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Abstract: This study addresses the pressing need for flood extent and exposure information in data-
scarce and vulnerable regions, with a specific focus on West Africa, particularly Senegal. Leveraging
the Google Earth Engine (GEE) platform and integrating data from the Sentinel-1 SAR, Global Surface
Water, HydroSHEDS, the Global Human Settlement Layer, and MODIS land cover type, our primary
objective is to delineate the extent of flooding and compare this with flooding for a one-in-a-hundred-
year flood event, offering a comprehensive assessment of exposure during the period from July
to October 2022 across Senegal’s 14 regions. The findings underscore a total inundation area of
2951 square kilometers, impacting 782,681 people, 238 square kilometers of urbanized area, and
21 square kilometers of farmland. Notably, August witnessed the largest flood extent, reaching
780 square kilometers, accounting for 0.40% of the country’s land area. Other regions, including
Saint-Louis, Ziguinchor, Fatick, and Matam, experienced varying extents of flooding, with the data
for August showing a 1.34% overlap with flooding for a one-in-a-hundred-year flood event derived
from hydrological and hydraulic modeling. This low percentage reveals the distinct purpose and
nature of the two approaches (remote sensing and modeling), as well as their complementarity. In
terms of flood exposure, October emerges as the most critical month, affecting 281,406 people (1.56%
of the population). The Dakar, Diourbel, Thiès, and Saint-Louis regions bore substantial impacts,
affecting 437,025; 171,537; 115,552; and 77,501 people, respectively. These findings emphasize the
imperative for comprehensive disaster preparation and mitigation efforts. This study provides
a crucial national-scale perspective to guide Senegal’s authorities in formulating effective flood
management, intervention, and adaptation strategies.

Keywords: flood extent mapping; flood exposition assessment; remote sensing; Google Earth Engine;
Sentinel-1; hydrological and hydraulic modeling

1. Introduction

The anticipated impacts of climate change are set to exacerbate the frequency and
severity of hydro-climatic extreme events, notably floods and droughts, in vulnerable
regions like numerous African countries [1]. Among these events, floods stand out as
being particularly prevalent and consequential in Africa [2]. Over the past two decades
(2002–2022), floods have accounted for 64% of all disasters on the continent. During this
period, Africa endured 793 flood disasters, resulting in over 16,900 fatalities, and adversely
affecting the lives of 58 million people [3]. Senegal, in particular, has borne a significant
burden from flooding, experiencing 13 flood events over the same period and impacting a
substantial 23,874,963 individuals [3]. The consequences, beyond the loss of human life,
extend to the destruction of farmland. Notably, the troubling trend of entire regions facing
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inundation on a biennial basis is on the rise. This increase can be attributed to a confluence
of factors, such as climate change, persistent poverty, and rapid urbanization [4,5].

The compounding effects of continuous socio-economic changes, including rapid
urbanization and agricultural expansion [6,7], further elevate the exposure to flooding.
These changes contribute significantly to the escalating flood risk, as evidenced by research
by Hirabayashi [8]. In essence, the convergence of climate change and anthropogenic factors
amplifies the challenges faced by regions like Senegal, necessitating a comprehensive
understanding of escalating disaster risk and effective risk management strategies to
safeguard both lives and livelihoods.

Although concerted mitigation efforts have been made by Senegalese authorities,
involving the construction of retention basins, pipelines, pumping stations, and even the
relocation of residents, the measures are insufficient [9,10]. A limiting factor is the absence
of comprehensive mapping of flood exposure. Such mapping is crucial to precisely target
spatially effective mitigation strategies, as emphasized by Li et al. [11], providing invaluable
insights for government and disaster relief agencies.

The lack of comprehensive flood mapping prevents the visualization of regions suscep-
tible to specific flood scenarios, as highlighted by Sy et al. [12]. Additionally, the absence of
detailed flood mapping hampers exposure assessments of people and assets for a one-in-a-
hundred-year flood event, a critical aspect emphasized by Muis et al. [13]. The lack of flood
hazard and exposure mapping undermines the ability of authorities to implement targeted
and efficient mitigation measures, hindering the overall efficacy of flood risk reduction
initiatives. Addressing these knowledge gaps is paramount for enhancing the resilience of
Senegal and ensuring that mitigation efforts align with the specific needs of the exposed
population and for a one-in-a-hundred-year flood event.

Significant progress has been made in mapping floods and assessing exposure at both lo-
cal and national scales, notably with the development of Earth observation systems equipped
with increased revisit frequency and a higher spatial resolution, along with easy access to
both satellite imagery and data from other sources [11,14]. The Google Earth Engine (GEE),
launched in 2010, has evolved into one of the world’s most extensive publicly accessible Earth
observation catalogs, amalgamating data from satellites and other sources. The GEE func-
tions as a geospatial data and image visualization and processing tool, providing access to a
plethora of international and regional datasets within the integrated code editor. This data is
complemented by cloud computing resources, facilitating the extraction of timely, precise, and
high-resolution information about the Earth’s surface. Access to the GEE is freely available
for academic and scientific research purposes (https://earthengine.google.com/platform/,
accessed on 21 June 2024).

