejów | 1974 | Pilica | 137.1 | 182 | Wisła |
8. | Nielisz | 2008 | Wieprz | 236.2 | 67 | Wisła |
9. | Pilchowice | 1912 | Bóbr | 196.7 | 75 | Odra |
10. | Niedów | 1962 | Witka | 2.8 | 49 | Odra |
11. | Dobromierz | 1986 | Strzegomka | 58.2 | 21 | Odra |
N. | Dam Reservoir Name | Water Table Height [m above Sea Level] | Reservoir Area [ha] | Catchment Area [km²] | Capacity [Thousands m³] | Maximum Depth [m] | TSI Index |
---|---|---|---|---|---|---|---|
1. | Pierzchały | 20 | 194 | 2100 | 7500 | 10.0 | 65.76 |
2. | Czorsztyn | 532.3 | 1159 | 1147 | 231,900 | 49.1 | 50.08 |
3. | Dobczyce | 268.5 | 1090 | 768 | 137,720 | 30.0 | 46.79 |
4. | Żur | 67.9 | 222 | 1825.2 | 14,900 | 13.9 | 77.56 |
5. | Jezioro Kowalskie | 87 | 192 | 200 | 5967 | 5.5 | 69.99 |
6. | Koszyce II | 60.6 | 46 | n.a. | 650 | 3.3 | 73.20 |
7. | Sulejów | 166 | 1980 | 4900 | 84,220 | 10.8 | 65.87 |
8. | Nielisz | 197.5 | 992 | 1236.2 | 28,471 | 5.5 | 66.98 |
9. | Pilchowice | 288.7 | 240 | 1209 | 50,000 | 30.8 | 63.84 |
10. | Niedów | 210 | 145 | 303 | 5178 | 11.0 | 61.03 |
11. | Dobromierz | 298.5 | 113 | 80 | 11,350 | 19.2 | 61.96 |
Catchment Area [km²] | Depth Range [m] | Maximum Depth [m] | |||||
---|---|---|---|---|---|---|---|
<6 | 6–12 | 12–19.9 | 20–34.9 | 35–49.5 | >50 | ||
Number of Multipanel Bottom Gillnet Sets/NORDIC (EN 14757) | |||||||
<250 | <3 | 4 | 4 | 4 | 3 | 3 | 3 |
3–5.9 | 4 | 4 | 4 | 3 | 3 | 3 | |
6–11.9 | 3 | 3 | 4 | 4 | 3 | ||
12–19.9 | 3 | 3 | 2 | 3 | |||
20–34.9 | 3 | 2 | 2 | ||||
35–49.5 | 2 | 2 | |||||
>50 | 2 | ||||||
total | 8 | 11 | 14 | 16 | 16 | 18 | |
Studied reservoir | Koszyce Kowalskie | Pierzchały Niedów | Żur Dobromierz | - | Pilchowice | - | |
251–1000 | <3 | 6 | 6 | 5 | 5 | 5 | 5 |
3–5.9 | 6 | 6 | 5 | 5 | 5 | 5 | |
6–11.9 | 4 | 4 | 4 | 5 | 5 | ||
12–19.9 | 4 | 4 | 4 | 4 | |||
20–34.9 | 3 | 3 | 3 | ||||
35–49.5 | 2 | 2 | |||||
>50 | 3 | ||||||
total | 12 | 16 | 18 | 21 | 24 | 27 | |
Studied reservoir | Nielisz | - | - | - | - | - | |
>1000 | <3 | 6 | 6 | 6 | 5 | 5 | 5 |
3–5.9 | 6 | 6 | 6 | 5 | 5 | 5 | |
6–11.9 | 6 | 5 | 6 | 6 | 5 | ||
12–19.9 | 5 | 6 | 4 | 5 | |||
20–34.9 | 6 | 5 | 4 | ||||
35–49.5 | 3 | 4 | |||||
>50 | 2 | ||||||
total | 12 | 18 | 22 | 28 | 28 | 30 | |
Studied reservoir | - | Sulejów | - | Dobczyce | Czorsztyn | - | |
Number of pelagic multipanel gillnets sets (EN 14757) | |||||||
All reservoirs | <6 | 0 | 1 | 1 | 1 | 1 | 1 |
6–11.9 | 1 | 1 | 1 | 1 | |||
12–19.9 | 1 | 1 | 1 | ||||
20–34.9 | 1 | 1 | |||||
35–49.5 | 1 | ||||||
>50 | 0 | ||||||
total | 0 | 1 | 2 | 3 | 4 | 5 | |
Studied reservoir | Koszyce Kowalskie Nielisz | Pierzchały Niedów Sulejów | Żur Dobromierz | Dobczyce | Czorsztyn Pilchowice | - |
Number | Reservoir | Secchi Disc Depth [m] |
---|---|---|
1. | Dobczyce | 2.7 |
2. | Czorsztyn | 2.7 |
3. | Niedów | 0.71 |
4. | Dobromierz | 0.84 |
