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Abstract: Water property parameters were analyzed over 9 months across six stations within the
Estero Salado. The parameters under evaluation included nitrite (NO2

−), nitrate (NO3
−), phosphate

(PO4
3−), ammonium (NH4

+), temperature, pH, biochemical oxygen demand (BOD), conductivity,
salinity, color, turbidity, suspended solids, hardness, and alkalinity. Additionally, the TRIX index
(which measures chlorophyll, oxygen saturation, nitrogen, and phosphorus) was considered. The
multivariate technique employed was partial triadic analysis (PTA), a specialized variant developed
from STATIS, enabling the examination of the common structure’s stability across months and the
positioning of stations and variables within a compromise space. This analysis elucidated a variability
of 69% and 96%, respectively. Stations could be characterized based on their associations with specific
variables, while the analysis also facilitated the identification of months impacting the common
structure of pollution indicators.

Keywords: water quality; physicochemical parameters; inorganic compounds; STATIS; multivariate

1. Introduction

An extensive arm of the sea, with a length of more than 50 km, approaches the city
from the south, showing a series of branches along its route, among which stand out the
Estero Cobina, the Estero del Muerto, the Estero Santa Ana, and the Estero Salado, located
in the vicinity of Guayaquil. These estuaries experience constant ebbs and flows of ocean
tides, creating a diverse ecosystem rich in fauna and flora, characterized especially by the
predominant presence of mangroves on their margins [1].

Freshwater ecosystems, particularly streams and rivers, are among the most critically
endangered ecosystems globally. This endangerment is attributed to the combined effects
of natural variability, including geological, hydrological, and climatic factors, as well as
heightened anthropogenic activities such as rapid industrialization and agriculture, which
result in the extensive use of chemical fertilizers and pesticides [2]. During the decades of
the 50s and 60s, Guayaquil experienced uncontrolled urban growth, where mangrove areas
in the Estero Salado were occupied for the construction of homes and industries without
adequate territorial planning. This lack of regulation led to the direct discharge of domestic
and industrial waste into the Estero Salado, generating significant environmental impacts
and affecting the biodiversity of the area [3].
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The Estero Salado is the largest and one of the most productive in the city, concentrating
approximately 81% of Ecuador’s mangrove system [4]. However, in the city, 70% of the
registered industries are located in the area near the estuaries. Of these, the food product
industry represents 70% of the total number of industrial plants. An annual discharge
of 6,000,000 cubic meters of oil and grease is estimated, especially in Guayaquil, and the
metal–mechanical industry contributes a discharge of 16,000,000 cubic meters per year [5].
The Technical Standard for the Control of Liquid Discharges evidences the alterations
in water quality and the presence of eutrophication in the estuarine zone of the Estero
Salado. The Ecuadorian state has recognized the seriousness of this situation through
an inventory of polluting companies within the framework of the Ecological Guayaquil
Project [6]. Therefore, it is important to evaluate water quality and review eutrophication
processes in the estuarine zone.

To evaluate the water quality in the Estero Salado, measurements were carried out at
seven sampling stations strategically located along the estuary. At these stations, various
chemical concentrations and physicochemical parameters were determined, including
levels of nitrite (NO2

−), nitrate (NO3
−), phosphate (PO4

3−), and ammonium, as well as
measurements of temperature, pH, and biochemical oxygen demand (BOD). The indices of
electric conductivity, salinity, color, turbidity, suspended solids, hardness, and alkalinity
were also evaluated, thus providing a complete overview of the environmental quality of
the estuarine ecosystem in question. TRIX, which is based on measurements of chlorophyll,
oxygen saturation, nitrogen and phosphorus, was used as an indicator of trophic status
at a given time. This index is crucial to classify the trophic state of coastal water bodies
such as the Estero Salado, dividing them into categories ranging from oligotrophic to
hypereutrophic [7].

To properly analyze the data, three-way table analysis methods were employed, which
hold significant importance in multivariate statistical analysis. This type of table includes a
first entry that identifies the individuals who are the object of study, a second entry for the
variables that have been measured for those individuals, and a third entry for the various
situations (time, location, or conditions) in which measurements are made. Standard
multivariate statistical techniques, such as principal component analysis and hierarchical
cluster analysis, have been widely used as unbiased methods for extracting meaningful
information from groundwater quality data [8]. However, these classical multivariate
methods typically handle two-way matrices (individuals × variables or individuals ×
time), whereas datasets resulting from qualitative water monitoring programs often need
to be conceptualized as a data cube (individuals × variables × time).