The GEE boasts a vast geospatial data repository, encompassing regularly updated
Sentinel-1 Ground Range Detected (GRD) data [14]. The Synthetic Aperture Radar (SAR)
capability of Sentinel-1 makes it particularly valuable for flood extent mapping, as it offers
frequent observations, even in adverse weather conditions [15]. Flooded areas appear dark
in SAR images due to their low backscatter signal, enabling differentiation from other land
cover categories like agriculture and built-up areas [16]. The availability of analysis-ready
SAR datasets on the GEE is a significant advancement in remote sensing applications. The
GEE dataset encompasses more than four decades of archived earth observation imagery,
including SAR data [17], allowing the continuous monitoring of global water bodies and
their dynamics, such as floods [11]. Many studies have used SAR images in the GEE to
map flood areas [14,16,18–21]. While some studies focus on global flood exposure [11,22],
there has been little attention paid to data-scarce and developing countries [23–25]. These
limited flood exposure assessment studies primarily evaluate land cover classes, such as
“urban areas”, or solely rely on population mapping layers.

While prior studies, particularly in Senegal, have investigated spatiotemporal flood
mapping, using remote sensing, citizen science, and multi-criteria modeling at the local
scale [12,26,27], there is a lack of such research at the national scale. To address this gap, the
Senegalese government, through the Projet de Gestion Integrée des Inondations au Sénégal
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(PGIIS) project, has recently initiated a geographic information system (GIS) for mapping
flooding for a one-in-a-hundred-year flood event and conducting flood hazard assessments
at a national level using hydrological and hydraulic modeling [28]. Notably, none of these
studies use the GEE. Furthermore, there is a notable absence of spatiotemporal exposure
assessment studies. In addition, to our knowledge, no study has attempted to compare
flooded areas derived from the GEE with flooding for a one-in-a-hundred-year flood event.

Our study contributes to the growing knowledge base on flood hazards by comparing
the largest flooded areas obtained from the GEE with flooding for a one-in-a-hundred-year
flood event, derived from hydrological and hydraulic models. Unlike other studies that
often focus on the global scale or well-documented regions, we concentrate on the data-
scarce region of Senegal. We incorporate detailed analyses of the population density, urban
areas, and farmland, providing a comprehensive assessment of flood exposure. In contrast
to other studies conducted in Senegal and recent national-scale initiatives, we utilize the
GEE and Sentinel-1 imagery to map flooded areas, a novel approach in Senegal, to our
knowledge. Additionally, we assess population, urban, and farmland exposure, marking
the first study in Senegal to do so, as far as we are aware.

The novelty of this research lies in its comprehensive approach to flood mapping,
leveraging the GEE platform to address the challenges associated with data scarcity and
rapid analysis in regions like Senegal. This study integrates remote sensing techniques with
hydrological and hydraulic modeling to provide a thorough assessment of the flood hazard.
By combining these approaches, this study achieves a more nuanced understanding of
flood dynamics, leveraging the strengths and complementarity of both methodologies.
Remote sensing offers real-time or near-real-time data on the extent of flooding, while
hydrological and hydraulic modeling provides insights into the underlying processes
driving flood events. This integration allows for a more robust assessment of the flood
hazard, considering both spatial and temporal dimensions.

Furthermore, the comparison between observed and modeled flooding extents not
only validates the accuracy of the modeling approach, but also highlights areas of agreement
or discrepancy between the datasets. Through this process, this study enhances confidence
in the reliability of flood hazard assessments, providing stakeholders with valuable insights
into the strengths and limitations of different methodologies.

Beyond simply mapping the extent of flooding, this research aims to identify priority
zones for mitigation measures. By overlaying flood extent areas with global population
data, and urban area and farmland information, this study pinpoints regions most in
need of flood risk reduction interventions, particularly in data-scarce areas. This proactive
approach to flood management goes beyond merely depicting flood hazards, it informs
targeted mitigation strategies, thereby enhancing the resilience of communities and ecosys-
tems to flood events. Such comprehensive analysis supports the development of effective
and efficient flood management policies, ultimately contributing to sustainable and re-
silient development.

The extreme meteorological event in Senegal in 2022 was marked by significant flood-
ing, primarily occurring during the rainy season from June to October. ANACIM’s re-
port [29] highlights unprecedented rainfall levels, up to 150% higher than historical aver-
ages, particularly affecting the Senegal and Gambia river basins. This led to widespread
flooding, impacting communities, urban areas, and agriculture. Utilizing Sentinel-1 data,
this study aims to analyze flood exposure dynamics under extreme weather conditions,
providing insights for comparison with flooding for a one-in-a-hundred-year flood event.

