Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.3. Models
2.3.1. WAPABA Model
2.3.2. Machine Learning Models
Long Short-Term Memory Networks
Support Vector Machine
Gaussian Process Regression
LASSO Regression
Extreme Gradient Boosting
Light Gradient Boosting Machine
2.4. Model Simulations
2.5. Evaluation Metrics
3. Results
3.1. Performance of the WAPABA Model
3.2. Simulation of Machine Learning Models Based on Climate Forcings Only
3.3. Simulations of Machine Learning Models with Antecedent Runoff Input
3.4. Comparison between Machine Learning Models and WAPABA
4. Discussion
4.1. Performance of Monthly Runoff Simulations
4.2. Deep Learning in Rainfall–Runoff Modeling
4.3. Strategies for Setting Up Machine Learning Models in Rainfall–Runoff Modeling
4.4. Future Work
5. Conclusions
- (1)
- LSTM performs better in simulating runoff in the PRB relative to the other five machine learning models (SVM, GPR, LR, XGB, LGBM), with about 11.7%, 5.1%, and 10.8% improvements in RMSE, r, and NSE, respectively.
- (2)
- Adding the previous month’s runoff as an additional input variable can achieve better performance than using meteorological forcing only, and using observed runoff as input can achieve better performance than using simulated runoff of the last month.
- (3)
- LSTM outperforms the WAPABA model in two out of three sub-basins. Although all models underestimate the peak streamflow, the performance of the LSTM model is slightly better than that of WAPABA in all sub-basins during wet seasons. Additionally, the LSTM performs slightly better than WAPABA in the East River and West River sub-basins.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Geogr. Sci. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef]
- Zhang, G.; Chan, K.; Oates, A.; Heenan, D.; Huang, G. Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [Google Scholar] [CrossRef]
- Dallison, R.J.; Patil, S.D.; Williams, A.P. Impacts of climate change on future water availability for hydropower and public water supply in Wales, UK. J. Hydrol. Reg. Stud. 2021, 36, 100866. [Google Scholar] [CrossRef]
- Masseroni, D.; Cislaghi, A.; Camici, S.; Massari, C.; Brocca, L. A reliable rainfall–runoff model for flood forecasting: Review and application to a semi-urbanized watershed at high flood risk in Italy. Hydrol. Res. 2017, 48, 726–740. [Google Scholar] [CrossRef]
- Mishra, V.; Aaadhar, S.; Shah, H.; Kumar, R.; Pattanaik, D.R.; Tiwari, A.D. The Kerala flood of 2018: Combined impact of extreme rainfall and reservoir storage. Hydrol. Earth Syst. Sci. Discuss. 2018, 2018, 1–13. [Google Scholar]
- He, C.; Chen, F.; Long, A.; Qian, Y.; Tang, H. Improving the precision of monthly runoff prediction using the combined non-stationary methods in an oasis irrigation area. Agric. Water Manag. 2023, 279, 108161. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Abrahart, R.J.; See, L.M.; Solomatine, D.P. Practical Hydroinformatics: Computational Intelligence and Technological Developments in Water Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 68. [Google Scholar]
- Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Zeng, J.; Jiao, Y.; Li, Y.; Zhong, L.; Yao, L. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 265–278. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Gilon, O.; Gupta, H.; Mai, J.; Nearing, G.; Tolson, B.; Hochreiter, S.; Klotz, D. In Defense of Metrics: Metrics Sufficiently Encode Typical Human Preferences Regarding Hydrological Model Performance. Water Resour. Res. 2023, 59, e2022WR033918. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Comparison of different methodologies for rainfall–runoff modeling: Machine learning vs. conceptual approach. Nat. Hazards 2021, 105, 2987–3011. [Google Scholar] [CrossRef]
- Herath, H.M.V.V.; Chadalawada, J.; Babovic, V. Hydrologically informed machine learning for rainfall–runoff modelling: Towards distributed modelling. Hydrol. Earth Syst. Sci. 2021, 25, 4373–4401. [Google Scholar] [CrossRef]
- Kao, I.F.; Zhou, Y.; Chang, L.-C.; Chang, F.-J. Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [Google Scholar] [CrossRef]
- Wang, J.-H.; Lin, G.-F.; Chang, M.-J.; Huang, I.H.; Chen, Y.-R. Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks. Water Resour. Manag. 2019, 33, 3759–3780. [Google Scholar] [CrossRef]
- Bai, Y.; Bezak, N.; Sapač, K.; Klun, M.; Zhang, J. Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model. Water Resour. Manag. 2019, 33, 4783–4797. [Google Scholar] [CrossRef]
