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Text S1. Details of the Wapaba model 

Referring to Wang, et al. [1], the Wapaba model (Figure S1) calculations consist of five 

stages: 

1.Total rainfall P(t) in time step t is partitioned to basin water consumption X(t) 

and yield Y(t). Catchment water consumption is the rainfall that replenishes the 

soil water stored and returns it to the atmosphere through evapotranspiration. The 

remaining rainfall is the catchment water yield. 

2. Total water available for evapotranspiration W(t) is partitioned to actual 

evapotranspiration ET(t) and water remaining in the soil water store S(t). 

3. The catchment water yield is partitioned into surface runoff Qs(t) and water that 

replenishes the groundwater store R(t). 

4. The groundwater store is drained to give base flow Qb(t). 

5. The surface runoff and base flow are summed to give the total monthly 

flow Q(t). 

The following equations are: 

𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
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)

𝛼

]
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𝛼

(S1) 

𝑋(𝑡) = 𝑋0(𝑡)𝐹 (
𝑃(𝑡)

𝑋0(𝑡)
, 𝛼1) (S2) 

𝑋0(𝑡) = 𝐸𝑇𝑜(𝑡) + (𝑆𝑚𝑎𝑥 − 𝑆(𝑡 − 1)) (S3) 

𝑌(𝑡) = 𝑃(𝑡) − 𝑋(𝑡) (𝑆4) 

𝑊(𝑡) = 𝑆(𝑡 − 1) + 𝑋(𝑡) (𝑆5) 

𝐸𝑇(𝑡) = 𝐸𝑇𝑜(𝑡)𝐹 (
𝑊(𝑡)

𝐸𝑇𝑂(𝑡)
, 𝛼2) (𝑆6) 

𝑆(𝑡) = 𝑊(𝑡) − 𝐸𝑇(𝑡) (𝑆7) 

𝑅(𝑡) = 𝛽𝑌(𝑡) (𝑆8) 

𝑄𝑠(𝑡) = 𝑌(𝑡) − 𝑅(𝑡) (𝑆9) 



𝑄𝑏(𝑡) = 𝐺(𝑡 − 1) (1 − 𝑒−
𝑇
𝐾) + 𝑅(𝑡) (1 − (

𝐾

𝑇
) (1 − 𝑒−

𝑇
𝐾)) (𝑆10) 

𝐺(𝑡) = 𝐺(𝑡 − 1) + 𝑅(𝑡) − 𝑄𝑏(𝑡) (𝑆11) 

𝑄(𝑡) = 𝑄𝑠(𝑡) + 𝑄𝑏(𝑡) (𝑆12) 

where F() is as Equation (S1), referring to consumption curves, α1 is the catchment 

consumption curve parameter, and X0(t) is the catchment water potential consumption. 

ET0(t) is the potential evapotranspiration, S(t − 1) is the amount of water held in the 

soil store at the end of time step t − 1, and Smax is the maximum water-holding 

capacity of the soil store. α2 is the evapotranspiration curve parameter. Parameter β is 

the proportion of the catchment water yield as groundwater. K is a time constant (in 

units of time) to produce base flow. T is the length of time step t. 

 Five parameters need to be calibrated in WAPABA, which are Smax, α1, α2, β, and 

K. 

                              

 

Figure S1. Schematic diagram of the WAPABA (water partition and balance) model. P means 

https://www.sciencedirect.com/science/article/pii/S0022169411002794#e0010


precipitation and ET means reference crop evapotranspiration. 

 

 

Text S2. Details of the LSTM model 

The LSTM model architecture encompasses multiple components, each serving a 

specific purpose in the sequence learning process. An LSTM layer is designed with 

the following components: 

Forget Gate: The forget gate ft regulates the amount of information to discard from 

the cell state and is computed as:  

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (𝑆13)  

Input Gate: The input gate it determines which new information to store in the cell 

state and is calculated as:  

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (𝑆14) 

Candidate Cell State: The candidate cell state 𝑐𝑡̃ computes the new candidate 

values that could be added to the cell state:  

𝑐𝑡̃ = tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (𝑆15) 

Cell State Update: The cell state ct is updated based on the forget gate, input gate, 

and candidate cell state:  

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡̃ (𝑆16)

Output Gate: The output gate ot determines what information should be output as the 

hidden state and is computed as:  