Partial triadic analysis (PTA) has been extensively utilized in numerous studies across
a range of disciplines. In the ecological domain, PTA has proven invaluable for analyzing
complex interactions within ecosystems and understanding biodiversity patterns [9–12]. Its
application in education has facilitated the assessment of education policies [13]. Within the
sphere of water quality, PTA has been instrumental in identifying and evaluating the factors
affecting aquatic environments, thereby aiding in the development of effective management
and conservation plans [14,15]. Moreover, in the social domain, PTA has been applied to
analyze the impact of significant events such as crime [16], economics [17], and COVID-19,
providing a nuanced understanding of their effects on public health and society [18,19].
This versatile analytical method continues to be a powerful tool for researchers seeking to
uncover intricate relationships within diverse datasets.

There are three studies that have used PTA to analyze water quality. The first analyzed
the spatial and temporal patterns of water quality in a river in northeastern Spain [20], the
second examined pollution in agricultural landscapes of a river in northeastern Spain [21],
and the third determined the degree of water pollution in both anthropogenic and natural
settings in North Africa [22].

The primary objective was to identify the water quality using all the properties of
water for the calculation of the Trophic State Index (TRIX) for the six stations of the Estero
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Salado of Guayaquil over 9 months, using a three-way multivariate technique: partial
triadic analysis (PTA) of the STATIS family.

2. Materials and Methods
2.1. Experimental Design

Several coastal areas such as Guayas are characterized by an arid tropical climate,
with a wet season of high temperatures and abundant rainfall extending from December to
April or May, influenced by the presence of the warm El Niño current and the Intertropical
Convergence Zone. On the other hand, the dry season is marked by low temperatures and
scant precipitation, spanning from June to November or December. Specifically, Guayaquil
is situated at an average altitude of 20 m above sea level, with an average temperature
ranging between 26 ◦C and 27 ◦C and an annual relative humidity of 85% [23].

During 2022, seven water samples were randomly collected (water aliquots) at seven
stations (bridges) located in the city of Guayaquil, Guayas, Ecuador, as shown in Figure 1.
One sample was collected at each station during the first week of nine months from March
to December, excluding July. These stations were selected due to their location in areas
of high population density and significant anthropogenic activity within the city and its
surroundings [4]. The sample selection criteria adhered to the NTE INEN 2176 standard [24],
and were based on ease of access, safety, and uniformity in depth, avoiding dammed and
turbulent areas that were not representative.
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The samples were classified, refrigerated if necessary, and duly transferred to the
laboratory to guarantee their usefulness.

2.2. Analytical Procedure

The parameters or indicators analyzed in this study are presented in Table 1.
Throughout the study, a total of 63 samples were collected. Physicochemical parame-

ters such as turbidity, color, suspended solids, electrical conductivity, pH, and temperature
were analyzed in situ using a portable Hach multimeter (model HQ40D) and a turbidimeter
(model 2100Q). These characteristics of the water were measured using the established
Standard Methods for the Examination of Water and Wastewaters [25].
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Table 1. Information on variables considered.

Parameter Indicator Unit of Measurement

Inorganic nutrients

Nitrite (NO2
−) mg/L

Nitrate (NO3
−) mg/L

Ammonium (NH4
+) mg/L

Ortho-phosphate (PO4
3−) mg/L

Chemical indicators

Dissolved oxygen (DO) mg/L
pH U-pH

Biochemical oxygen demand (BOD) mg/L
Total alkalinity (TA) mg/L
Total hardness (TH) mg/L

Salinity (SI) mg/L

Physical indicators

Turbidity (TT) NTU
Color (C) mg/L

Suspended solids (SSs) mg/L
Temperature (T) ◦C

Electric conductivity (EC) NTU

Contamination indicator Trophic index (TRIX) -

For the determination of inorganic compounds such as nitrites and nitrates, a Hach
spectrophotometer, model DR3900, was used. Other chemical indicators, including dis-
solved oxygen (DO), biochemical oxygen demand (BOD), total alkalinity (TA), total hard-
ness (TH), and salinity (SI), were analyzed using test kits, an automatic titrator, and clean
sterile containers, respectively. To ensure the representativeness of the samples, they were
refrigerated, labeled, and transported in sealed ice containers to the microbiology labo-
ratory of Ecuahidrolizados SAS to prevent contamination and changes in composition.
The samples were stored between 2 ◦C and 5 ◦C in a refrigerator until analysis in the
following hours to preserve their chemical integrity, in accordance with the NTE INEN
2169:2013 standard [26].

2.3. Partial Triadic Analysis

The data used in analysis consists of K = 9 tables and constitutes the so-called data
cube: objects (n = 7 stations) variables (p = 16 indicators) time (9 months). In this article,
the primary objective is to analyze the differences and similarities between the different
scenarios through the configurations of individuals and relationships between different
groups of variables.

