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Abstract: Machine learning models’ performance in simulating monthly rainfall–runoff in subtropical
regions has not been sufficiently investigated. In this study, we evaluate the performance of six widely
used machine learning models, including Long Short-Term Memory Networks (LSTMs), Support
Vector Machines (SVMs), Gaussian Process Regression (GPR), LASSO Regression (LR), Extreme
Gradient Boosting (XGB), and the Light Gradient Boosting Machine (LGBM), against a rainfall–runoff
model (WAPABA model) in simulating monthly streamflow across three subtropical sub-basins of the
Pearl River Basin (PRB). The results indicate that LSTM generally demonstrates superior capability in
simulating monthly streamflow than the other five machine learning models. Using the streamflow
of the previous month as an input variable improves the performance of all the machine learning
models. When compared with the WAPABA model, LSTM demonstrates better performance in two
of the three sub-basins. For simulations in wet seasons, LSTM shows slightly better performance than
the WAPABA model. Overall, this study confirms the suitability of machine learning methods in
rainfall–runoff modeling at the monthly scale in subtropical basins and proposes an effective strategy
for improving their performance.

Keywords: data-driven models; machine learning; rainfall–runoff model; subtropical basins;
performance evaluation

1. Introduction

Rainfall–runoff modeling is critical for understanding and predicting the transfor-
mation of rainfall into runoff [1–4]. Accurately simulating streamflow is essential for
flood forecasting, reservoir operations, water supply planning, irrigation scheduling, and
the design of hydraulic structures such as dams and reservoirs [5–8]. In the context of
climate change, a well-performing runoff model will allow us to assess the potential im-
pacts of changing precipitation patterns on water availability and flood risks and thus
formulate effective strategies to efficiently manage precious water resources and mitigate
hazards [9–11].

In recent years, machine learning models, as a subset of data-driven models, have
become increasingly popular in hydrological investigations. One of the merits of such
models is their flexibility, allowing users to train, test, and deploy runoff simulations
without an extensive understanding of physical processes regulating the water cycle [12,13].
Furthermore, machine learning models stand out because of their suitability to address
the non-linearity and intricate interactions buried in data, making them especially suitable
for modeling complex relationships between meteorological variables and hydrological
processes [13–15]. However, other researchers raised concerns about the application of
machine learning methods in the field of hydrology because these methods have limited
interpretability and physical consistency, potentially leading to physically incorrect or
unreasonable simulations, especially when the training data have low quality [16].
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Despite concern about the interpretability of machine learning models, recent studies
have recognized their promising performance in runoff simulation [17,18]. In previous
studies, machine learning models have been mainly used to simulate daily or hourly
streamflow [19–21], with much less attention paid to monthly streamflow. However,
monthly streamflow simulations are equally, if not more, important for water resource
management [22,23]. Unlike daily streamflow, climate variables (e.g., precipitation and
evapotranspiration), rather than water storages in basins, play a dominant role in affecting
streamflow on a monthly scale. Whether machine learning models are capable of capturing
such features remains unclear.

As a result, the performance of machine learning models in simulating monthly
streamflow warrants further investigation. First, the types of machine learning methods
suitable for hydrological modeling need to be elucidated. Commonly used machine
learning models in hydrology include regression analysis models, support vector machines,
ensemble learning methods, and deep learning models with multi-layer neural network
structures [24,25]. Many studies compared the performance of multiple machine learning
models and showed that LSTM may be the best model in daily streamflow simulations.
For instance, Rahimzad et al. [26] indicated that LSTM demonstrated better performance
than linear regression and support vector machines (SVMs) in the Kentucky River in the
U.S. In Latif and Ahmed [27], LSTM outperformed Random Forest (RF) and Tree Boost for
forecasting the daily streamflow of the Warragamba dam in Australia. Adnan et al. [28] also
showed that LSTM had greater accuracy than the Extreme Learning Machine (ELM) and
RF techniques. The LSTM model has demonstrated capability in reconstructing streamflow
across hundreds of basins in the United States [29], and it has also shown better performance
than traditional process-based approaches in applications to ungauged basins [30]. The
LSTM’s outstanding ability to learn the influence of past events on future outcomes is a
critical factor responsible for its superior performance, enabling it to effectively capture
hydrological processes, such as snowmelt and groundwater rechange, which are critical
for streamflow dynamics in temperate regions [31]. However, whether the performance of
such models still holds at the monthly scale needs further investigation.

Recently, hybrid frameworks integrating physical processes with machine learning
models have been developed to simulate hydrological processes [16], showing promise
in improving the performance of data-driven models [32]. For example, LSTM combined
with physically based hydrological models has shown a better capacity in streamflow
simulation [33,34]. RF and regression models also achieved improved performance based
on a hybrid framework [35,36]. However, these new directions of applying machine
learning models are still under development.

Second, strategies for setting up machine learning models in hydrological applications
need further investigation. Machine learning models often exhibit varied performance
across different river basins, suggesting that their full potential in hydrological simulations
has not been realized. In an investigation across a group of river basins in Australia,
machine learning methods demonstrated better performance in larger river basins [37]. The
dependency of model performance on river basin characteristics indicates the necessity of
including additional variables other than meteorological forcing inputs in machine learning
simulations. In another investigation across different basins in the U.S., Kratzert et al. [30]
found that the LSTM could achieve improved performance in simulating daily streamflow
by adding river basin characteristics (e.g., soil and topography) as the input data. However,
which river basin property should be included in machine learning-based simulations for
subtropical basins remains unclear.

Third, the majority of previous studies focus predominantly on the overall perfor-
mance of the models, neglecting the variability of model performance under different
hydrological conditions (e.g., wet vs. dry periods). Compared with normal flow, water
resource managers are often more concerned about large flow events, which could lead to
risks such as floods, especially in subtropical and tropical regions. Accurately simulating
large flow events has been a challenge in hydrological modeling. Evaluating the perfor-
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mance of machine learning models under various hydrological conditions will help to
clarify the suitability of using such models in predicting the highly variable streamflow [38].

River basins located in subtropical or tropical regions have special hydrological pro-
cesses compared with temperate basins. Subtropical and tropical basins often do not have
snowfall, and thus lack the responses of streamflow to snowmelting. In addition, abundant
rainfall and high evapotranspiration rates make these basins’ hydrological response times
relatively short [39]. Given these special features of hydrological processes in subtropi-
cal/tropical basins, Whether the machine learning models are applicable to those basins
needs to be investigated.

This study aims to comprehensively investigate the suitability of machine learning
models in streamflow simulations at the monthly scale in a typical region of China. The
performance of machine learning models in simulating monthly streamflow is compared
with a rainfall–runoff model (e.g., the WAPABA model). The objectives of this study
are to answer the following questions: (1) What is the relative performance of machine
learning models to a traditional hydrological model for monthly streamflow simulation
in subtropical regions? (2) Which type of machine learning models are more suitable for
subtropical streamflow simulations at the monthly scale? (3) How can machine learning
models be effectively set up to improve their performance?