This study seeks to: (1) employ a remote sensing method to map flooded areas for
the four months of the 2022 event on a national scale using the GEE tool, (2) compare
the most flooded areas over the four months with flooding for a one-in-a-hundred-year
flood event derived from hydrological and hydraulic modeling, evaluating the accuracy of
flood modeling in order to enable the prioritization of mitigation measures by region, and
(3) evaluate exposure in terms of population, urban area, and farmland for the four months
of the 2022 flood event.
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2. Study Area

The GEE approach was applied to all 14 regions of Senegal, in West Africa (Figure 1).
Situated between 12◦8–16◦41 N and 11◦21–17◦32 W, Senegal borders Mauritania (to the
north), Mali (east), Guinea Bissau, and Guinea Conakry (south), and the Atlantic Ocean
(west), boasting a coastline spanning 700 km. Encompassing an area of 196 722 km2 [30],
Senegal is home to approximately 18 million inhabitants as of 2023, with a population
density of around 92 inhabitants per km2 [31]. The terrain is predominantly flat, with nearly
75% of the landmass at an elevation of less than 50 m. The highest point, reaching 581 m
above sea level, is situated in the southeastern foothills of the Fouta-Djalon Mountain [28].
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Figure 1. Location of the study area. The insert in the top right corner locates our study area on the
African continent. The left-hand map represents our study area, Senegal, with 14 administrative
regions, and shaded relief as the map background. The 14 regions are designated by numbers 1 to 14.
The corresponding names are provided in Supplementary Table S1.

Senegal is administratively divided into 14 major regions (Decree No. 2013-10, Repub-
lic of Senegal). These regions feature a diverse range of landscapes. Urban centers, such
as Dakar [1], Thiès [7], Kaolack [6], and Saint-Louis [4], play a crucial role in economic,
cultural, and political spheres, with some urban regions containing rural areas as well. Sim-
ilarly, certain rural regions like Ziguinchor [2], Fatick, Diourbel [3], Louga [8], Kolda [10],
Matam [11], Tambacounda [5], Kédougou [13], Kaffrine [12], and Sédhiou [14], also include
urban parts, albeit less developed. These cities and regions are characterized by bustling
markets, modern infrastructure, and vibrant cultural scenes, or by agricultural and fishing
activities in rural zones [32].

Senegal’s climatic situation is characterized by two main seasons:

• The dry season (November to April/May) is marked by the prevalence of easterly
maritime trade winds and westerly continental trade winds;

• The rainy season (June to October) is dominated by the monsoon flow from the St.
Helena anticyclone.

The regions in Senegal have experienced frequent and significant flooding, resulting
from various phenomena, for e.g., overflow flooding from perennial rivers, overflow flood-
ing from temporary watercourses, urban runoff, rural runoff, flooding due to stagnation
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in depressions or endoreic zones, and flooding due to rising groundwater. In some cases,
these various phenomena combine and exacerbate the consequences.

3. Materials and Methods
3.1. Data

In this study, we utilized the GEE for all satellite data processing. The comparison of
flooded areas with flooding for a one-in-a-hundred-year flood event was processed using
ArcGIS Pro, including final map processing and layout. Microsoft Excel was employed
for tabular data storage and histogram production. As outlined in Table 1, all the data
layers were accessed from the GEE data catalog and processed within the GEE cloud
computing platform [17]. Only the Senegalese administrative boundaries and the flooding
for a one-in-a-hundred-year flood event were obtained from other sources. All raster and
vector layers were saved in Senegal’s coordinate system (UTM-28N (EPSG: 32 628)).

Table 1. An overview of the data layers used for the comparison between the flooded areas for a
one-in-a-hundred-year flood event and flood exposure.

Layers Names Sources Date Type Resolution (m)

Administrative limits LGA 2020 Vector

Sentinel-1 images Copernicus

Before flooding:
2–31 March 2022

Raster 10
After flooding:
20–31 July 2022;

1–31 August 2022;
1–10 September 2022;

1–10 October 2022

Flooding for a
one-in-a-hundred-year

flood event
PGIIS 2023 Raster

Global Surface Water EC/JRC 1 January 2022 Raster 30

HydroSHEDS WWF US 22 February 2020 Raster 30

Global Human
Settlement Layer EC/JRC 2020 Raster 100

MODIS Land
Cover Type NASA 30 September 2022 Raster 500

The methodology employed in this study for the extent and exposure of the flood-
ing for the 2022 flood event, follows the United Nations’ recommended guidelines for
flood mapping and exposure assessment using Sentinel-1 SAR data within the Google
Earth platform (https://www.un-spider.org/advisory-support/recommended-practices/
recommended-practice-google-earth-engine-flood-mapping/step-by-step, accessed on 22
June 2024).

To begin, we conducted monthly flood mapping using remote sensing techniques, at a
spatial scale of 10 m during the wet season (July to October).