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (𝑆17) 

Hidden State Update: The hidden state ht is updated by applying the output gate to 

the cell state:  

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (𝑆18) 

where Wf, Wi, WC, Wo are weight matrices for the forget gate, input gate, 

candidate cell state, and output gate, respectively; bf, bi, bC, bo are bias terms 

corresponding to the forget gate, input gate, candidate cell state, and output gate, 

respectively; σ is the sigmoid function used to compute the outputs of the gates; tanh 



is the hyperbolic tangent function used to calculate the candidate cell state; ht−1 

represents the previous time step's hidden state; xt represents the input at the current 

time step; ft is the output of the forget gate, controlling what information to forget 

from the cell state; it is the output of the input gate, controlling the flow of new 

information into the cell state; Ct̃ represents the candidate cell state, calculating the 

new candidate values to be added to the cell state; Ct is the cell state at the current 

time step, representing the memory at that moment; ot is the output of the output 

gate, controlling the flow of information from the cell state to the hidden state; and ht 

is the hidden state at the current time step, representing the output at that moment. 

 

Figure S2. Schematic diagram of the Long Short-Term Memory Network. 

Text S3. Details of the SVM model 

Given a training set (xi, yi) with m samples, where xi ∈ Rn represents the input 

feature vector and yi ∈ R is the corresponding target variable, the SVM model aims 

to find a prediction function: 

f(x) = ∑ αiK(xi, x)

m

i=1

+ b (𝑆19) 

This function needs to satisfy the following constraints for all i: 

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ ϵ + ξ𝑖 (𝑆20) 

yi − f(xi) ≤ ϵ + ξi (𝑆21) 

ξi ≥ 0 (𝑆22) 

∑ αi

m

i=1

≤ C (𝑆23) 



where 𝑓(𝑥𝑖) is the predicted output, 𝑦𝑖 is the actual target output, ϵ is the 

margin of tolerance, ξi are slack variables, and 𝛼 is the Lagrange multiplier, which 

is constrained by the penalty parameter, 𝐶. The optimization problem of the SVR 

model with Radial Basis Function (RBF) kernel can be formulated as minimizing the 

loss function while meeting the constraints: 

min
α,b,ξ

(
1

2
∑ αiαjK(xi, xj)

i,j

+ C ∑(ξi + ξi
∗)

m

i=1

) (𝑆24) 

 where 𝜉𝑖
∗  typically represents the optimal value of the slack variable 𝜉𝑖 after 

solving the optimization problem. This loss function is subjected to the following 

constraints:  

yi − ∑ αjK(xj, xi)

m

j=1

− b ≤ ϵ + ξi (𝑆25) 

∑ αiK(xi, xj)

m

i=1

+ b − yj ≤ ϵ + ξj
∗ (𝑆26) 

ξi, ξi
∗ ≥ 0 (𝑆27) 

 where K represents the kernel function and b is the bias terms. By solving this 

optimization problem, the optimal SVR model parameters 𝛼 and b can be obtained. 

 

Figure S3. Schematic diagram of the Support Vector Machine. 

Text S4. Details of the GPR model 



Assuming the coordinates of the i-th point in space are 𝑥(𝑖) and the data output at that 

point is 𝑦(𝑖), the expression of the GPR model is given by: 

y(i) = f(x(i)) + ε (𝑆28) 

where 𝜀 represents the noise variable, which follows a normal distribution 

𝒩(0, σ2). In GPR, we assume that the function 𝑓(𝑥(𝑖)) follows a Gaussian process: 

f(x(i)) ∼ 𝒢𝒫(m(x), K(x, x′)) (𝑆29) 

where 𝑚(𝑥) is the mean function, and 𝐾(𝑥, 𝑥′) is the covariance function, also 

known as the kernel function. In this study, we use the RBF function: 

𝐾(𝑥, 𝑥′) = σ𝑓
2 exp (−

||𝑥 − 𝑥′||
2

2𝑙2
) (𝑆30) 

where 𝑥 and 𝑥′ are two points in the input space, ||𝑥 − 𝑥′||
2
 denotes the 

squared Euclidean distance between them, 𝜎𝑓
2 is the variance of the process, 

representing the variation of function outputs, and l is the length scale parameter, 

determining the smoothness or feature-length scale of the function values in the input 

space. By utilizing the optimization methods in Python, we can solve the optimal 

parameters of the model and make predictions. 