The analytical approach employed in this article to scrutinize the three-way data struc-
ture was partial triadic analysis (PTA), a method affiliated with the STATIS methodology.
The name STATIS is an acronym for the French expression ‘Structuration des tableaux à
trois indices de la statistique’, which can roughly be translated as “structuring three-way
statistical tables” [27]. STATIS employs as its principal analytical tool the singular value
decomposition (SVD) and the generalized singular value decomposition (GSVD) of a ma-
trix. This tool is applied in a second step, utilizing the set of optimal weights resulting
from the inter-structure analysis, with which it performs a generalized PCA of an object X
(intra-structure). Due to this similarity in analysis, STATIS is considered part of the PCA
family [28].

On the other side, partial triadic analysis (PTA), also called X-STATIS [29], is an ana-
lytical technique for three-dimensional data that works directly with the original matrices
without using operators. Unlike other methods in the STATIS family, it is more restrictive
in that it assumes that the same variables are measured in the same individuals. However,
it does not lose original information, allowing for more representations. This method is
useful for analyzing three-dimensional data, as it provides a clear visual representation of
the relationships between different datasets and allows an overall graphical comparison of
the tables by projecting them onto the principal component analysis (PCA) factor map [30].
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Therefore, when applied to the physicochemical parameters of water measured in different
locations and times, it helps identify patterns and trends, with the aim of understanding
how these characteristics may be interrelated or how they vary from one place to another
and over time.

PTA encompasses three primary objectives: firstly, to analyze the similarity structure
of the set of tables (inter-structure); secondly, to integrate these datasets into an optimal
weighted average (compromise), which is subsequently subjected to principal compo-
nent analysis (PCA) to unveil the shared structure among the observations; and lastly, to
project each of the original datasets onto the compromise to scrutinize commonalities and
discrepancies (intra-structure) [27]. Below, a brief description of each step is provided.

2.3.1. Step 1: Inter-Structure

Let X1, . . . XK . . . XK be the K tables of quantitative variables with the same n rows
(objects) and the same p columns (variables). Let (X1, Q, D) . . . (Xk, Q, D) . . . (Xk, Q, D) be
the associated statistical triplets [16], where:

• Qk(p×p): Weight symmetric matrix for the table variables Xk(n×p) and is a metric used
as an inner product in Rp allowing to measure distances between the n objects. When
the variables are centered and reduced, then matrix Qk is the identity matrix.

• Dn×n: Weight matrix corresponding to the stations, defined as a diagonal matrix
where each element represents the weight assigned to an individual. This configu-
ration allows Dn×n to be used as a metric in Rn space, providing a means to assess
interactions among the p variables. For this specific study, the weights for all stations
are standardized, assigning a uniform value of 1/n to each.

The inter-structure analysis is based on the concepts of vector correlation coefficients
between tables, also called RV-coefficients, proposed by Robert and Escoufier (1976) [31]:

RV Xk, Xl =
Covv (Xk, Xl)√

Vav
(

Xk
)√

Vav
(

Xl
)

where Covv (Xk, Xl) = tr
(

XT
k DXKQ

)
. The matrix with all the RV coefficients is defined as:

RV(k×k) = [RV(X k, Xl)]i,j

The calculation of the RV coefficient matrix among stations facilitates the evaluation
of station comparability and the depiction of their proximity [14]. The eigenvalues Θ and
the normed eigenvectors U of the RV matrix are used to computed the scores of tables
(G = UΘ 2), which are presented in Figure 2 through a correlation circle [16].

2.3.2. Step 2: Compromise

The compromise analysis is carried out on the basis of the results obtained in the
inter-structure step, where the compromise table can be defined as:

XC =
K

∑
k

αkXK

where:

• u1 is the first eigenvector of the matrix U.
• (α1, . . ., αk) are the components of the eigenvector, where each acts as a weight assigned

to the corresponding table Xk.
• ∑k

k=1 αk = 1. For k = 1, . . ., K; this condition specifies that the total sum of the weights
αk must be equal to 1.



Water 2024, 16, 2196 6 of 15

Water 2024, 16, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. Partial triadic analysis. 

2.3.2. Step 2: Compromise 

The compromise analysis is carried out on the basis of the results obtained in the 

inter-structure step, where the compromise table can be defined as: 

𝑋𝐶 = ∑ 𝛼𝑘𝑋𝐾

K

k

  

where: 

• u1 is the first eigenvector of the matrix U. 

• (𝛼1, …, 𝛼𝑘) are the components of the eigenvector, where each acts as a weight as-

signed to the corresponding table Xk. 