This was achieved by utilizing Sentinel-1 radar data to leverage both the available
temporal resolution and the duration of the 2022 flood event (see Table 1), the 1984–2022
Global Surface Water (GSW) layer to identify the surface water distribution, and the 2020
HydroSHEDS layer. Finally, we assessed the flood exposure by integrating the flooded
areas using remote sensing with the MODIS land cover type (MCD12Q1) version 6.1 data
and layers depicting the population distribution and density, which were obtained from
the Global Human Settlement Layer version P2023A (2020) in the GEE (Figure 2).

https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step


Water 2024, 16, 2201 6 of 22

Water 2024, 16, x FOR PEER REVIEW 6 of 23 
 

 

areas using remote sensing with the MODIS land cover type (MCD12Q1) version 6.1 data 

and layers depicting the population distribution and density, which were obtained from 

the Global Human Settlement Layer version P2023A (2020) in the GEE (Figure 2).  

 

Figure 2. Framework for flood extent delineation and flood exposure assessment: remote sensing 

methodology (green), flooding for a one-in-a-hundred-year flood event methodology using model-

ing (blue), and methodology for estimating exposed population, urban areas, and farmland (black). 

3.2. Mapping the Spatial and Temporal Distribution of Flooded Areas 

To obtain information on the flooded areas using Sentinel-1 on the Google Earth En-

gine, we followed a four-step process (see green boxes in Figure 2).  

Step 1: Specification of the study area.  

This initial step involved defining the geographical boundaries for our study area. 

This information served to constrain the processing area, thus preventing unnecessary 

computations. To delineate the extent of the spatial processing, we utilized a Shapefile 

(.shp), depicting the administrative limits of Senegal for the 14 regions. This administra-

tive boundary layer for Senegal was extracted from the Laboratory of Applied Geomatics 

(LGA) at Amadou Mahtar Mbow University.  

Step 2: Timeframe and sensor parameters. 

In addition to defining the area of interest, we specified the pre-flood and post-flood 

periods for each month of flooding (July, August, September, and October), as outlined in 

Table 1. We used Sentinel-1 SAR C-band (5.4 GHz) data provided by the European Space 

Agency (ESA) [33]. These images are acquired at intervals of at least every 6 or 12 days for 

each point on the globe, depending on the availability of Sentinel-1 imagery [34]. With a 

Figure 2. Framework for flood extent delineation and flood exposure assessment: remote sensing
methodology (green), flooding for a one-in-a-hundred-year flood event methodology using modeling
(blue), and methodology for estimating exposed population, urban areas, and farmland (black).

3.2. Mapping the Spatial and Temporal Distribution of Flooded Areas

To obtain information on the flooded areas using Sentinel-1 on the Google Earth
Engine, we followed a four-step process (see green boxes in Figure 2).

Step 1: Specification of the study area.
This initial step involved defining the geographical boundaries for our study area.

This information served to constrain the processing area, thus preventing unnecessary
computations. To delineate the extent of the spatial processing, we utilized a Shapefile
(.shp), depicting the administrative limits of Senegal for the 14 regions. This administrative
boundary layer for Senegal was extracted from the Laboratory of Applied Geomatics (LGA)
at Amadou Mahtar Mbow University.

Step 2: Timeframe and sensor parameters.
In addition to defining the area of interest, we specified the pre-flood and post-flood

periods for each month of flooding (July, August, September, and October), as outlined in
Table 1. We used Sentinel-1 SAR C-band (5.4 GHz) data provided by the European Space
Agency (ESA) [33]. These images are acquired at intervals of at least every 6 or 12 days
for each point on the globe, depending on the availability of Sentinel-1 imagery [34]. With
a spatial resolution of 10 m, we accessed and clipped the level 1 GRD processed product
in the GEE for the study area during the pre-flood and post-flood period (see Table 1).
For our analysis, we chose vertical–horizontal (VH) polarization over vertical–vertical
(VV) polarization. ‘VH’ polarization is widely recommended for flood mapping [16,35,36],
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because it is more sensitive to changes on the ground surface, while ‘VV’ polarization is
more sensitive to vertical structures and can be useful for delineating open water from the
ground surface (e.g., detecting the coastline or a large expanse of water that has appeared
after a flood).

Passage direction refers to the satellite’s trajectory as it captures images, which can
be either ascending (moving northward) or descending (moving southward). Consistency
in the passage direction is crucial when detecting changes, as different viewing angles
can create false positive signals. Globally, some areas are covered only by ascending or
descending passage directions [37], while others are covered by both. For our study, we
selected the ascending passage direction, which aligns with our study area. This ensures
that the images being compared are consistent and reliable.