2. Data and Methods
2.1. Study Area

The Pearl River Basin (PRB), located in southern China, was selected as the study area.
We chose the Pearl River Basin’s three major sub-basins, namely the North River sub-basin,
the East River sub-basin, and the West River sub-basin (Figure 1), to evaluate streamflow
simulations by different models. The Pearl River, also known as the Zhujiang River, is one
of the largest and most important river systems in China. The main stream of the river
travels over 2214 km from its headwaters to the estuary, with a drainage area of about
453,690 km2, making it the third-longest river in China [40].
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The PRB has a tropical and subtropical climate, with hot and wet summers and mild
winters, and is free of snow throughout the year. Annual mean temperatures in the PRB
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fluctuate between 14 and 22 ◦C, accompanied by high precipitation averaging between
1200 and 2200 mm, primarily occurring from April to September [40,41]. Such a climate
supports a wide range of flora and fauna and thriving agriculture. The PRB experiences
heavy precipitation events during the wet season, leading to hazards such as flooding.
Existing studies have highlighted the necessity of developing flood mitigation measures
for this region [42].

2.2. Data

In this study, three gauge stations, including Shijiao, Boluo, and Wuzhou, were selected
for the North River, East River, and West River sub-basins, respectively (Figure 1). The bound-
aries of the sub-basin were obtained from the Global Runoff Data Centre database [43]. The
areas of these three sub-basins are 38,363, 25,325, and 329,705 km2, respectively (Figure 1).
Gauge records archived by the GRDC [44] database and the Ministry of Water Resources,
PRC, were collected for model calibration and evaluation in this study. The depth of runoff
in each sub-basin was calculated based on the streamflow observations from these stations
and their corresponding drainage areas.

The climate data for hydrological simulations were obtained from the ERA5-Land dataset
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) [45]. In
this study, all meteorological and hydrological data were aggregated to the monthly scale
and averaged for each sub-basin for hydrological simulations. Climatic and hydrological
variables used in this study, their units, and multi-year averages are shown in Table 1, while
the other statistics are shown in Table S1. The North River sub-basin has the highest rainfall,
while the East River sub-basin receives the least among the three sub-basins. The North
River sub-basin has the highest runoff, while the West River sub-basin has the lowest.

Table 1. Variables used for model simulations in each sub-basin. All data are monthly averages.

Variables North River East River West River Unit

Runoff
(R) 89.05 75.46 50.46 mm/month

Precipitation
(P) 161.04 145.90 150.11 mm/month

Vapor pressure
(ea) 1.81 1.91 1.71 kPa

Wind speed at 2 m
(u2) 0.66 0.81 0.63 m/s

Surface net radiation
(Rn) 11.62 12.39 11.25 MJ/(m2 day)

Daily maximum temperature
( Tmax)

22.40 23.74 21.72 ◦C

Daily minimum temperature
(Tmin) 12.22 12.92 12.60 ◦C

2.3. Models
2.3.1. WAPABA Model

The WAPABA (water partition and balance) model is a lumped rainfall–runoff model
by Wang et al. [46]. The model has been widely used in monthly streamflow simulations
and verified to perform well at this time scale [46–48]. Therefore, WAPABA was used as
the benchmark model to compare the performance of multiple machine learning methods
in this study.

The WAPABA model requires two fundamental inputs (i.e., the mean monthly rainfall
and ETo) to simulate the monthly runoff of a river basin. ETo is calculated using the
meteorological variables listed in Table 1 and the FAO Penman–Monteith Equation [49].
The schematic diagram of the WAPABA model is shown in Figure S1 of the Supplementary
Material. There are five parameters in the WAPABA model, including the catchment
consumption curve (α1), the parameter of the evapotranspiration curve (α2), the percentage
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of groundwater yield from the catchment (β), the soil’s maximum water-holding capacity
(Smax), and the groundwater store time constant in reverse (K). These parameters in our
study were calibrated with the Nelder–Mead optimization algorithm [50].

2.3.2. Machine Learning Models
Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) network is a recurrent neural network (RNN)
designed to address the problem of gradient vanishing or explosion that exists in traditional
RNNs [51]. A standard LSTM unit consists of a cell with an input gate, an output gate, and
a forget gate [52].

In this study, we applied a Sequential Model using the Keras API of the TensorFlow
library. The model’s architecture was initiated with an LSTM layer equipped with a ReLU
activation function containing ten neurons. This layer was then followed by a densely
connected layer employing an L2 regularizer and outputting a single real value. During
model compilation, we chose the Adam optimizer for its adaptive learning rates, which
collaborated with the MSE loss function. Then, the model was trained for 2000 epochs with
an initial training rate of 0.01. Additionally, we incorporated learning rate alterations using
the ‘Reduce LR On Plateau’ strategy. This strategy involved multiplying the learning rate
by a factor of 0.5 if there was no improvement in the loss after 20 epochs until reaching
the minimal learning rate of 0.00001. We also utilized the ‘Model Checkpoint’ function to
save the optimal state and implemented the ‘Early Stopping’ command with a patience of
100 epochs to prevent overfitting. Such hyperparameters are defined by a commonly used
framework for parameter optimization of the neural networks model, as we initially set the
model parameters based on empirical values, followed by splitting the data into training
and validation sets for hyperparameter optimization to obtain a better hyperparameter
setting. The training data were divided into 80% of the training set and the remaining
20% of the validation set to prevent overfitting. Ten distinct LSTM models were trained,
and their values were averaged to mitigate the potential errors caused by the randomness.
The topological configuration of the LSTM model is shown in the Supplementary Mate-
rial (Figure S2). A comprehensive introduction to the LSTM algorithm can be found in
Sherstinsky [53].

Support Vector Machine

The Support Vector Machine (SVM) is a type of machine learning method performing
data regression through supervised learning, in which the decision boundary becomes a
hyperplane that fits the data points to minimize the overall error rate. It works by mapping
input vectors into a high-dimensional feature space and then searching for the hyperplane
that optimally fits the data [54]. SVM was also widely used in hydrological studies [55],
especially in rainfall–runoff forecasting [56–58].

In our study, we employed the SVM model with a radial basis function (RBF) kernel
with the Scikit-Learn library. The RBF kernel is capable of handling non-linear relationships
between the predictors and the response variable [59]. The cost parameter was set to 100,
and the gamma coefficient was set to 0.01 by the grid search algorithm within a predefined
parameter range. A general topological configuration of SVM is shown in Figure S3 of the
Supplementary Material. The specific algorithm and related equations of support vector
regression can be found in Raghavendra and Deka [55].