• ∑ 𝛼𝑘 = 1𝑘
𝑘=1 . For k = 1, …, K; this condition specifies that the total sum of the weights 

𝛼𝑘 must be equal to 1. 

The analysis of the compromise is explained by the statistical triplet (XC, Q, D) with 

the use of PCA, given by: 

𝐿 = 𝑋𝐶𝑄𝐴  

𝐶 = 𝑋𝐶
𝑇𝐷𝐵  

where: 

• L: Row scores, projection of the rows of XC onto the principal axes A. 

• XC: Matrix used for the projections; involves both rows for L and columns (as 𝑋𝐶
𝑇) for 

C. 

• Q: Transformation matrix that, together with A, aligns XC to the principal axes. 

• A: Principal axes onto which the rows of XC are projected. 

• C: Column scores, projection of the columns of XC (via 𝑋𝐶
𝑇) onto the principal com-

ponents B. 

• D: Weighting matrix that, together with B, aligns the transposed XC to the principal 

components. 

• B: Principal components onto which the columns of XC are projected. 

2.3.3. Step 3: Intra-Structure 

Figure 2. Partial triadic analysis.

The analysis of the compromise is explained by the statistical triplet (XC, Q, D) with
the use of PCA, given by:

L = XCQA

C = XT
C DB

where:

• L: Row scores, projection of the rows of XC onto the principal axes A.
• XC: Matrix used for the projections; involves both rows for L and columns (as XT

C)
for C.

• Q: Transformation matrix that, together with A, aligns XC to the principal axes.
• A: Principal axes onto which the rows of XC are projected.
• C: Column scores, projection of the columns of XC (via XT

C) onto the principal compo-
nents B.

• D: Weighting matrix that, together with B, aligns the transposed XC to the principal
components.

• B: Principal components onto which the columns of XC are projected.

2.3.3. Step 3: Intra-Structure

Let ∆ be the eigenvalues and A the eigenvectors from the compromise analysis, indi-
cating the amount of variance each principal axis explains. The rows of each initial table
are projected onto the principal axes, and columns of each initial table are projected onto
the principal components respectively given by:

Rk = XkQA

Ck = XT
C DB

where:

• RK: Row scores for table k, calculated by projecting Xk onto the principal axes A using
transformation matrix Q.

• CK: Column scores for table k, derived from projecting the transposed columns of Xk
(denoted XT

C) onto the principal components B with weighting matrix D.



Water 2024, 16, 2196 7 of 15

All operations, including the two-dimensional representations, extraction of compo-
nents, and coordinates of the stations, months, and chemical characteristics, were conducted
using the “ade4” package in the R working environment, version 4.1 (2024) [32].

3. Results and Discussion
3.1. Inter-Structure Analysis

This decomposition of singular values and successive analysis of principal components
reveals a two-dimensional space that captures 69% of the information contained in the RV
matrix, mostly retained in the first dimension (Table A1).

Except for April, the coordinates of the factorial structure of all months (values greater
than 0.6) are mostly associated with the first dimension, presented in Table A2.

Figure 3 allows us to visualize high stability in the data structure for May, August,
September, October, November, and December, proven by the presentation of similar norms
and high RV coefficients, as well as confirmed by the coefficients of the first eigenvector
(Table A3). It illustrates the relationships among different months based on the two principal
components derived from PTA. The points representing the different months are clustered,
indicating similarities. April is distinctly positioned in the upper left, separate from the
other months, suggesting that it possesses unique characteristics not shared with other
months. This could be due to the specific climatic conditions in April, such as the end of the
rainy season, which significantly impacts the esteros in Guayaquil, Ecuador. Conversely,
March and May are closely positioned, indicating that they have similar characteristics,
likely influenced by the transition between the rainy and dry seasons, affecting water levels
and biodiversity in the estuaries.
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Furthermore, June, November, and December are grouped together, as are October,
August, and September. This grouping indicates a high degree of similarity among these
months, possibly due to consistent climatic patterns and human activities such as urban-
ization that affect water quality and ecosystem health in the estuaries. In addition, the
distance between the points reflects the degree of similarity or dissimilarity: closer points
(e.g., March and May) indicate higher similarity, whereas more distant points (e.g., April
and December) suggest greater differences, likely caused by seasonal variations and their
subsequent impact on estuary environments.
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3.2. Compromise Analysis

With the application of singular value decomposition and subsequent principal com-
ponent analysis, a factorial space is detected that captures in two dimensions 96.2% of the
total inertia, with 89.4% and 6.7% retained by the first and second dimensions, respectively
(Table A4). The coordinates of the factor structure are presented in Table A5.