Step 3: Mosaicking images and applying the speckle filter.
This step involves sharpening the images before and during the flooding period, by

removing thermal noise and performing a radiometric correction. We applied a 3 × 3
pixel median filter to remove the speckle effects in the SAR images, resulting in smoother
images [36,38]. The median filter works as follows:

I′(x, y) = median{I(x + i, y + j)|−1 ≤ i, j ≤ 1}

where I′(x,y) is the output image, I(x,y) is the input image, and the median is calculated
over a 3 × 3 window centered on each pixel (x,y). This process replaces each pixel value
with the median value of its 3 × 3 neighbors, effectively reducing speckle noise.

Step 4: Generation of flooded area maps.
This step is divided into two parts.
Step 4a: Change detection.
In the first part, we aimed to detect changes between the pre- and post-flooding layers,

which compare the before-flood and after-flood mosaics using the following algorithm:

Change =
After − flood mosaic

Before − flood mosaic

A difference layer is created, upon which thresholding is applied (a threshold of 1.25;
pixels above 1.25 assigned a value of 1; pixels below 1.25 assigned a value of 0) [36,38]. The
binary change detection can be expressed as:

Binary change = {1 i f change > 1.25, 0 i f change ≤ 1.25}

The resulting binary raster layer represents the potential flooded areas.
Step 4b: Refining the flooded areas.
In the second part, we intersected the generated binary layer with the GSW layer to

exclude permanent water (water present for more than 10 months, e.g., lakes). This dataset,
with a 30 m resolution, was extracted from the European Commission’s Joint Research
Center (EC/JRC). It contains maps of the location and the temporal distribution of surface
water from 1984 to 2018 and provides statistics on the extent and evolution of surface water
across the globe. The data were clipped to our study area.

Finally, we used the digital elevation model (DEM) layer to remove areas with a
slope greater than 5%, as these areas are rarely flooded [12]. This raster layer was ob-
tained from the Shuttle Radar Topography Mission within HydroSHEDS, which offers a
suite of georeferenced rasters in tiles at a resolution of 30 m and mosaicked to cover the
entire country.

The resulting layer represents the flooded areas. The flood extent was computed
as follows:

Flood extent = pixel area ∗ number of pixels

The area for each pixel is calculated in square meters.
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3.3. Comparison of the Flooding for a One-in-a-Hundred-Year Flood Event with Flooded Areas
Mapped Using Sentinel-1 Images, GSW Layers, and the DEM

The flooding for a one-in-a-hundred-year flood event was determined through hy-
drological and hydraulic modeling. This modeling was commissioned by the Senegalese
Government through the PGIIS project.

3.3.1. Hydrological and Hydraulic Modeling

The proposed methodology consists of two steps (see blue boxes in Figure 2).
Step 1: Hydrological and hydraulic modeling data.
The flood inundation modeling was conducted using several datasets, as follows:

• Digital terrain model (DTM): Utilized Vricon’s 2 m × 2 m resolution from Maxar
Technologies, covering Senegal. This DTM, derived from high-resolution satellite
imagery, integrates over a decade of monoscopic image collections from various angles;

• Ground-based rainfall data sourced from the World Meteorological Organization
(WMO), the Hydrometric Information System for the Environment and Water Re-
sources (SIEREM), and the National Agency of Civil Aviation and Meteorology
(ANACIM): The WMO data include 59 stations covering 1900–2021, with a 71% gap
rate, reduced to 50% for 1970–2021. The SIEREM data comprises 329 stations, with
181 stations having data from 1980–2007 and a 52% gap rate. The ANACIM data, with
23 stations providing data from 1955–2005;

• Satellite rainfall data: Integrated rainfall data from Integrated Multi-satellite Re-
trievals/Global Precipitation Measurement (IMERG/GPM; 2000–2020), Precipita-
tion Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN; 2000–2019), Multi-source Weighted-Ensemble Precipitation (MSWEP;
1979–2017), Tropical Applications of Meteorology using SATellite and ground-based
data (TAMSAT; 1983–2016), and Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS; 1981-present), covering the study area, with various temporal
and spatial resolutions;

• Flow data: Historical flow records incorporated to ensure model robustness, focusing
on a 100-year return period flow;

• Land use information: Land use and soil characteristics data are crucial for modeling.
Data sources include the Directorate of Geographic and Cartographic Works (DTGC)
for detailed built-up area delineation, ESA Copernicus for land use data, the Institute
of Research for Development (IRD) Soil Map for comprehensive soil mapping of
Senegal, and the United States Geological Survey (USGS) Geologic Provinces of Africa
(version 2.0) for geological zoning data.

Step 2: The modeling Process.
The second step describes the process of the model. This modeling process utilized

HEC-RAS 6.5 software, employing 2D geometry for hydrological transformation and
hydraulic propagation.

• Hydrological transformation: The Soil Conservation Service (SCS) method was ap-
plied, dynamically adjusting soil saturation levels and converting precipitation into
runoff based on land use, soil type, and moisture conditions.

a. Runoff depth (Q) calculation:

Q =
(P − 0.2S)2

P + 0.8S
where Q = runoff depth (inches or mm); P = rainfall depth (inches or mm);
SS = potential maximum retention after runoff begins (inches or mm), which is related
to the curve number (CN).

b. Potential maximum retention (S):

S =
1000
CN

− 10
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where CN = curve number, which is a dimensionless parameter related to the land
use, soil type, and moisture conditions.