Gaussian Process Regression

Gaussian Process Regression (GPR) is a nonparametric model for data regression
analysis using a Gaussian process prior. The modeling assumptions for GPR include both
noise (regression residuals) and a Gaussian process prior, which is solved according to
Bayesian inference [60]. It is known for providing both predictions and quantifying the
predictive uncertainty. This method is suitable for hydrological science due to its capacity
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for handling non-linear relationships, managing multiple input features, and its robustness
in the face of noisy data [61–63].

In this study, we initialized the GPR model with a radial basis function (RBF) kernel,
which is a good general-purpose kernel used for capturing the smoothness of the rainfall–
runoff relationship [59]. The hyperparameters of the kernel were then optimized using
the built-in optimization methods in the GPy Python library, which flexibly re-adjusts the
kernel to best fit the data. The specific equations for the calculation of GRP can be found in
Schulz et al. [64].

LASSO Regression

Lasso Regression (LR), also known as the Least Absolute Shrinkage and Selection
Operator, is a linear regression model that uses shrinkage, where data values are shrunk
towards a central point, typically the mean [65]. LR stands out for its inherent ability
to perform automatic feature selection and reduce the dimensional complexity of the
model [66]. These characteristics make LR suitable for rainfall–runoff modeling that
involves a wide array of variously correlated meteorological variables [67,68]. In our
study, LR was implemented through the Scikit-learn library in Python 3.8.18, with an alpha
(regularization strength) of 0.1. The algorithm of LR can be found in Roth [69].

Extreme Gradient Boosting

XGBoost (Extreme Gradient Boosting, XGB) is an optimized distributed gradient
boosting library designed for substantial scale machine learning problems with a focus
on efficiency, flexibility, and portability [70]. In this study, we utilized Python’s XGBoost
library to implement an XGBoost Regressor. The process of optimizing hyperparameters
involved a grid search within a predefined range of values. The configuration of the XGB
model aimed to minimize the squared error loss. Notably, 80% of features were subsampled
for each tree. The specific hyperparameter set included a learning rate of 0.001, a maximum
tree depth of 3, an alpha (for L1 regularization) of 10, and a limit of 5000 boosting rounds.
To avoid overfitting, the training data were split, with 80% treated as the training set and
the remaining 20% as the validation set, using a ‘train_test_split’ with a random state set at
42 for reproducibility. During training, an early stopping mechanism was activated if model
performance failed to improve consecutively over 100 rounds, thus stopping the training
and preserving the performance-optimized model. The specific algorithm of XGBoost can
be found in Mitchell and Frank [71].

Light Gradient Boosting Machine

LightGBM (LGBM) is a powerful gradient-boosting framework developed by Mi-
crosoft [72]. In our study, we used Python’s LightGBM library to construct a gradient-
boosting model. Like our approach with the XGB model, a grid search was conducted to
optimize the hyperparameters. The model was configured with the ‘GBDT’ boosting type
to address our regression problem. We employed both ‘l2’ (Mean Squared Error) and ‘l1’
(Mean Absolute Error) as metrics for model evaluation. Specifications included 31 leaves,
a maximum of 5000 iterations, and a learning rate of 0.001. Each split considered 90%
of features (feature fraction = 0.9). For each boosting round, we implemented bagging
with 80% of the data (bagging fraction = 0.8) and updated every five iterations (bagging
frequency = 5). The methodology for splitting the training data and implementing early
stopping was consistent with our approach in the XGB model. The algorithm of the LGBM
can be found in Ke et al. [72].

The six machine learning models selected for this study are widely used in hydrology,
and the strengths and limitations of each model are summarized in Table 2.
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Table 2. Summary of different machine learning models used in this study.

Model Category Strengths Limitations

LSTM Deep learning
Handle time series data.

Capture complex and non-linear
relationships.

Structural complexity.
Computationally expensive.

SVM Super vector machine Handle high-dimensional data.
Memory efficient.

Not suitable for larger datasets. Require careful
parameter tuning.

GPR Regression analysis Provide uncertainty estimates.
Less prone to overfitting.

Need to assume Gaussian noise.
Relatively computationally intensive.

LR Regression analysis Capture linear relationships.
Less prone to overfitting.

Weak ability to capture non-linear relationships.
Sensitive to noise.

XGB Ensemble learning High efficiency and fast speed.
Good performance with large datasets.

Prone to overfitting.
Larger data requirements.

LGBM Ensemble learning High efficiency and fast speed.
Good performance with large datasets.

Prone to overfitting.
Larger data requirements.

2.4. Model Simulations

For all the machine learning models employed in this study, both meteorological and
hydrological data (shown in Table 1) were split into training and evaluation periods for
all sub-basins. The training period starts from January 1954 to December 1986, with a
total of 396 months. During the training process for LSTM, XGB, and LGBM, we split 20%
of the data as the validation dataset for the early stop mechanism to prevent the model
from overfitting. Data normalization was not deemed necessary for the model training
and testing based on our investigation, except for the SVM model, where normalization
is a required step in this model. SVM, GPR, and LR do not involve a process of training
through multiple iterations to gradually approach the optimal solution [55,64,69], and
therefore we did not utilize a validation set for early stopping in their training methodology.
The evaluation period spans from January 2004 to May 2023 (with missing runoff data
across different river sub-basins: 20 months of data are missing in the North River and
the West River sub-basins, while 23 months are missing in East River sub-basin), with a
total of about 210 months. The period of 1987–2003 was not included in model simulations
because of missing observations. The periods for the calibration and evaluation of the WA-
PABA model were aligned with the training and evaluation periods for machine learning
models, respectively.

It is worth noting that we used the term ‘evaluation’ for the assessment of model
performance against observations that were not used for model training for both WAPABA
and machine learning models. This term is equivalent to ‘testing’ used in many machine
learning modeling studies.

In this study, we conducted three sets of model simulations to evaluate the impacts of
three input data combinations on the performance of machine learning models. We first
used the climatic forcings only (Experiment 1) as model input data, following the design
of many previous investigations [73–75]. Since the streamflow of the previous month
represents overall river basin conditions (e.g., wetness), using this additional variable, other
than the meteorological variables, as the input data might add extra skills to streamflow
simulations. As a result, we conducted another two sets of simulations to evaluate model
performance in response to using simulated (Experiment 2) or observed (Experiment 3)
runoff of the previous month as additional model inputs.

We conducted a preliminary test to understand the impacts of different preceding data
on the performance of the LSTM model. The results indicated that using preceding data of
one month resulted in better performance than using longer preceding data (Figure S4).
Consequently, we adopted a one-month time step as the preceding time step for LSTM
simulations in this study. Specifically, input data combinations of each type of simulation
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are shown in Table 3. Experiment 1 utilizes 6 meteorological variables (i.e., P(t), ea(t),
u2(t), Rn(t), Tmax(t), and Tmin(t)) as the models’ input. In Experiments 2 and 3, antecedent
runoff of the previous month (R(t − 1)) is added as an extra input variable to drive these
machine learning models. Considering the availability of streamflow observations and
the applicability of long-term forecasts, the simulated runoff is utilized as the input of
Experiment 2, whereas the observed runoff is used as the input in Experiment 3 during the
evaluation period.