- Dams, J.; Nossent, J.; Senbeta, T.B.; Willems, P.; Batelaan, O. Multi-model approach to assess the impact of climate change on runoff. J. Hydrol. 2015, 529, 1601–1616. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Mahesh, B. Machine learning algorithms-a review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Rahimzad, M.; Moghaddam Nia, A.; Zolfonoon, H.; Soltani, J.; Danandeh Mehr, A.; Kwon, H.-H. Performance Comparison of an LSTM-based Deep Learning Model versus Conventional Machine Learning Algorithms for Streamflow Forecasting. Water Resour. Manag. 2021, 35, 4167–4187. [Google Scholar] [CrossRef]
- Latif, S.D.; Ahmed, A.N. Application of deep learning method for daily streamflow time-series prediction: A case study of the Kowmung River at Cedar Ford, Australia. Int. J. Sustain. Dev. Plan. 2021, 16, 497–501. [Google Scholar] [CrossRef]
- Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stoch. Environ. Res. Risk Assess. 2020, 35, 597–616. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.K.; Hochreiter, S.; Nearing, G.S. Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Kratzert, F.; Herrnegger, M.; Klotz, D.; Hochreiter, S.; Klambauer, G. NeuralHydrology–interpreting LSTMs in hydrology. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer: Cham, Switzerland, 2019; pp. 347–362. [Google Scholar]
- Jiang, S.; Sweet, L.b.; Blougouras, G.; Brenning, A.; Li, W.; Reichstein, M.; Denzler, J.; Shangguan, W.; Yu, G.; Huang, F. How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earth’s Future 2024, 12, e2024EF004540. [Google Scholar] [CrossRef]
- Liu, J.; Koch, J.; Stisen, S.; Troldborg, L.; Schneider, R.J. A national-scale hybrid model for enhanced streamflow estimation–consolidating a physically based hydrological model with long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2024, 28, 2871–2893. [Google Scholar] [CrossRef]
- Jiang, S.; Tarasova, L.; Yu, G.; Zscheischler, J. Compounding effects in flood drivers challenge estimates of extreme river floods. Sci. Adv. 2024, 10, eadl4005. [Google Scholar] [CrossRef] [PubMed]
- Sezen, C.; Šraj, M. Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models. Sci. Total Environ. 2024, 926, 171684. [Google Scholar] [CrossRef] [PubMed]
- Mimeau, L.; Künne, A.; Branger, F.; Kralisch, S.; Devers, A.; Vidal, J.-P. Flow intermittence prediction using a hybrid hydrological modelling approach: Influence of observed intermittence data on the training of a random forest model. Hydrol. Earth Syst. Sci. 2024, 28, 851–871. [Google Scholar] [CrossRef]
- Clark, S.R.; Lerat, J.; Perraud, J.-M.; Fitch, P. Deep learning for monthly rainfall-runoff modelling: A comparison with classical rainfall-runoff modelling across Australia. Hydrol. Earth Syst. Sci. Discuss. 2023, 2023, 1–34. [Google Scholar]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shalev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep learning rainfall–runoff predictions of extreme events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Soulsby, C.; Tetzlaff, D.; Rodgers, P.; Dunn, S.; Waldron, S. Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. J. Hydrol. 2006, 325, 197–221. [Google Scholar] [CrossRef]
- Pearl River Water Resources Committee (PRWRC). The Zhujiang Archive; Guangdong Science and Technology Press: Guangzhou, China, 1991; Volume 1. [Google Scholar]
- Zhang, Q.; Xu, C.Y.; Becker, S.; Zhang, Z.; Chen, Y.; Coulibaly, M. Trends and abrupt changes of precipitation maxima in the Pearl River basin, China. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 10, 132–144. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Shi, P.; Sun, P. More frequent flooding? Changes in flood frequency in the Pearl River basin, China, since 1951 and over the past 1000 years. Hydrol. Earth Syst. Sci. 2018, 22, 2637–2653. [Google Scholar] [CrossRef]
- GRDC. Watershed Boundaries of GRDC Stations/Global Runoff Data Centre. 2011. Available online: https://grdc.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries_node.html (accessed on 10 June 2023).
- Global Runoff Data Centre. The Global Runoff Data Centre, 56068 Koblenz, Germany. 2019. Available online: https://grdc.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/210_prtl/prtl_node.html;jsessionid=EB00BD8AE9F95C552C2FEB91E12DF962.live11313 (accessed on 10 June 2023).