Text S5. Details of the LR model 

The Lasso Regression model is defined by the following objective function: 

minβ0,β {
1

2N
∑(yi − β0 − xi

Tβ)
2

N

i=1

+ λ|β|1} (𝑆31) 

where N is the number of observations, 𝑦𝑖 represents the dependent variable for 

the ith observation, xiis a feature vector for the 𝑖𝑡ℎ observation, 𝛽0 is the intercept, 

𝛽 denotes the vector of coefficients associated with the features, 𝜆 is a non-negative 

regularization parameter controlling the strength of the L1 penalty, and |𝛽|1$ 

represents the L1 norm of the coefficient vector, promoting sparsity in the model 

parameters. A coordinate descent algorithm was used for optimizing the Lasso 



Regression model, iteratively minimizing the objective function by updating one 

coefficient at a time until convergence. 

Text S6. Details of the XGB model 

The objective function of XGBoost integrates two components: the training loss 

and the regularization term, expressed as: 

Obj = ∑ l(yi, ŷi)

n

i=1

+ ∑ k = 1K Ω(fk) (𝑆32) 

where 𝑙(𝑦𝑖 , 𝑦̂𝑖) denotes the loss function comparing the predicted value 𝑦̂𝑖 to 

the actual value 𝑦𝑖, and Ω(𝑓𝑘) represents the regularization term for the kth tree, 

aimed at controlling model complexity. The regularization term is defined as: 

Ω(f) = γT +
1

2
λ ∑ wj

2

T

j=1

(𝑆33) 

in which T is the number of leaves in the tree, wj is the weight of the jth leaf, 

and 𝛾 and 𝜆 are parameters that regulate the complexity of the tree and the square 

sum of the leaf weights, respectively. The model utilizes a gradient boosting 

framework, applying a coordinate descent algorithm to efficiently update the model 

by optimizing one coefficient at a time until convergence, which can be achieved by 

Python. 

Text S7. Details of the LGBM model 

The objective function of LightGBM integrates two components: the training loss 

and the regularization term, expressed as the equations (32) and (33), like XGB. The 

optimization of the objective function in LGBM is achieved through a gradient-based 

approach that iteratively updates the model by constructing new trees that predict the 

gradients of the loss with respect to the model's predictions, which is different from 

XGB. Such optimization processes can also be achieved by Python. 

 

 

 



 

 

 

Text S8. Other figures and tables in the supporting information 

 

Figure S4. RMSE, NSE, and r for different input time lags (months ahead) for the LSTM model. 

 



 

Figure S5. Runoff simulations using multiple machine learning models in Experiment 1 against 

observations among different sub-basins in the training (1954-1986) and evaluation (2004-2023) 

periods. 

 

 

 

 



 

Figure S6. Root Mean Squared Error (RMSE), Correlation Coefficient (r), and Nash Sutcliffe 

efficiency coefficient (NSE) of different machine learning models in Experiments 1, 2, and 3 during the 

training period. Note that Experiments 2 and 3 have the same training results. 

 

 



 

Figure S7. Runoff simulations using multiple machine learning models in Experiment 2 against 

observations among different sub-basins in the training (1954-1986) and evaluation (2004-2023) 

periods. 

 

 

 

 



 

Figure S8. Runoff simulations using multiple machine learning models in Experiment 3 against 

observations among different sub-basins in the training (1954-1986) and evaluation (2004-2023) 

periods. 

 

 



 

Figure S9. The Flow Duration Curves (FDC) of observations and simulations by all machine learning 

models and WAPABA in Experiment 3 in the North, East, and West River sub-basins. The x-axis 

represents the exceedance probability, indicating the probability that a specific runoff amount equals or 

exceeds a given runoff level shown on the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Statistical summary of variables used in this study. ‘Mean’ refers to the average value, ‘Std’ 

refers to the standard deviation. ‘Min’ refers to the minimum value in the data. ‘25%’, ‘50%’, and 

‘75%’ refer to the 25th, 50th, and 75th percentiles, indicating that 25%, 50%, and 75% of the data values 

are lower than this value, respectively. ‘Max’ refers to the maximum value in the data. 