Table 3. Input data of three machine learning simulations. The full name of all variables is listed in
Table 1. Model output data is R(t), where t denotes the data of the current month and t − 1 the data
of the previous month.

Input Data R(t−1) Source

Training and validation data (January 1954–December 1986)
Experiment 1 P(t), ea(t), u2(t), Rn(t), Tmax(t), Tmin(t) None
Experiment 2 P(t), ea(t), u2(t), Rn(t), Tmax(t), Tmin(t), R(t − 1) Observed runoff
Experiment 3 Same as Experiment 2 Observed runoff

Evaluation data (January 2004–May 2023)

Experiment 1 P(t), ea(t), u2(t), Rn(t), Tmax(t), Tmin(t) None
Experiment 2 P(t), ea(t), u2(t), Rn(t), Tmax(t), Tmin(t), R(t − 1) Simulated runoff
Experiment 3 Same as Experiment 2 Observed runoff

2.5. Evaluation Metrics

In this study, Bias, Root Mean Squared Error (RMSE), Correlation Coefficient (r), and
Nash Sutcliffe efficiency coefficient (NSE) [76] were used for model performance evaluation.
The formulas of these metrics are presented in Equations (1)–(4).

Bias =
1
T

T

∑
t=1

Qs(t)−
1
T

T

∑
t=1

Qo(t) (1)

RMSE =

√
∑T

t=1(Qs(t)− Qo(t))
2

T
(2)

r =
∑T

t=1
(
Qo(t)− Qo

)
(Q s(t)− Qs

)√
∑T

t=1
(
Qo(t)− Qo

)2
∑T

t=1
(
Qs(t)− Qs

)2
(3)

NSE = 1 − ∑T
t=1(Qo(t)− Qs(t))

2

∑T
t=1

(
Qo(t)− Qo

)2 (4)

where T is the length of the time series data; Qs(t) and Qo(t) denote the simulation and
observation at time t; and Qs and Qo are the time averages of simulations and observations.
In this research, the units of Bias and RMSE are mm/month, while r and NSE are unitless
measures. BIAS is a metric measuring the average of the difference between simulated and
observed streamflow, whilet ale RMSE evaluates the average errors in model simulations. r
assesses the ability of models to reconstruct the overall timing and magnitude of streamflow,
while NSE is a common metric in hydrology for assessing the fit of model simulations
to observed data. For simulations matching observations perfectly, their bias and RMSE
should be 0, while r and NSE should be 1.

3. Results
3.1. Performance of the WAPABA Model

We first evaluated the performance of the WAPABA model in simulating monthly
runoff in the PRB. Figure 2 presents the WAPABA simulations and runoff observations in
the North, East, and West River sub-basins during the calibration and evaluation periods.
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The performance of the WAPABA model varies across the three sub-basins, as suggested by
the evaluation metrics (Figure 2). During the calibration period, the North River sub-basin
has a low r and NSE of 0.59 and 0.33, respectively, as a result of the underestimated peak
flows, whereas the other two sub-basins all show r above 0.8 and NSE above 0.6, with the
highest values (0.88 and 0.77 for r and NSE, respectively) found in the West River sub-basin.
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Compared with the calibration period, the WAPABA model shows comparable or
even better performance during the evaluation period. We found marked improvements
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in WAPABA simulations during the evaluation period for the North River sub-basin,
as suggested by the 42% increases in r and 88% increases in NSE. The bias during the
evaluation period is −9.80 mm/month, −1.74 mm/month, and −2.23 mm/month in the
North, East, and West River sub-basins, respectively, indicating that the WAPABA model
underestimated the streamflow, particularly for peak flows in the three sub-basins. The
values of r are higher than 0.8 in all river sub-basins during the evaluation period (0.84,
0.83, and 0.88 in the North, East, and West River sub-basins, respectively), proving that
the WAPABA reconstructed seasonal variations in observations well. When using NSE to
evaluate the performance of hydrological simulations, it is generally considered that an
NSE greater than 0.5 indicates a satisfactory model performance [77]. In this study, the
NSEs for three sub-basins during the evaluation period are 0.62, 0.69, and 0.77, respectively,
confirming that the WAPABA model performed satisfactorily in the study area in the
evaluation period. However, it is worth mentioning that NSE is only 0.33 for the North
River sub-basin during the calibration period. This may result from the relatively poorer
quality of observation in this sub-basin as well as other factors not considered in WAPABA,
such as land use changes and anthropogenic activities, which may have larger impacts in
this sub-basin. Overall, considering that the steps during the modeling are correct and
that the performance is acceptable during the evaluation period, we think the WAPABA
model’s performance is acceptable for evaluating the relative performance of machine
learning models.

3.2. Simulation of Machine Learning Models Based on Climate Forcings Only

The time series of the observed and simulated runoff from multiple machine learning
models in Experiment 1 are shown in Figure 3. Here, we only present results from 2021
to 2022 during the evaluation period to make sure the time series information is readable,
while results for the entire training and evaluation periods are shown in Figure S5 of the
Supplementary Material. Evaluation metrics for both the training and evaluation periods
are shown in Table 4.

In Experiment 1, all machine learning models demonstrate the best performance in
the West River sub-basin and the poorest performance in the North River sub-basin, con-
sistent with that of the WAPABA simulation (Figure 2). These results suggest that despite
differences in the structures and algorithms of the models, using the same input data can
lead to similar simulation outcomes across different river basins. The differences between
model simulations and observations might be attributable to unaccounted hydrological
processes by the models in the sub-basin, such as anthropogenic disturbances (reservoir
operation and water withdrawal) on natural water cycling.

Compared with the WAPABA model, all machine learning models of Experiment 1
exhibit noticeably higher RMSE and lower r and NSE during the evaluation period in the
North and the East River sub-basins. Specifically, the average RMSE, r, and NSE values of
machine learning models in the North River sub-basin are 63.31, 0.65, and 0.42, respectively,
while the WAPABA model shows values of 51.33, 0.84, and 0.62 during the calibration
period. In the East River sub-basin, machine learning models produce evaluation metrics of
37.82, 0.75, and 0.54, slightly worse than the WAPABA model’s values of 31.27, 0.83, and 0.69,
for RMSE, r, and NSE, respectively. Evaluation metrics show slightly worse performance
of the machine learning models relative to WAPABA in the West River sub-basin. In this
sub-basin, the average RMSE, r, and NSE values of machine learning models are 18.70, 0.87,
and 0.75, respectively, and the WAPABA model shows values of 17.83, 0.88, and 0.77. The
results indicate that machine learning methods in Experiment 1 underperformed compared
to the WAPABA model when the model input included meteorological variables only. It
is noteworthy that, except for the LR model, all machine learning models exhibited NSE
values less than 0.5 in the North River sub-basin, indicating the limitations of Experiment 1
in simulating the streamflow of this sub-basin.
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Table 4. Performance of machine learning models in Experiment 1 during the training (January
1954to December 1986) and the evaluation period (January 2004 to May 2023) in different sub-
basins. The unit of Bias and RMSE is mm/month, and the other two evaluation metrics (r and NSE)
are unitless.