• Hydraulic propagation: Employed the Barré de Saint-Venant equations to simulate
water movement, considering momentum conservation, continuity, and flow resistance.

a. Continuity equation:
∂A
∂t

+
∂Q
∂x

= 0

where A = cross-sectional area of the flow (m²); Q = flow rate (m³s−1); T = time (s);
x = distance along the channel (m).

b. Momentum equation:

∂Q
∂t

+
∂

∂x

(
Q2

A
+ gA

∂y
∂x

+ gA
(

SO − S f

))
= 0

where Q = flow rate (m³s−1); t = time (s); x = distance along the channel (m);
g = acceleration due to gravity (9.81 ms−2); y = flow depth (m); So = bed slope
(mm−1); Sf = friction slope (mm−1).

• A synthetic rainfall event was simulated, represented as NetCDF rasters, depicting a
concentrated 10-day rainfall episode within a 2-month period. The rainfall data was
transformed into runoff volumes, representing a 100-year return period, and was used
to produce flood maps for rare events.

This methodology enables the comprehensive mapping of flood-prone areas by sim-
ulating 2D water flows across the entire Senegalese territory. The model captures the
overflow of watercourses of all sizes and accounts for runoff or accumulation in natural
depressions. The outcome is a detailed representation of flood zones for a rare event, with
an approximate return period of 100 years.

3.3.2. Comparative Analysis

In the comparative analysis, we juxtaposed the flooding for a one-in-a-hundred-year
flood event delineated by the hydrological and hydraulic models, with flooded areas
derived from Sentinel-1 using the GEE platform. This comparison had two primary
objectives: first, to evaluate the accuracy of flood modeling in Senegal and, secondly, to
facilitate the prioritization of mitigation measures by identifying regions where the two
approaches overlap the most. To enhance the accuracy assessment, we employed spatial
analysis techniques within ArcGIS Pro, specifically utilizing spatial join and zonal statistics
tools. These tools facilitated the comparison between the boundary layers of the regions,
the flooded areas obtained from the GEE, and the flooding for a one-in-a-hundred-year
flood event predicted by hydrological and hydraulic models.

3.4. Estimation of Flood Exposure
3.4.1. Exposed People

To estimate population flood exposure across Senegal’s 14 regions, in the GEE we
utilized the Global Human Settlement Layer from the (EC/JRC) [39]. This layer with a reso-
lution of 100 m and which was last updated in 2020, provides information on the population
count per cell (see black boxes in Figure 2). Since our analysis was conducted at a 30 m
resolution, we resampled this raster layer to match it using nearest neighbor interpolation.
To avoid multiple counting of the population for the approximately 8 × 8 × 30 m cells
within the 100 m cells when using nearest neighbors, the approach is to allocate the 100 m
population to 30 m cells using HydroSHEDS data. This ensures that each person is counted
only once, regardless of how many smaller cells overlap with the larger 100 m cells. This
method helps to maintain the accuracy of population counts and avoids overestimation
due to double counting.
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To integrate flood extent layers for the months of July, August, September, and October
2022 with the population data, we first reprojected the flood area rasters to align with
the resolution and projection of the population dataset. Next, we conducted a spatial
intersection between each flood extent layer and the population dataset, resulting in the
creation of new raster layers. Finally, to calculate the total number of individuals exposed
to flooding (see black boxes in Figure 2), we added up the pixel values within the exposed
population raster.

3.4.2. Exposed Farmland and Urban Areas

To estimate the extent of exposed farmland, we utilized the MODIS land cover type
(MCD12Q1) version 6.1 product, which offers a spatial resolution of 500 m and is updated
annually. Given that our analyses were conducted at a 30 m resolution, we resampled the
land cover raster to match it using nearest neighbor interpolation. This dataset is currently
the only global dataset on land cover available in the GEE data catalog. Within the Land
Cover Type 1 band, there are 17 classes, including two relevant farmland classes: class 12,
indicating areas with at least 60% cultivation, and class 14, representing farmland/natural
vegetation mosaics where small-scale cultivation occupies 40–60% of the area, alongside
natural trees, shrubs, or herbaceous vegetation.

To identify exposed farmland, we extracted these farmland classes from the MODIS
dataset and intersected them with the flooded areas in July, August, September, and October
2022 (see black boxes in Figure 2), which were resampled to match the scale and projection
of the MODIS layer. Similarly, we calculated the areas of the affected urban and rural
regions, using the same methodology applied to the flooded areas.

To identify exposed urban areas, we extracted the ‘Urban Class 13’ (see black boxes
in Figure 2) from the ‘Land Cover Type 1’ band of the MODIS dataset. It is worth
noting that during this process, the estimation of affected urban areas may be conser-
vative due to challenges in detecting water within built-up areas, potentially leading
to underestimation.