5. | Pilchowice | 0.7 |
6. | Pierzchały | 0.9 |
7. | Sulejów | 0.9 |
8. | Nielisz | 0.68 |
9. | Kowalskie | 0.5 |
10. | Koszyce II | 0.4 |
11. | Żur | 0.4 |
N. | Factor/Species Name | Data Type A—Abundance; B—Biomass | Depth Range [m], Gear Type: (1), (2), (3) | Pearson Correlation [R] | p Value [p] |
---|---|---|---|---|---|
1 | Cyprinus carpio | B | 0–3, (3) | 0.82 | <0.1 |
2 | Percidae | B | 3–6, (1) | −0.75 | <0.001 |
3 | Alburnus alburnus | A | 3–6, (1) | −0.68 | <0.001 |
4 | Percidae | A | 0–3, (1) | −0.68 | <0.001 |
5 | Abramis brama | B | 0–3 (3) | 0.66 | <0.1 |
6 | Percidae | B | 0–3, (1) | −0.65 | <0.001 |
7 | Blicca bjoerkna | A | 6–12, (1) | 0.64 | <0.01 |
8 | Sander lucioperca | A | 3–6, (1) | −0.63 | <0.001 |
9 | Rutilus rutilus | A | 0–6 (2) | 0.63 | <0.1 |
10 | Percidae | A | 3–6, (1) | −0.62 | <0.001 |
11 | Perca fluviatilis | A | 3–6, (1) | −0.57 | <0.001 |
12 | Percidae | A | 12–20, (1) | −0.56 | <0.05 |
13 | Percidae | A | all depths: (1) | −0.52 | <0.001 |
14 | Perca fluviatilis | A | 0–3, (1) | −0.51 | <0.001 |
15 | Percidae | A | 6–12, (1) | −0.48 | <0.001 |
16 | Abramis brama | B | all depths: (3) | 0.47 | <0.001 |
17 | Percidae | B | all depths: (1) | −0.38 | <0.001 |
18 | Sander lucioperca | A | all depths: (1), (2), (3) | −0.38 | <0.001 |
19 | Gymnocephalus cernua | A | 6–12, (1) | −0.35 | <0.1 |
20 | Perca fluviatilis | B | all depths: (1) | −0.34 | <0.001 |
21 | Perca fluviatilis | A | all depths: (1), (2), (3) | −0.33 | <0.001 |
22 | Gymnocephalus cernua | A | all depths: (1), (2), (3) | −0.32 | <0.001 |
23 | Rutilus rutilus | A | all depths: (1), (2), (3) | −0.31 | <0.05 |
24 | Perca fluviatilis | B | all depths: (1), (2), (3) | −0.3 | <0.001 |
25 | Sander lucioperca | B | all depths: (1) | −0.3 | <0.05 |
26 | Gymnocephalus cernua | A | 3–6, (1) | −0.28 | <0.1 |
27 | Cyprinidae | A | 0–3, (1) | 0.25 | <0.001 |
28 | Sander lucioperca | A | 0–3, (1) | −0.25 | <0.1 |
29 | Alburnus alburnus | B | all depths: (1) | −0.22 | <0.1 |
30 | Rutilus rutilus | B | all depths: (1) | −0.22 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieckiel, P.; Kozłowski, K.; Kuczyński, T. Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland. Water 2024, 16, 2169. https://doi.org/10.3390/w16152169
Pieckiel P, Kozłowski K, Kuczyński T. Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland. Water. 2024; 16(15):2169. https://doi.org/10.3390/w16152169
Chicago/Turabian StylePieckiel, Piotr, Krzysztof Kozłowski, and Tomasz Kuczyński. 2024. "Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland" Water 16, no. 15: 2169. https://doi.org/10.3390/w16152169
APA StylePieckiel, P., Kozłowski, K., & Kuczyński, T. (2024). Ecological Potential of Freshwater Dam Reservoirs Based on Fish Index, First Evaluation in Poland. Water, 16(15), 2169. https://doi.org/10.3390/w16152169