LSTM SVM GPR LR XGB LGBM

North River Sub-Basin

Training Period

Bias 1.33 −7.46 −0.10 0.00 −4.86 0.96
RMSE 59.12 59.31 58.72 62.37 47.62 52.01

r 0.70 0.70 0.70 0.65 0.83 0.79
NSE 0.48 0.48 0.49 0.42 0.66 0.60

Evaluation Period

Bias 2.45 −8.23 −1.04 −4.26 −2.34 3.59
RMSE 62.53 64.68 64.41 57.31 66.20 64.71

r 0.67 0.64 0.64 0.74 0.60 0.63
NSE 0.43 0.39 0.40 0.52 0.36 0.39

East River Sub-Basin

Training Period

Bias 1.34 −4.84 0.00 0.01 −2.58 1.24
RMSE 33.85 32.18 31.20 35.80 25.01 31.20

r 0.84 0.86 0.86 0.81 0.92 0.87
NSE 0.70 0.73 0.74 0.66 0.83 0.74

Evaluation Period

Bias 2.21 −3.77 −2.16 −2.52 0.56 0.92
RMSE 36.14 37.46 37.61 36.24 40.92 38.53

r 0.77 0.75 0.75 0.77 0.71 0.72
NSE 0.58 0.55 0.55 0.58 0.46 0.52

West River Sub-Basin

Training Period

Bias 0.77 −2.12 0.00 0.22 −5.75 0.22
RMSE 22.25 20.55 20.60 22.83 19.64 21.04

r 0.86 0.89 0.88 0.85 0.91 0.89
NSE 0.74 0.78 0.78 0.73 0.80 0.77

Evaluation Period

Bias 0.49 −3.25 −2.83 −2.41 −6.26 1.10
RMSE 17.83 17.99 18.64 19.12 19.36 19.25

r 0.88 0.88 0.87 0.86 0.87 0.86
NSE 0.77 0.76 0.75 0.73 0.73 0.73

3.3. Simulations of Machine Learning Models with Antecedent Runoff Input

Meteorological conditions play a crucial role in determining water entering (e.g.,
precipitation) and leaving (e.g., evapotranspiration) river basins. However, using these
variables as the only input for machine learning modeling could not represent water storage
in river basins well. This limitation may have resulted in the worse performance of machine
learning models (Experiment 1) than the WAPABA model (Figures 2 and 3, Table 4). To
better represent the process of water storage within the river sub-basin, we used runoff of
the previous month as an additional input variable to drive machine learning simulations.

The evaluation metrics of three experiments during the evaluation period are shown
in Figure 4. Evaluation metrics during the training period are shown in Figure S6 of the
Supplementary Material. The simulated streamflow by multiple machine learning models
in Experiments 2 and 3 are shown in Figures S7 and S8 of the Supplementary Material.
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The evaluation metrics of Experiment 2 are shown in Table S2 of Supplementary Material,
while the metrics of Experiment 3 are shown in Table 5.
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In each sub-basin, most of the models have lower RMSE as well as higher r and NSE
in Experiments 2 and 3 compared with those of Experiment 1, indicating that adding runoff
of the previous month as an additional input variable effectively improves the performance
of machine learning models (Figure 4). Furthermore, almost all models in Experiment 3
demonstrate better performance than those in Experiment 2, as suggested by the lower
RMSE as well as higher r and NSE. Therefore, including the previous month’s runoff could
significantly improve the performance of machine learning models, and using observed
runoff data could achieve better performance than using simulated runoff.
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Table 5. Evaluation metrics for machine learning models in Experiment 3 and the WAPABA model
during the evaluation period in different river sub-basins. The unit of Bias and RMSE is mm/month,
and the other two evaluation metrics (r and NSE) are unitless. Bold text indicates models with
better performance.

WAPABA LSTM SVM GPR LR XGB LGBM

North River sub-basin

Bias −9.80 −3.13 −13.19 −2.90 −7.03 −6.11 −2.52
RMSE 51.33 53.12 62.37 54.36 54.66 59.90 59.79

r 0.84 0.79 0.69 0.77 0.77 0.72 0.71
NSE 0.62 0.59 0.43 0.57 0.57 0.48 0.48

East River sub-basin

Bias −1.74 −2.71 −4.77 −2.59 −3.69 −0.21 −0.33
RMSE 31.27 23.67 27.07 31.78 28.66 30.13 32.43

r 0.83 0.91 0.88 0.82 0.86 0.84 0.83
NSE 0.69 0.82 0.77 0.68 0.74 0.71 0.66

West River sub-basin

Bias −2.23 −1.85 −4.32 −1.56 −4.32 −4.93 0.10
RMSE 17.83 16.25 16.72 16.34 17.94 17.35 17.08

r 0.88 0.90 0.90 0.90 0.89 0.90 0.89
NSE 0.77 0.81 0.80 0.80 0.76 0.78 0.79

3.4. Comparison between Machine Learning Models and WAPABA

Figure 5 and Table 5 show the comparison of Bias and NSE of simulations by machine
learning models and the WAPABA model during the evaluation period. Except for the SVM,
XGB, and LGBM models in the North River sub-basin, the NSE of all model simulations
is higher than 0.5, showing the acceptable performance of machine learning models from
Experiment 3 in simulating runoff. Absolute biases are generally lower than 10 mm/month
or even 5 mm/month for most model simulations. Among all machine learning models,
LSTM demonstrates the highest NSE, which is also higher than that of the WAPABA model
in the East River and West River sub-basins. In the North River sub-basin, although the
WAPABA simulation has a larger bias than five of the six machine learning models, the
NSE, r, and RMSE suggest that it has slightly better performance than the machine learning
models (Figure 5).

We further visualize the performance of the machine learning models and WAPABA
using Taylor diagrams (Figure 6). Across the three sub-basins, the standard deviation
of observed runoff is higher than that in all model simulations, mainly because of the
underestimation of the peak runoff during the wet seasons (e.g., in June 2022). In the
North River sub-basin, the LSTM model exhibits the lowest RMSE and highest r among all
machine learning models, but it performs slightly worse than the WAPABA model in terms
of these two metrics. In the East and West River sub-basins, the WAPABA model shows
higher RMSE and lower r than machine learning models, indicating worse performance.
LSTM still exhibits the lowest RMSE and highest r in the East River sub-basin, while all
machine learning models demonstrate comparable results in these two metrics in the West
River sub-basin.