4. Results
4.1. Mapping of Flooded Areas Using Sentinel-1 Images, GSW Layers, and the DEM

We obtained the extent of the floods for the months of July, August, September, and
October 2022, in Senegal, using Sentinel-1 images on the GEE platform. The methodology
is described in Figure 2. We determined a total inundation area of 2951 km2. It is notewor-
thy that during this event, all regions of the country experienced flooding at least once
(Figures 3 and 4, Supplementary Material Table S2).

Further analysis indicates that August 2022 witnessed the most widespread flooding,
covering 779.54 km2 or 0.40% of the country’s total surface area. September and July 2022
followed closely with, respectively, 746.80 km2 and 723.98 km2 or 0.38% and 0.37%, while
September 2022 experienced the smallest extent of the flooding, encompassing 700.68 km2

or 0.36% (Figures 3 and 4, Supplementary Material Table S2).
A closer look at the regions flooded shows that the Saint-Louis [4], Ziguinchor [2],

Matam [11], and Fatick [9] regions recorded the most extensive flooding (Figures 3 and 4,
Supplementary Material Table S2), with a mean area of 253.06, 93.55, 74.24, 86, and
70.75 km2, respectively. These areas correspond to approximately 1.31%, 1.27%, 0.25%, and
1.03% of the respective total land area in these regions.
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In terms of mapping, slight differences appear between the spatial location of the
flooded areas for the month of July, August, September, and October 2022, showcasing
variations of 8% (Figure 4). The GEE shows that in the Saint-Louis [4] region, the main
flooded areas were in the northwest, northeast, and northern parts, but some flooded areas
occurred in the central part and in the southeast (Figure 5). In the Ziguinchor [2] region,
the main flooded areas were in the central and upper parts in low-lying areas, but some
residual flooded areas were also found in the northwest and southeast (Figure 5).
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chor [2] (bottom).

4.2. Comparison of Flooded Areas Obtained by Remote Sensing (Google Earth Engine) with
100-Year Flood-Prone Areas Obtained Using Hydrological and Hydraulic Modeling

The data obtained through the Google Earth Engine approach revealed that the flood-
ing in the month of August 2022 was the most widespread, whereas the month of September
2022 was the smallest (Figures 3 and 4). The data obtained in August 2022 through the GEE
approach was compared with hydrological and hydraulic modeling from the PGIIS project.
The flooded areas in August 2022 provided by the GEE were smaller than those indicated
by the modeling of the 100-year flood event (Table 2), showing a total overlap of only 1.43%
across all 14 regions of the country, ranging from 0.04% in the Kaffrine [12] region to 10.19%
in the Dakar [1] region (Table 2).

In terms of mapping, major differences emerge between the flood extent identified
by remote sensing for the August 2022 flood event and the hydrological and hydraulic
modeling, with spatial overlaps varying from one region to another. The analysis of these
overlaps in the Dakar [1] region is shown in Table 2, with significant divergences. The total
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area provided by remote sensing is approximately 18× smaller than that provided by the
100-year hydrological and hydraulic models of Senegal.

Table 2. Flooded areas obtained from the Google Earth Engine (remote sensing) in August 2022 in
the second column and floodable areas from the PGIIS project (hydrological and hydraulic modeling)
in the third column, with the percentage of overlapping areas between the remote sensing and
hydrological and hydraulic modeling in the fourth column.

Administrative
Region

Flooded Area (August
2022) from Remote

Sensing (km2)

Floodable Areas
from Modeling

(km2)
Overlap (%)

Dakar 10.34 101.42 10.19

Ziguinchor 91.91 2992.43 3.07

Diourbel 2.99 1093.56 0.27

Saint-Louis 309.2 9666.56 3.20

Tambacounda 59.21 9739.77 0.61

Kaolack 18.31 1476.10 1.24

Thies 14.15 1313.32 1.08

Louga 41.14 6031.24 0.68

Fatick 69.1 3059.26 2.26

Kolda 18.17 2578.36 0.70

Matam 77.41 9449.34 0.82

Kaffrine 1.04 2631.82 0.04

Kedougou 56.22 2740.52 2.05

Sedhiou 10.53 1662.70 0.63

Total 779.54 54,536.34 1.43

Standard deviation 2.49

The remote sensing results show that the Saint-Louis region [4] was the most flooded
during the 2022 flood event (309.02 km²). However, the Tambacounda region [5] (9739.77 km²)
would be flooded more during the one-in-a-hundred-year flood event (Table 2).