 
Runoff 

(mm/month) 

Precipitation 

(mm/month) 

Vapor 

(kPa) 

Wind 

(m/s) 

Radiation 

(MJ/ (m2 

day) 

Maximum 

Temperature 

(℃) 

Minimum 

Temperature 

(℃) 

North River sub-basin 

Mean 89.05 161.04 1.81 0.66 11.62 22.40 12.22 

Std 82.25 125.54 0.73 0.35 3.02 6.00 5.08 

Min 8.91 0.67 0.50 0.03 5.22 7.99 0.63 

25% 29.05 59.14 1.12 0.36 9.41 17.24 7.92 

50% 60.81 133.49 1.76 0.65 11.57 23.54 12.47 

75% 117.29 229.16 2.57 0.92 13.95 28.11 16.37 

Max 613.85 699.79 2.96 1.77 18.88 30.11 21.85 

East River sub-basin 

Mean 75.46 145.90 1.91 0.81 12.39 23.74 12.92 

Std 59.60 120.97 0.75 0.41 2.63 5.17 5.01 

Min 6.11 0.21 0.44 0.01 5.43 10.57 -0.92 

25% 36.38 46.12 1.21 0.48 10.44 19.46 8.82 

50% 55.97 113.20 1.87 0.79 12.36 25.07 13.09 

75% 96.26 221.10 2.69 1.12 14.30 28.56 16.93 

Max 502.54 620.96 3.06 1.88 18.57 30.23 22.48 

West River sub-basin 

Mean 50.46 150.11 1.71 0.63 11.25 21.72 12.60 

Std 41.58 97.62 0.62 0.27 2.70 5.32 4.08 

Min 8.02 9.45 0.62 0.19 5.40 8.16 2.41 

25% 18.16 67.23 1.13 0.44 8.97 17.17 9.34 

50% 34.75 124.56 1.66 0.57 11.50 23.14 13.52 



75% 72.49 222.63 2.33 0.75 13.49 26.65 15.85 

Max 225.02 468.19 2.68 2.10 17.09 28.75 19.60 

 

Table S2. Evaluation metric results among each machine learning model in Experiment 2 during the 

training (1954.01 to 1986.12) and evaluation periods (2004.01 to 2023.05) in different river sub-basins. 

The unit of Bias and RMSE is mm/month, and the other two evaluation metrics (r and NSE) are 

unitless. Note that the training results of Experiment 3 are the same as those in Experiment 2. 

 LSTM SVM GPR LR XGB LGBM 

North River Sub-Basin 

Training Period 

Bias -0.13 -7.63 -0.07 0.01 -2.53 0.95 

RMSE 54.22 53.79 57.31 56.97 42.97 46.93 

r 0.75 0.76 0.72 0.72 0.86 0.83 

NSE 0.56 0.57 0.51 0.52 0.73 0.67 

Evaluation Period 

Bias 4.78 -16.59 5.47 -10.78 -1.20 4.93 

RMSE 56.83 64.88 56.48 58.12 63.80 63.39 

r 0.79 0.68 0.79 0.74 0.66 0.67 

NSE 0.53 0.39 0.54 0.51 0.41 0.42 

East River Sub-Basin 

Training Period 

Bias -0.01 -3.51 -0.02 0.01 -1.59 0.59 

RMSE 28.79 27.95 25.78 32.92 20.72 29.87 

r 0.88 0.9 0.91 0.84 0.95 0.88 

NSE 0.78 0.79 0.82 0.71 0.89 0.76 

Evaluation Period 

Bias -2.06 -8.58 -0.72 -5.24 0.52 4.17 

RMSE 27.88 32.98 35.77 32.49 37.09 34.87 

r 0.87 0.82 0.78 0.82 0.76 0.79 

NSE 0.75 0.65 0.59 0.66 0.56 0.61 

West River Sub-Basin 

Training Period 

Bias 0.17 -1.06 0.00 0.07 -3.97 0.20 

RMSE 17.62 17.41 18.81 20.63 16.86 18.11 

r 0.92 0.92 0.90 0.88 0.93 0.92 

NSE 0.84 0.84 0.82 0.78 0.85 0.83 

Evaluation Period 

Bias -3.68 -7.53 -3.04 -6.81 -4.88 1.93 

RMSE 17.4 18.46 17.62 18.57 18.53 17.74 

r 0.89 0.89 0.88 0.89 0.89 0.89 

NSE 0.78 0.75 0.77 0.75 0.75 0.77 
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