Figure 7 compares the observed and simulated Flow Duration Curves (FDCs) from
the WAPABA model as well as the LSTM method, which show better performance than
other machine learning models in Experiment 3 (the FDCs for the remaining models are
shown in Figure S9 in the Supplementary Material). The FDC depicts the probability that a
given runoff quantity is exceeded. Overall, the FDC for the WAPABA and the two best-
performing machine learning models demonstrate strong consistency with the observed
runoff, particularly during the dry seasons. However, for high-flow events, where the
exceedance probability is less than approximately 10%, model simulations in each basin are
significantly lower than observations. This suggests that these models underestimate runoff
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during the wet seasons. The LSTM model shows runoff values that are approximately
10% higher than those of the WAPABA model at low exceedance probabilities, suggesting
that its performance during wet seasons is slightly superior to that of the WAPABA model.
For low-flow events with exceedance probabilities higher than approximately 90%, both
LSTM and WAPABA are able to accurately reconstruct the magnitude of runoff in the North
River sub-basin. However, in the other two sub-basins, WAPABA tends to underestimate
streamflow in dry seasons by around 20%, while LSTM demonstrates better performance
in capturing the low streamflow.
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In summary, based on the selected evaluation metrics (RMSE, r, and NSE) and the
FDC, LSTM performs the best among all machine learning models tested in this study
(Figures 5 and 6). Compared with the WAPABA model, LSTM shows similar performance
as that of WABAPA in the North River sub-basin, but it performs better than WAPABA
in the East and West River sub-basins. For simulations in wet seasons, The LSTM model
shows slightly improved performance relative to the WAPABA model. The East River
and West River sub-basins also have better performance with the LSTM model relative
to WAPABA.

4. Discussion
4.1. Performance of Monthly Runoff Simulations

This investigation in the subtropical zone indicates that the overall performance of
machine learning models is better than or comparable with a widely used rainfall–runoff
model. The WAPABA model has been applied in climate change impact assessment and
seasonal runoff forecasting [46–48]. This study further confirms the effectiveness of the
model in applications in subtropical regions. Compared with the WAPABA model, the
overall performance of machine learning models is slightly poorer in the North River
sub-basin but better in the East and West River sub-basins. The comparable performance
between the LSTM and the WAPABA model is consistent with the conclusions drawn by
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Clark et al. [37], who found that the LSTM model performed better in 69% of the catchments
in Australia when compared to the WAPABA model.

During the wet seasons, WAPABA demonstrates a larger negative bias in the ex-
treme runoff simulations compared to LSTM. This indicates that machine learning models
have greater potential in improving the prediction of extreme events, as reported by
Frame et al. [38], who demonstrated that the performance of the LSTM model in simulating
streamflow of high return periods was better than a conceptual model and a process-based
model across the United States.

With the increasing use of machine learning-based models in hydrological mod-
eling in recent years, concerns are growing about the performance of such data-driven
models [18,78]. Our study confirms the suitability of machine learning models for
rainfall–runoff simulation in subtropical basins, especially the LSTM approach, which
performs comparably or better than the conceptual rainfall–runoff model.

4.2. Deep Learning in Rainfall–Runoff Modeling

Deep learning models provide a powerful method for learning and representing
complex, non-linear patterns from data, which is mainly due to their multilayer structure
and non-linear activation functions [79]. Models like LSTM consist of multiple hidden layers
of neurons, each of which takes the output from the previous layer as input and processes
it by utilizing non-linear activation functions, enabling the network to capture a variety
of complex processes [80]. Meanwhile, the stacked structure of these models facilitates
the understanding and learning of complex interactions between different features [81].
These characteristics equip deep learning models with more robust capability in handling
complex and non-linear problems, such as hydrological processes, when compared to linear
models (e.g., LR) and models dealing with simple nonlinearities (e.g., SVM and GPR).

Among the six distinct machine learning models investigated in this study, LSTM,
which belongs to the category of deep learning, exhibits superior performance in simulating
the rainfall–runoff relationship across different river basins. This result suggests that this
model is more suitable for monthly streamflow simulations than other machine learning
models. The superior performance of the LSTM from this study is in line with the fact that it
has been widely applied in hydrology [82]. This finding also provides valuable implications
for the selection of machine learning models in future hydrological investigations.

4.3. Strategies for Setting Up Machine Learning Models in Rainfall–Runoff Modeling

Compared with traditional hydrological models, which simulate key components of
the terrestrial water cycle (e.g., infiltration, evapotranspiration, and groundwater recharge),
insufficient representation of water accumulation in water pools is limiting the performance
of machine learning models in simulating streamflow. Our Experiment 1 suggested that
when using meteorological variables alone as inputs, machine learning-based simulations
could not reconstruct streamflow well. Before runoff generation, precipitation undergoes
infiltration, evapotranspiration, and exchanges with basin storages. In these processes,
water storage in soil and aquifers significantly modulates the amount of water that even-
tually becomes runoff and shapes the temporal patterns of streamflow [83]. Traditional
hydrological models, such as WAPABA, use state variables (e.g., Smax and K) to simulate
the accumulation of water in these pools and the subsequent release of water to river chan-
nels. However, machine learning methods do not have such variables, limiting this type of
model in simulating temporally continuous processes [16]. Using meteorological variables
as the only input will not allow machine learning models to simulate water storage in soils
and groundwater pools (Figure 3 and Table 4). This could explain the inferior performance
of these machine learning models relative to that of the WAPABA model in Experiment 1
(Table 4).

In addition, although including river basin properties as input variables contributes to
improving streamflow simulations with machine learning models, these datasets are not
always readily available, challenging the inclusion of basin-specific information in hydro-
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logical modeling based on machine learning models. To account for the spatial variability
of streamflow, watershed characteristics (e.g., plant growth, reservoir operations, soils,
and topography) are also treated as predictors of streamflow modeling based on machine
learning models across multiple river basins. However, using watershed properties as
inputs often may require substantial efforts in data collection [84–86].

Our modeling experiments provide valuable information for dealing with the above
two limitations in hydrological modeling using machine learning models. The streamflow
of the previous month carries the information on how precipitation is transformed into
runoff and thus could be used as a surrogate variable to represent the impacts of both
water storage and watershed properties on streamflow [87]. The improvement in model
performance with the adoption of the previous month’s runoff as model input confirms the
necessity of dealing with the intrinsic limitations of machine learning models in modeling
continuous hydrological processes and provides a cost-effective solution for consider-
ing watershed properties in streamflow modeling. The strategy (Experiments 2 and 3)
tested in this study could be used in future applications of machine learning models in
streamflow simulation.