The analysis of the compromise reveals a significant distinction along dimension 1,
which primarily discriminates between stations based on the concentrations of inorganic
nutrients and contaminants. Figure 4 indicates how stations positioned on the left side
of axis 1 (negative dimension 1) are characterized by higher concentrations of inorganic
nutrients, specifically nitrite (NO2

−) and nitrate (NO3
−), with 0.15 mg/L and 0.68 mg/L,

respectively. Additionally, these stations exhibit elevated levels of certain physical and
chemical indicators, such as electrical conductivity (EC), salinity (SI), suspended solid
(SSs), dissolved oxygen (DO), and total hardness (H) (Table A7). The clustering of these
variables suggests that the stations on this side are predominantly influenced by factors
that contribute to higher levels of these nutrients and associated parameters, possibly from
natural sources such as climate, geomorphology, and the hydrogeology of the city [33].
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Conversely, stations located on the right side of axis 1 (positive dimension 1) are
associated with higher levels of contaminants and other water quality indicators. These
include ammonium (NH4

+) (0.81–1.12 mg/L), ortho-phosphate (PO4
3−) (1.39–1.89 mg/L),

the trophic index (TRIX) (8.1–8.26 mg/L), total alkalinity (TA) (150.48–167.55 mg/L), tem-
perature (T) (27.26–27.72 ◦C), biochemical oxygen demand (BOD) (11.53–26.05 mg/L), and
color (C) (76.5–199.71 mg/L). The presence of these variables indicates that these stations
are more impacted by sources of pollution, likely of industrial or urban origin [34]. The
separation along dimension 1 thus highlights a critical environmental gradient, with the
left side representing stations with nutrient enrichment and the right side representing
stations with higher contamination levels.

Figure 4 shows the stations associated with the first dimension in yellow and stations
related to the second dimension in blue. Furthermore, the variables are represented through
the correlations obtained on the original variables projected in the compromise space.

There are high correlations among electrical conductivity, salinity, suspended solids,
NO2, and NO3. Although high levels of minerals decrease the amount of oxygen dissolved
in the water, it is observed that there is a high correlation between the number of minerals
and oxygen in the water. Stations 1, 2, and 3 present higher values of these characteristics
on average (Table A7).
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On the other hand, there is a high correlation between biological oxygen demand,
total turbidity, and color. It is observed that station 4 tends to have higher values in these
variables (26.05 mg/L, 34.51 mg/L and 368.67 mg/L respectively). Also, there is a high
correlation between the TRIX, NH4, and PO4, which was expected due to the TRIX formula.

3.3. Intra-Structure Analysis

In this step, we intend to interpret the compromise space through the correlations of the
original variables with the dimensions of compromise over the months (Figure 5). Table A6
shows the five variables that contribute the most to the compromise space throughout the
months studied.

The three-way analysis method used in this study, specifically partial triadic analysis,
inherently involves a certain degree of information compression. This method prioritizes
the extraction of the most dominant patterns from a dataset, which can result in the loss
of detailed information about specific data points [27,28]. In this regard, the following
observations can be drawn from the intra-structure analysis (see also Tables A7 and A8).

In March, elevated concentrations of NO3
− and hardness are observed at station 1,

station 7 exhibits high levels of TRIX, temperature, and total alkalinity, and station 4 records
elevated NH4

+ levels (Figure 5a).
April’s data reveal increased concentrations of color, NH4

+, and total alkalinity at
station 4, elevated temperatures at stations 6 and 7, and higher levels of hardness and
suspended solids at station 1 (Figure 5b).

May’s data indicate elevated concentrations of color and alkalinity at station 4, with
high levels of NO2

− and electric conductivity observed at stations 1, 2, and 3. Additionally,
stations 6 and 7 exhibit elevated levels of TRIX (Figure 5c).

In June, station 1 records high levels of NO2
−, hardness, dissolved oxygen, electrical

conductivity, and NO3
− (Figure 5d).

August’s data highlight higher concentrations of PO4
3− and color at station 4, along

with elevated levels of NO2
−, electric conductivity, and salinity at station 1 (Figure 5e).

September’s data reflect elevated concentrations of BOD and color at station 4, PO4
3−

and TRIX levels elevated at stations 7 and 4, and electric conductivity and salinity height-
ened at stations 1 and 2 (Figure 5f).

In October, elevated concentrations of electric conductivity and salinity are observed
at stations 1 and 2, with high temperatures recorded at stations 7, 6, and 4. Additionally,
station 4 exhibits high levels of color and PO4

3− (Figure 5g).
November’s data reveal elevated concentrations of NO3

−, salinity, dissolved oxygen,
and suspended solids at station 1, with high temperatures observed at station 7 (Figure 5h).