- Muñoz-Sabater, J.; Dutra, E.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Wang, Q.J.; Pagano, T.C.; Zhou, S.L.; Hapuarachchi, H.A.P.; Zhang, L.; Robertson, D.E. Monthly versus daily water balance models in simulating monthly runoff. J. Hydrol. 2011, 404, 166–175. [Google Scholar] [CrossRef]
- Bennett, J.C.; Wang, Q.J.; Li, M.; Robertson, D.E.; Schepen, A. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resour. Res. 2016, 52, 8238–8259. [Google Scholar] [CrossRef]
- Bennett, J.C.; Wang, Q.J.; Robertson, D.E.; Schepen, A.; Li, M.; Michael, K. Assessment of an ensemble seasonal streamflow forecasting system for Australia. Hydrol. Earth Syst. Sci. 2017, 21, 6007–6030. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder--Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mahjouri, N. Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling. Appl. Soft Comput. 2016, 38, 329–345. [Google Scholar] [CrossRef]
- Granata, F.; Gargano, R.; De Marinis, G. Support vector regression for rainfall-runoff modeling in urban drainage: A comparison with the EPA’s storm water management model. Water 2016, 8, 69. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Sun, A.Y.; Wang, D.; Xu, X. Monthly streamflow forecasting using Gaussian Process Regression. J. Hydrol. 2014, 511, 72–81. [Google Scholar] [CrossRef]
- Yang, J.; Jakeman, A.; Fang, G.; Chen, X. Uncertainty analysis of a semi-distributed hydrologic model based on a Gaussian Process emulator. Environ. Model. Softw. 2018, 101, 289–300. [Google Scholar] [CrossRef]
- Karbasi, M. Forecasting of multi-step ahead reference evapotranspiration using wavelet-Gaussian process regression model. Water Resour. Manag. 2018, 32, 1035–1052. [Google Scholar] [CrossRef]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Xiang, Z.; Yan, J.; Demir, I. A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Kang, Y.; Cheng, X.; Chen, P.; Zhang, S.; Yang, Q. Monthly runoff prediction by a multivariate hybrid model based on decomposition-normality and Lasso regression. Environ. Sci. Pollut. Res. 2023, 30, 27743–27762. [Google Scholar] [CrossRef] [PubMed]
- Roth, V. The generalized LASSO. IEEE Trans. Neural Netw. 2004, 15, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Mitchell, R.; Frank, E. Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci. 2017, 3, e127. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Machado, F.; Mine, M.; Kaviski, E.; Fill, H. Monthly rainfall–runoff modelling using artificial neural networks. Hydrol. Sci. J. 2011, 56, 349–361. [Google Scholar] [CrossRef]
- Damavandi, H.G.; Shah, R.; Stampoulis, D.; Wei, Y.; Boscovic, D.; Sabo, J. Accurate Prediction of Streamflow Using Long Short-Term Memory Network: A Case Study in the Brazos River Basin in Texas. Int. J. Environ. Sci. Dev. 2019, 10, 294–300. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Prabhakar, M.; Satish, S.; Jain, P.; Ramprasad, A.; Krishnan, A. Flood prediction based on weather parameters using deep learning. J. Water Clim. Chang. 2020, 11, 1766–1783. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? Adv. Neural Inf. Process. Syst. 2014, 27, 3320–3328. [Google Scholar]
- Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [Google Scholar] [CrossRef] [PubMed]
- Dingman, S.L. Physical Hydrology; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Lees, T.; Buechel, M.; Anderson, B.; Slater, L.; Reece, S.; Coxon, G.; Dadson, S.J. Benchmarking data-driven rainfall–runoff models in Great Britain: A comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydrol. Earth Syst. Sci. 2021, 25, 5517–5534. [Google Scholar] [CrossRef]
- Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network. Hydrol. Earth Syst. Sci. 2021, 25, 2045–2062. [Google Scholar] [CrossRef]