Success in improving the performance of machine learning models by incorporating
streamflow observation from the previous month (e.g., Experiment 3) indicates the advan-
tage of such data-driven models. Recent studies have demonstrated that applying machine
learning techniques can significantly improve the performance of the original model in data
assimilation in the Earth’s system learning [88,89]. The strategy of incorporating previous
observational data information to enhance the performance of data-driven models can be
adopted by future applications of machine learning models.

Machine learning methods are often more computationally efficient than process-
based models. In addition, using machine learning models does not require expertise
and understanding of hydrological processes, making them quickly adopted by a broad
range of stakeholders. Such conveniences and their rapidly evolving power in simulating
complex processes make machine learning models very promising techniques in helping
move hydrologic modeling forward.

Although the WAPABA model exhibited worse performance than the LSTM model in
our study, its advantage in simulating the physical processes of the water cycle should not
be ignored. The WAPABA model employs simplified physical equations to represent water
storage processes within watersheds, providing a degree of physical constraint and inter-
pretability, which are pitfalls of machine learning models. However, the oversimplification
of these processes in WAPABA may also introduce uncertainties to runoff simulations.
Considering the advantages and disadvantages of both types of models, we believe that
developing hybrid modeling frameworks to couple both process-based and data-driven
models could be a promising direction in future hydrological modeling.

More broadly, this study further emphasizes the importance of a physics-guided
setting in machine learning modeling. Traditionally, many users adopt the machine learning
model as a black-box approach, focusing on the input and output only, without learning
the physical processes. While such a black-box approach can still provide reasonable
simulations in many cases, increasing investigations suggest the necessity of reflecting a
certain degree of the physical processes in the applications of such models [90,91]. Our
investigation suggested that a good understanding of the physical processes is essential for
maximizing machine learning models’ capability in simulating complex processes.

4.4. Future Work

Although this investigation confirms the suitability of machine learning models in
monthly rainfall–runoff modeling, especially LSTM techniques, further investigations are
still required to address a few challenges in the application of machine learning models
in hydrology.

First, machine learning modeling processes that map directly from inputs to outputs
can obscure basin-specific details, which is unfeasible for fully characterizing the individu-
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ality of watersheds [92,93]. Thus, traditional data-driven models should be complemented
with physics-informed approaches as they lack physical constraints and interpretabil-
ity. In recent years, researchers have begun to work on building a hybrid framework
that combines physical processes with deep learning structures to address such limita-
tions [16,94]. This framework has been utilized in rainfall–runoff modeling [18], revealing
flood mechanisms [34,95], and predicting groundwater levels [96,97]. These works reveal
physical mechanisms to some extent while using machine learning structures in hydrologic
modeling, which is at the frontier of research in this field.

Second, applications of machine learning models in simulating high flows need to
be further investigated. Machine learning models require ample data for optimal perfor-
mance. However, the mechanism regulating extreme runoff differs from the rainfall–runoff
relationship of normal flows [98,99]. As a result, models trained on normal flow periods
may not be suitable for predicting extreme flows. A possible solution to this limitation is
to generate ‘virtual’ extreme events to increase training samples, thereby improving the
model’s prediction of extreme events [100]. In addition, using generative AI, such as the
Generative Adversarial Network (GAN), has the potential to simulate large flow events
but requires additional testing in future studies [101].

5. Conclusions

In this study, we carried out a comprehensive evaluation of the performance of six
machine learning models in simulating monthly runoff across three subtropical sub-basins
of the Pearl River Basin. These models’ performance compared to a traditional hydrological
model, different strategies for setting up model simulations, and model performance in
simulating extreme runoff were thoroughly evaluated. The findings of this study include:

(1) LSTM performs better in simulating runoff in the PRB relative to the other five
machine learning models (SVM, GPR, LR, XGB, LGBM), with about 11.7%, 5.1%, and
10.8% improvements in RMSE, r, and NSE, respectively.

(2) Adding the previous month’s runoff as an additional input variable can achieve better
performance than using meteorological forcing only, and using observed runoff as
input can achieve better performance than using simulated runoff of the last month.

(3) LSTM outperforms the WAPABA model in two out of three sub-basins. Although
all models underestimate the peak streamflow, the performance of the LSTM model
is slightly better than that of WAPABA in all sub-basins during wet seasons. Addi-
tionally, the LSTM performs slightly better than WAPABA in the East River and West
River sub-basins.

The findings of this study on the relative performance of different machine learning
models to a conventional hydrological model provide evidence of the suitability of using
these models in hydrological studies in subtropical regions. The strategies for setting
up the model will help guide the future use of machine learning models in simulating
runoff and hydrological forecasting. We suggest that future research could expand upon
the methodologies used in this study by incorporating more comprehensive input data,
such as a longer range of antecedent conditions and basin characteristics, into machine
learning models. Such enhancements could potentially resolve the limitations exhibited
in the present study and further increase the performance and interpretability of machine
learning models.

Supplementary Materials: The following Supplementary Material can be downloaded at: https://
www.mdpi.com/article/10.3390/w16152199/s1, Figure S1: Schematic diagram of the WAPABA (water
partition and balance) model. P means precipitation, and ET means reference crop evapotranspiration;
Figure S2: Schematic diagram of the Long Short-Term Memory Network; Figure S3: Schematic
diagram of the Support Vector Machine; Figure S4: RMSE, NSE, and r for different input time lags
(months ahead) for the LSTM model; Figure S5: Runoff simulations using multiple machine learning
models in Experiment 1 against observations among different sub-basins in training (1954–1986) and
evaluation (2004–2023) periods; Figure S6: Root Mean Squared Error (RMSE), Correlation Coefficient
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(r), and Nash Sutcliffe efficiency coefficient (NSE) of different machine learning models in Experiments
1, 2, and 3 during the training period. Note that Experiments 2 and 3 have the same training results;
Figure S7: Runoff simulations using multiple machine learning models in Experiment 2 against
observations among different sub-basins in training (1954–1986) and evaluation (2004–2023) periods;
Figure S8: Runoff simulations using multiple machine learning models in Experiment 3 against
observations among different sub-basins in training (1954–1986) and evaluation (2004–2023) periods;
Figure S9: The Flow Duration Curves (FDCs) of observations and simulations by all machine learning
models and WAPABA in Experiment 3 in the North, East, and West River sub-basins. The x-axis
represents the exceedance probability, indicating the probability that a specific runoff amount equals
or exceeds a given runoff level shown on the y-axis; Table S1: Statistical summary of variables used
in this study. ‘Mean’ refers to the average value, ‘Std’ refers to the standard deviation. ‘Min’ refers to
the minimum value in the data. ‘25%’, ‘50%’, and ‘75%’ refer to the 25th, 50th, and 75th percentiles,
indicating that 25%, 50%, and 75% of the data values are lower than this value, respectively. ‘Max’
refers to the maximum value in the data; Table S2: Evaluation metrics results among each machine
learning model in Experiment 2 during the training (January 1954to December 1986) and evaluation
periods (January 2004 to May 2023) in different river sub-basins. The unit of Bias and RMSE is
mm/month, and the other two evaluation metrics (r and NSE) are unitless. Note that the training
results of Experiment 3 are the same as those in Experiment 2.