In December, high turbidity values, along with elevated concentrations of PO4
3− and

color, are observed at stations 4 and 5. Station 1 records elevated levels of NO3
−, while

suspended solids are noted at stations 1 and 2 (Figure 5i).
Despite the growing interest and utility of new multivariate statistical methods, the

application of the PTA method may have certain limitations. Our data possess a triadic
structure (stations, months, and physicochemical parameters), which is common in envi-
ronmental studies, allowing for the simultaneous analysis of the interactions among these
three dimensions. Additionally, the applied method preserves the structure and integrity
of the original data. However, PTA may face challenges in its integration into different
contexts due to computational complexity (especially with large datasets), its dependence
on high-quality input data (e.g., missing data, scales, and coding of variables), and the
requirement for prior knowledge in principal component analysis [14,16,35].
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4. Conclusions

The STATIS family analysis and the three-way multivariant methods were a challeng-
ing task in the research. However, precise answers have been provided to the research
questions set. Firstly, it was feasible to demonstrate the relationships that occur between
the properties of water, allowing us to observe their impact on its quality. Secondly, re-
strictions related to water properties were identified. These restrictions made it possible to
characterize the stations that had values higher and lower than the average recorded for
each variable over time. The partial triadic analysis allowed us to discover that the fourth
station had higher values of certain indicators, such as NH4

+, alkalinity, color, PO4
3−, BOD,

TRIX, and turbidity, with variations in their intensity throughout the months. The fifth
station showed similar behavior, but with reduced intensity. Regarding the TRIX, its value
was higher for stations 4, 7, 5, and 6.

Stations 1, 2 and 3 were characterized by higher average values of NO2
−, NO3

−,
electrical conductivity, salinity, and suspended solids. Station 7 was distinguished by
haying higher temperatures compared to the other stations during the months of March,
April, May, October, and November. The levels at station 6 resembled those at station 7 in
some months. During March and April, NH4

+ presented a greater contribution compared
to the other months. In June, variables such as NO2, hardness, liquid oxygen, NO3

−,
and electrical conductivity predominated, which arose on the lower side of the analysis.
These insights can explain the worsening of common structures. Furthermore, partial
triadic analysis method offered a profound understanding of 86% of the variability. This
information reveals a relationship of contamination between different months of the year
and different properties of water. This relationship allows us to identify observations that
arise both on top and on average. This emphasis on specific stations helps us to discern
significant patrons and better understand how the characteristics of the water fluctuate
over time.

In conclusion, the detailed analysis of sample stations allowed us to identify specific
trends and behaviors in the properties of water, providing an integral vision of how these
factors affect the quality of water at different times of the year. This information is crucial
for the management and conservation of water supplies, as it allows one to implement
more effective measures adapted to the specific needs of each station and period.
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Appendix A. Application of Partial Triadic Analysis and Value Extraction

Table A1. Inter-structure summary.

Dim 1 Dim 2

Eigenvalues 5.152 1.0
Inertia 0.572 0.114

Accumulated inertia 0.572 0.686
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Table A2. Coordinates of the Euclidean image of the inter-structure.

Dim 1 Dim 2

March 0.687 0.341
April 0.531 0.730
May 0.800 0.275
June 0.740 −0.013

August 0.808 −0.301
September 0.835 −0.340

October 0.778 −0.301
November 0.792 −0.018
December 0.792 −0.072

Table A3. Weights of the first eigenvector.

Month α

March 0.303
April 0.234
May 0.352
June 0.326

August 0.356
September 0.368

October 0.343
November 0.349
December 0.349

Table A4. Compromise summary.

Dim 1 Dim 2

Eigenvalues 73.013 5.492
Inertia 0.894 0.067

Accumulated inertia 0.894 0.962

Table A5. Compromise factor coordinates.

Dim 1 Dim 2

Sta1 −1.343 0.612
Sta2 −1.007 0.261
Sta3 −0.756 −0.213
Sta4 1.510 1.645
Sta5 0.586 0.287
Sta6 0.017 −0.867
Sta7 0.993 −1.724

Table A6. Coordinates of dimensions 1 and 2.

Months Variable Dim 1 Dim 2

March

NO3
− −1083 0.110

TRIX 0.958 −0.178
NH4

+ 0.937 0.145
H −0.912 0.232
TA 0.808 −0.092

April

NH4
+ 1737 0.920

H −1039 0.034
TA 0.959 −0.053
C 0.894 0.528
T 0.302 −0.892
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Table A6. Cont.