- Penna, D.; Tromp-van Meerveld, H.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef]
- Farchi, A.; Laloyaux, P.; Bonavita, M.; Bocquet, M. Using machine learning to correct model error in data assimilation and forecast applications. Q. J. R. Meteorol. Soc. 2021, 147, 3067–3084. [Google Scholar] [CrossRef]
- Buizza, C.; Casas, C.Q.; Nadler, P.; Mack, J.; Marrone, S.; Titus, Z.; Le Cornec, C.; Heylen, E.; Dur, T.; Ruiz, L.B. Data learning: Integrating data assimilation and machine learning. J. Comput. Sci. 2022, 58, 101525. [Google Scholar] [CrossRef]
- Lees, T.; Reece, S.; Kratzert, F.; Klotz, D.; Gauch, M.; De Bruijn, J.; Kumar Sahu, R.; Greve, P.; Slater, L.; Dadson, S.J. Hydrological concept formation inside long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2022, 26, 3079–3101. [Google Scholar] [CrossRef]
- Frame, J.M.; Kratzert, F.; Gupta, H.V.; Ullrich, P.; Nearing, G.S. On strictly enforced mass conservation constraints for modelling the Rainfall-Runoff process. Hydrol. Process. 2023, 37, e14847. [Google Scholar] [CrossRef]
- Beven, K.J. Uniqueness of place and process representations in hydrological modelling. Hydrol. Earth Syst. Sci. 2000, 4, 203–213. [Google Scholar] [CrossRef]
- Herath, H.M.V.V.; Chadalawada, J.; Babovic, V. Genetic programming for hydrological applications: To model or to forecast that is the question. J. Hydroinform. 2021, 23, 740–763. [Google Scholar] [CrossRef]
- Jiang, S.; Zheng, Y.; Solomatine, D. Improving AI system awareness of geoscience knowledge: Symbiotic integration of physical approaches and deep learning. Geophys. Res. Lett. 2020, 47, e2020GL088229. [Google Scholar] [CrossRef]
- Jiang, S.; Bevacqua, E.; Zscheischler, J. River flooding mechanisms and their changes in Europe revealed by explainable machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 6339–6359. [Google Scholar] [CrossRef]
- Cai, H.; Liu, S.; Shi, H.; Zhou, Z.; Jiang, S.; Babovic, V. Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method. J. Hydrol. 2022, 613, 128495. [Google Scholar] [CrossRef]
- Cai, H.; Shi, H.; Liu, S.; Babovic, V. Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States. J. Hydrol. Reg. Stud. 2021, 37, 100930. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fu, Z.; Luo, Z.; Wang, F.; Wang, K. Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. Eur. J. Soil Sci. 2022, 73, e13288. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef]
- Xie, K.; Liu, P.; Zhang, J.; Han, D.; Wang, G.; Shen, C. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships. J. Hydrol. 2021, 603, 127043. [Google Scholar] [CrossRef]
- Weng, P.; Tian, Y.; Liu, Y.; Zheng, Y. Time-series generative adversarial networks for flood forecasting. J. Hydrol. 2023, 622, 129702. [Google Scholar] [CrossRef]
Variables | North River | East River | West River | Unit |
---|---|---|---|---|
Runoff () | 89.05 | 75.46 | 50.46 | mm/month |
Precipitation () | 161.04 | 145.90 | 150.11 | mm/month |
Vapor pressure () | 1.81 | 1.91 | 1.71 | kPa |
Wind speed at 2 m () | 0.66 | 0.81 | 0.63 | m/s |
Surface net radiation () | 11.62 | 12.39 | 11.25 | MJ/(m2 day) |
Daily maximum temperature ( | 22.40 | 23.74 | 21.72 | °C |
Daily minimum temperature () | 12.22 | 12.92 | 12.60 | °C |
Model | Category | Strengths | Limitations |
---|---|---|---|
LSTM | Deep learning | Handle time series data. Capture complex and non-linear relationships. | Structural complexity. Computationally expensive. |
SVM | Super vector machine | Handle high-dimensional data. Memory efficient. | Not suitable for larger datasets. Require careful parameter tuning. |
GPR | Regression analysis | Provide uncertainty estimates. Less prone to overfitting. | Need to assume Gaussian noise. Relatively computationally intensive. |
LR | Regression analysis | Capture linear relationships. Less prone to overfitting. | Weak ability to capture non-linear relationships. Sensitive to noise. |