Author Contributions: Conceptualization, Q.Y.; methodology, H.Y. and Q.Y.; software, H.Y. and
Q.Y.; validation, H.Y. and Q.Y.; formal analysis, H.Y. and Q.Y.; investigation, Q.Y.; resources, Q.Y.;
data curation, Q.Y.; writing—original draft preparation, H.Y. and Q.Y.; writing—review and editing,
Q.Y.; visualization, H.Y.; supervision, Q.Y.; project administration, Q.Y.; funding acquisition, Q.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Hongkong-Macau Center of Ocean Research (CORE)
2023 program (CORE is a joint research center for ocean research between Laoshan Laboratory and
HKUST), the Guangzhou Technology Bureau and Hongkong University of Science and Technology
2023 joint program (SL2024A03J00999), and the Chinese Academy of Science Earth System simulator
program (elpt_2023_000430). The work described in this paper was substantially supported by a
grant from the Research Grants Council of the Hong Kong Special Administrative Region, China
(Project Reference Number: AoE/P-601/23-N).

Data Availability Statement: Data in this study are accessible from public resources. The meteo-
rological data are derived from ECMWF ERA5-Land (https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-land, accessed on 10 June 2023). The boundaries of river sub-basins
and streamflow gauge stations records are derived from GRDC (https://grdc.bafg.de/GRDC/EN/
Home/homepage_node.html, accessed on 10 June 2023) and the Ministry of Water Resources, PRC
(http://xxfb.mwr.cn/, accessed on 10 June 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert

calibration. J. Geogr. Sci. 1999, 4, 135–143. [CrossRef]
2. Sajikumar, N.; Remya, R. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468.

[CrossRef] [PubMed]
3. Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure

analysis and scale characteristics. J. Geogr. Sci. 2018, 28, 59–78. [CrossRef]
4. Zhang, G.; Chan, K.; Oates, A.; Heenan, D.; Huang, G. Relationship between soil structure and runoff/soil loss after 24 years of

conservation tillage. Soil Tillage Res. 2007, 92, 122–128. [CrossRef]
5. Dallison, R.J.; Patil, S.D.; Williams, A.P. Impacts of climate change on future water availability for hydropower and public water

supply in Wales, UK. J. Hydrol. Reg. Stud. 2021, 36, 100866. [CrossRef]
6. Masseroni, D.; Cislaghi, A.; Camici, S.; Massari, C.; Brocca, L. A reliable rainfall–runoff model for flood forecasting: Review and

application to a semi-urbanized watershed at high flood risk in Italy. Hydrol. Res. 2017, 48, 726–740. [CrossRef]
7. Mishra, V.; Aaadhar, S.; Shah, H.; Kumar, R.; Pattanaik, D.R.; Tiwari, A.D. The Kerala flood of 2018: Combined impact of extreme

rainfall and reservoir storage. Hydrol. Earth Syst. Sci. Discuss. 2018, 2018, 1–13.
8. He, C.; Chen, F.; Long, A.; Qian, Y.; Tang, H. Improving the precision of monthly runoff prediction using the combined

non-stationary methods in an oasis irrigation area. Agric. Water Manag. 2023, 279, 108161. [CrossRef]

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://grdc.bafg.de/GRDC/EN/Home/homepage_node.html
https://grdc.bafg.de/GRDC/EN/Home/homepage_node.html
http://xxfb.mwr.cn/
https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
https://doi.org/10.1016/j.jenvman.2014.12.041
https://www.ncbi.nlm.nih.gov/pubmed/25575849
https://doi.org/10.1007/s11442-018-1459-z
https://doi.org/10.1016/j.still.2006.01.006
https://doi.org/10.1016/j.ejrh.2021.100866
https://doi.org/10.2166/nh.2016.037
https://doi.org/10.1016/j.agwat.2023.108161


Water 2024, 16, 2199 21 of 24

9. Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768.
[CrossRef] [PubMed]

10. Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under
climate change. J. Hydrol. 2021, 603, 126994. [CrossRef]

11. Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.
Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [CrossRef]

12. Abrahart, R.J.; See, L.M.; Solomatine, D.P. Practical Hydroinformatics: Computational Intelligence and Technological Developments in
Water Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 68.

13. Nearing, G.S.; Kratzert, F.; Sampson, A.K.; Pelissier, C.S.; Klotz, D.; Frame, J.M.; Prieto, C.; Gupta, H.V. What Role Does
Hydrological Science Play in the Age of Machine Learning? Water Resour. Res. 2021, 57, e2020WR028091. [CrossRef]

14. Liu, J.; Yuan, X.; Zeng, J.; Jiao, Y.; Li, Y.; Zhong, L.; Yao, L. Ensemble streamflow forecasting over a cascade reservoir catchment
with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 265–278. [CrossRef]

15. Gauch, M.; Kratzert, F.; Gilon, O.; Gupta, H.; Mai, J.; Nearing, G.; Tolson, B.; Hochreiter, S.; Klotz, D. In Defense of Metrics:
Metrics Sufficiently Encode Typical Human Preferences Regarding Hydrological Model Performance. Water Resour. Res. 2023,
59, e2022WR033918. [CrossRef] [PubMed]

16. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

17. Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Comparison of different methodologies for rainfall–runoff
modeling: Machine learning vs. conceptual approach. Nat. Hazards 2021, 105, 2987–3011. [CrossRef]

18. Herath, H.M.V.V.; Chadalawada, J.; Babovic, V. Hydrologically informed machine learning for rainfall–runoff modelling: Towards
distributed modelling. Hydrol. Earth Syst. Sci. 2021, 25, 4373–4401. [CrossRef]

19. Kao, I.F.; Zhou, Y.; Chang, L.-C.; Chang, F.-J. Exploring a Long Short-Term Memory based Encoder-Decoder framework for
multi-step-ahead flood forecasting. J. Hydrol. 2020, 583, 124631. [CrossRef]

20. Wang, J.-H.; Lin, G.-F.; Chang, M.-J.; Huang, I.H.; Chen, Y.-R. Real-Time Water-Level Forecasting Using Dilated Causal Convolu-
tional Neural Networks. Water Resour. Manag. 2019, 33, 3759–3780. [CrossRef]
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