Months Variable Dim 1 Dim 2

May

C 0.816 0.436
NO2

− −0.712 0.085
TA 0.656 0.145
EC −0.641 0.104

TRIX 0.633 −0.325

June

NO2
− −1209 0.263

H −1029 0.114
DO −1 −0.007

NO3
− −0.997 0.24

EC −0.988 −0.005

August

PO4
3− 1737 0.072

NO2
− −1563 0.152

EC −1355 0.046
Sl −1334 0.06
C 1316 0.39

September

DBO 1606 0.684
PO4

3− 1379 −0.103
TRIX 1271 −0.016

Sl −1194 0.172
EC −1191 0.168

October

Sl −1348 0.46
EC −1314 0.477
T 1276 −0.553

PO4
3− 1177 −0.217

C 1158 0.51

November

NO3
− −0.958 −0.263

SSs −0.94 0.353
T 0.678 −0.373

DO −0.669 −0.307
Sl −0.619 0.197

December

TT 1848 1542
PO4

3− 1333 0.098
NO3

− −1229 0.121
C 1171 0.721

SSs −1156 −0.284

Appendix B. Water Parameter Results

Table A7. Means ± standard deviation of water indicators by station.

Parameter Indicator E1 E2 E3 E4 E5 E6 E7

Inorganic
nutrients

NO2
−

(mg/L) 0.15 ± 0.065 0.13 ± 0.066 0.12 ± 0.055 0.01 ± 0.021 0.04 ± 0.048 0.06 ± 0.049 0.02 ± 0.024

NO3
−(mg/L) 0.68 ± 0.321 0.73 ± 0.401 0.61 ± 0.389 0.1 ± 0.073 0.16 ± 0.233 0.32 ± 0.355 0.1 ± 0.144

NH4
+

(mg/L) 0.17 ± 0.15 0.33 ± 0.234 0.39 ± 0.331 1.12 ± 1.445 0.81 ± 0.853 0.66 ± 0.698 1.05 ± 1.089

PO4
3−

(mg/L) 0.55 ± 0.278 0.73 ± 0.416 0.98 ± 0.596 1.89 ± 1.351 1.39 ± 1.005 1.18 ± 0.732 1.68 ± 1.161

Chemical
indicators

DO (mg/L) 2.89 ± 0.625 2.69 ± 0.458 2.29 ± 0.768 0.49 ± 0.481 0.94 ± 0.78 2.15 ± 1.112 0.79 ± 0.631
pH (U-pH) 7.58 ± 0.319 7.56 ± 0.196 7.52 ± 0.195 7.59 ± 0.243 7.48 ± 0.194 7.51 ± 0.237 7.5 ± 0.246

BOD
(mg/L) 6.8 ± 3.529 6.58 ± 3.248 6.27 ± 3.217 26.05 ± 7.824 18.67 ± 7.495 10.6 ± 2.645 11.53 ± 4.327

TA (mg/L) 129.71 ± 5.844 132.44 ± 7.355 140.03 ± 8.256 164.38 ± 21.713 150.48 ± 9.955 153.3 ± 12.099 167.55 ±
11.609

TH (mg/L) 1285.4 ±
220.747

1220.71 ±
313.04

1223.07 ±
277.488

624.53 ±
347.656

883.69 ±
308.969

1000.76 ±
391.497

633.24 ±
384.294

SI (mg/L) 18.12 ± 7.687 15.52 ± 7.554 14.72 ± 6.651 7.69 ± 4.31 11.41 ± 6.001 11.89 ± 5.428 9.14 ± 5.59
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Table A7. Cont.

Parameter Indicator E1 E2 E3 E4 E5 E6 E7

Physical
indicators

TT (NTU) 2.32 ± 1.325 2.77 ± 1.588 5.35 ± 7.794 34.51 ± 38.099 19.88 ± 22.254 9.09 ± 8.963 11.33 ± 8.36

C (mg/L) 57.06 ± 13.909 70.89 ± 26.34 75.89 ± 28.796 368.67 ±
163.286

199.22 ±
137.157 94.89 ± 49.17 175.11 ± 89.71

SSs (mg/L) 152.56 ± 54.089 134.28 ± 46.767 141.11 ± 42.803 93.89 ± 29.354 120.89 ±
38.866

125.56 ±
35.861 99 ± 31.03

T (◦C) 26.78 ± 0.852 26.71 ± 0.679 26.79 ± 0.661 27.31 ± 0.5 27.23 ± 0.812 27.26 ± 1.016 27.72 ± 0.85

EC 546.14 ±
220.582

472.92 ±
217.556

448.47 ±
190.267

231.04 ±
146.061

354.15 ±
171.471

357.16 ±
180.897

258.42 ±
179.001

Contamination
indicator TRIX 7.18 ± 0.344 7.44 ± 0.329 7.61 ± 0.415 8.37 ± 0.78 8.26 ± 0.62 8.04 ± 0.506 8.1 ± 0.634

Table A8. Means ± standard deviation of water indicators by month.