XGB | Ensemble learning | High efficiency and fast speed. Good performance with large datasets. | Prone to overfitting. Larger data requirements. |
LGBM | Ensemble learning | High efficiency and fast speed. Good performance with large datasets. | Prone to overfitting. Larger data requirements. |
Input Data | Source | |
---|---|---|
Training and validation data (January 1954–December 1986) | ||
Experiment 1 | , , , , , | None |
Experiment 2 | , , , , , , | Observed runoff |
Experiment 3 | Same as Experiment 2 | Observed runoff |
Evaluation data (January 2004–May 2023) | ||
Experiment 1 | , , , , , | None |
Experiment 2 | , , , , , , | Simulated runoff |
Experiment 3 | Same as Experiment 2 | Observed runoff |
LSTM | SVM | GPR | LR | XGB | LGBM | |
---|---|---|---|---|---|---|
North River Sub-Basin | ||||||
Training Period | ||||||
Bias | 1.33 | −7.46 | −0.10 | 0.00 | −4.86 | 0.96 |
RMSE | 59.12 | 59.31 | 58.72 | 62.37 | 47.62 | 52.01 |
r | 0.70 | 0.70 | 0.70 | 0.65 | 0.83 | 0.79 |
NSE | 0.48 | 0.48 | 0.49 | 0.42 | 0.66 | 0.60 |
Evaluation Period | ||||||
Bias | 2.45 | −8.23 | −1.04 | −4.26 | −2.34 | 3.59 |
RMSE | 62.53 | 64.68 | 64.41 | 57.31 | 66.20 | 64.71 |
r | 0.67 | 0.64 | 0.64 | 0.74 | 0.60 | 0.63 |
NSE | 0.43 | 0.39 | 0.40 | 0.52 | 0.36 | 0.39 |
East River Sub-Basin | ||||||
Training Period | ||||||
Bias | 1.34 | −4.84 | 0.00 | 0.01 | −2.58 | 1.24 |
RMSE | 33.85 | 32.18 | 31.20 | 35.80 | 25.01 | 31.20 |
r | 0.84 | 0.86 | 0.86 | 0.81 | 0.92 | 0.87 |
NSE | 0.70 | 0.73 | 0.74 | 0.66 | 0.83 | 0.74 |
Evaluation Period | ||||||
Bias | 2.21 | −3.77 | −2.16 | −2.52 | 0.56 | 0.92 |
RMSE | 36.14 | 37.46 | 37.61 | 36.24 | 40.92 | 38.53 |
r | 0.77 | 0.75 | 0.75 | 0.77 | 0.71 | 0.72 |
NSE | 0.58 | 0.55 | 0.55 | 0.58 | 0.46 | 0.52 |
West River Sub-Basin | ||||||
Training Period | ||||||
Bias | 0.77 | −2.12 | 0.00 | 0.22 | −5.75 | 0.22 |
RMSE | 22.25 | 20.55 | 20.60 | 22.83 | 19.64 | 21.04 |
r | 0.86 | 0.89 | 0.88 | 0.85 | 0.91 | 0.89 |
NSE | 0.74 | 0.78 | 0.78 | 0.73 | 0.80 | 0.77 |
Evaluation Period | ||||||
Bias | 0.49 | −3.25 | −2.83 | −2.41 | −6.26 | 1.10 |
RMSE | 17.83 | 17.99 | 18.64 | 19.12 | 19.36 | 19.25 |
r | 0.88 | 0.88 | 0.87 | 0.86 | 0.87 | 0.86 |
NSE | 0.77 | 0.76 | 0.75 | 0.73 | 0.73 | 0.73 |
WAPABA | LSTM | SVM | GPR | LR | XGB | LGBM | |
---|---|---|---|---|---|---|---|
North River sub-basin | |||||||
Bias | −9.80 | −3.13 | −13.19 | −2.90 | −7.03 | −6.11 | −2.52 |
RMSE | 51.33 | 53.12 | 62.37 | 54.36 | 54.66 | 59.90 | 59.79 |
r | 0.84 | 0.79 | 0.69 | 0.77 | 0.77 | 0.72 | 0.71 |
NSE | 0.62 | 0.59 | 0.43 | 0.57 | 0.57 | 0.48 | 0.48 |
East River sub-basin | |||||||
Bias | −1.74 | −2.71 | −4.77 | −2.59 | −3.69 | −0.21 | −0.33 |
RMSE | 31.27 | 23.67 | 27.07 | 31.78 | 28.66 | 30.13 | 32.43 |
r | 0.83 | 0.91 | 0.88 | 0.82 | 0.86 | 0.84 | 0.83 |
NSE | 0.69 | 0.82 | 0.77 | 0.68 | 0.74 | 0.71 | 0.66 |
West River sub-basin | |||||||
Bias | −2.23 | −1.85 | −4.32 | −1.56 | −4.32 | −4.93 | 0.10 |
RMSE | 17.83 | 16.25 | 16.72 | 16.34 | 17.94 | 17.35 | 17.08 |
r | 0.88 | 0.90 | 0.90 | 0.90 | 0.89 | 0.90 | 0.89 |
NSE | 0.77 | 0.81 | 0.80 | 0.80 | 0.76 | 0.78 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yang, Q. Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins. Water 2024, 16, 2199. https://doi.org/10.3390/w16152199
Yu H, Yang Q. Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins. Water. 2024; 16(15):2199. https://doi.org/10.3390/w16152199
Chicago/Turabian StyleYu, Haoyuan, and Qichun Yang. 2024. "Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins" Water 16, no. 15: 2199. https://doi.org/10.3390/w16152199
APA StyleYu, H., & Yang, Q. (2024). Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins. Water, 16(15), 2199. https://doi.org/10.3390/w16152199