Parameter Indicator March April May June Aug. Oct. Nov. Dec. Sept.

Inorganic
nutrients

NO2
−

(mg/L)
0.084 ±

0.05
0.0027 ±

0.002
0.069 ±

0.047
0.078 ±

0.085
0.119 ±

0.105
0.06 ±
0.062

0.078 ±
0.034

0.078 ±
0.066

0.11 ±
0.075

NO3
−

(mg/L) 0.71 ± 0.41 0.03 ± 0.04 0.24 ± 0.18 0.34 ± 0.35 0.5 ± 0.46 0.11 ± 0.08 0.75 ± 0.32 0.52 ± 0.44 0.26 ± 0.25

NH4
+

(mg/L) 1.04 ± 0.76 1.99 ± 1.38 0.344 ±
0.15

0.397 ±
0.13

0.987 ±
1.17

0.479 ±
0.22

0.017 ±
0.01

0.019 ±
0.01

0.544 ±
0.26

PO4
3−

(mg/L) 0.35 ± 0.12 0.42 ± 0.21 0.34 ± 0.1 0.52 ± 0.17 2.09 ± 1.06 1.81 ± 0.75 1.07 ± 0.31 2.21 ± 0.84 2 ± 0.86

Chemical
indicators

DO
(mg/L) 1.46 ± 0.87 1.85 ± 0.52 1.76 ± 0.42 1.44 ± 1.24 2.16 ± 1.49 1.46 ± 1.12 2.01 ± 0.86 1.75 ± 1.69 1.84 ± 1.35

pH
(U-pH) 7.04 ± 0.04 7.72 ± 0.12 7.73 ± 0.14 7.6 ± 0.07 7.54 ± 0.16 7.65 ± 0.11 7.33 ± 0.04 7.74 ± 0.08 7.48 ± 0.12

BOD
(mg/L) 14.12 ± 5.4 12.47 ±

4.27 8.48 ± 4.87 10.02 ± 6.5 15.11 ±
10.92 9.83 ± 7.64 11.63 ± 5.5 11.86 ±

6.23
17.72 ±

15.07
TA

(mg/L)
144.4 ±

15.92
146.69 ±

18.89
142.16 ±

12.54
151.22 ±

17.63
144.43 ±

17.19
149.01 ±

14.33
141.82 ±

15.47
165.75 ±

23.67
148.95 ±

13.93
TH

(mg/L)
717.72 ±

286.67
596.75 ±

320.5
884.18 ±

248.12
746.1 ±
344.25

995.93 ±
397.66

978.98 ±
290.1

1552.56 ±
226.91

1358.94 ±
248.72

1003.5 ±
283.24

SI
(mg/L) 5.11 ± 1.57 4.45 ± 1.38 8.78 ± 3.42 11.02 ±

4.47 12.93 ± 6.1 15.35 ±
6.53 20.8 ± 3.78 20.43 ±

3.98 14.9 ± 5.66

Physical
indicators

TT
(NTU) 6.25 ± 3.09 21.47 ±

10.72 4.16 ± 3.94 12.01 ±
9.79 2.27 ± 0.96 19.9 ±

24.64
8.22 ±
13.08

31.92 ±
44.3 3.4 ± 2.19

C
(mg/L)

143.43 ±
99.97

163.14 ±
128.26

160.29 ±
114.12

97.43 ±
44.97

253.29 ±
170.47

199.71 ±
158.46 46 ± 67.07 199.57 ±

174.93
76.5 ±
63.19

SSs
(mg/L) 82 ± 9.09 63.29 ±

16.51
116.14 ±

16.97
110.29 ±

27.38
120.29 ±

36.16
147.14 ±

39.29
167.86 ±

35.48
174.86 ±

36.09
133.21 ±

27.68

T (◦C) 27.86 ±
0.56

28.06 ±
0.79

27.83 ±
0.45

26.84 ±
0.44

26.69 ±
0.71

26.64 ±
0.94

26.83 ±
0.54

26.94 ±
0.45

26.34 ±
0.48

EC 159.59 ±
47.71

83.06 ±
48.92

282.53 ±
100.23

347.1 ±
129.87

401.06 ±
178.66

466.64 ±
185.27

621.22 ±
102.94

610.92 ±
110.64

458.55 ±
162.82

Contamination
indicator TRIX 7.87 ± 0.69 7.47 ± 0.13 7.21 ± 0.38 7.35 ± 0.17 8.2 ± 0.65 8.2 ± 0.58 7.58 ± 0.4 8.39 ± 0.62 8.43 ± 0.68
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