To ensure the robustness of our comparison, we have included the standard deviation
(σ) of the overlap (1.34%) between the flood extent derived from remote sensing and
the floodable areas indicated by the modeling process. The σ value of 2.49% indicates
a moderate level of variability in the overlap (1.34%). This variability can be attributed
to differences in the spatial resolution of the datasets, the accuracy of remote sensing
techniques in detecting water bodies, and the assumptions made in the hydrological
and hydraulic modeling. By including this additional statistical measure, we provide a
more comprehensive understanding of the reliability and consistency of our flood extent
estimates, highlighting the areas where the remote sensing and modeling agree or diverge.

4.3. Exposed Population Assessment

Flood exposure was estimated using the intersection of the flooded areas from the
Sentinel-1, GSW, HydroSHEDS, and the GHLS population layers. We estimated that around
782,681 people (4.35% of the Senegalese population) were exposed. The results show that
October 2022 had the greatest population exposure by month, with 281,406 people exposed
(1.56% of population). The lowest population exposure was estimated in August 2022, with
251,782 people exposed (1.39% of population) (Figure 6, Supplementary Material Table S3).
The month with the highest exposure, October 2022, does not correspond to the month with
the largest flooding extent (August 2022). The population exposure, estimated using the
GHLS dataset, was greater in the Dakar [1], Diourbel [3], Thies [7], and Saint-Louis [4] re-
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gions with, respectively, about 437,035 (11.22% of the Dakar [1] population), 171,837 (8.26%
of the Diourbel [3] population), 115,552 (13.12% of the population in Thies), and 77,501 peo-
ple exposed (6.2% of the population in Saint-Louis [4]) (Figure 6, Supplementary Material
Table S3).
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Figure 6. Population exposed to flooding from July to October 2022, estimated using the intersection
of GHLS population datasets with the flooded areas in the Google Earth Engine.

Figure 7 presents spatial analysis of the flood exposure in Dakar [1] and Diourbel [3]. In
the Dakar [1] region, the southeast area exhibits the highest concentration of people exposed
to flooding. Conversely, in the Diourbel [3] region, the northwest part demonstrates the
highest exposure of people to flooding.
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Figure 7. Cont.
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Figure 7. Spatial distribution of the two most exposed regions to flooding by population: (a) Dakar
and (b) Diourbel. Assessed through the intersection of GHLS population datasets with the flooded
areas in the Google Earth Engine.

4.4. Exposed Urban Areas and Farmland

Analysis of the 2022 flood event showed that a total of 238 km2 (10.27%) of urban
areas and 21 km2 of farmland (1.37%) were exposed to flooding. The regions of Dakar [1],
Diourbel [3], and Saint-Louis [4] have the highest amount of urban areas exposed to
flooding. While the regions of Saint-Louis [4] and Thies [7] have the highest amount of
farmland exposed to flooding (Figure 8, Supplementary Material Table S4).
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Figure 8. (a) Urban areas and (b) farmland exposed to flooding, derived from the intersection of
MODIS land cover datasets with the flooded areas in the Google Earth Engine.

5. Discussion

Mapping flooded areas and assessing flooding exposure is particularly challenging in
data-scarce regions like Senegal. Access to rapid, robust, and practical methodologies is
crucial for flood mapping. In this study, we employed a remote sensing approach within
the GEE framework. Our objectives were twofold: firstly, to integrate satellite imagery,
GSW data, and HydroSHEDS data to identify the flooded areas for the 2022 flood event at
the national scale, comparing them with hydrological and hydraulic modeling for a one-in-
a-hundred-year flood event. Secondly, we aimed to evaluate flood exposure by population
count, population density, urban area, and farmland area. By employing these methods, we
have showcased the strengths and opportunities provided by the GEE platform for flood
extent and flood exposure assessment.

5.1. Integrated Methodology for Flood Analysis

The detection of flooded areas involves processing satellite imagery within the Google
Earth Engine (GEE) to identify changes in water coverage before and after flood events.
This process is detailed in Section 3, where we explain the algorithms and data layers used.
Studies, such as that by Cian et al. [38], utilize the Normalized Difference Flood Index
(NDFI) to map flooded areas. Our method can be compared to these approaches that use
flood indices to highlight improvements in terms of accuracy and efficiency.

In addition to satellite imagery analysis, our study uses the HEC-RAS 6.1 software with
2D geometry for hydrological and hydraulic modeling, employing the Soil Conservation
Service (SCS) method to transform precipitation into runoff and the Barré de Saint-Venant
equations for hydraulic propagation. This approach dynamically adjusts soil saturation
and simulates water movement, accounting for momentum conservation, continuity, and
flow resistance.

By integrating satellite imagery analysis within the GEE and centennial flood mod-
eling, we provide a comprehensive quantification of the flooded area during the 2022
Senegalese extreme meteorological event. This integrated methodology leverages the
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strengths of remote sensing and hydrological and hydraulic modeling, enhancing flood
mapping accuracy and efficiency. Addressing the limitations of our approach will refine
flood extent estimations through remote sensing and floodable areas by modeling for flood
hazard assessment and mitigation strategy development and implementation, ultimately
enhancing resilience to flood events.

While this combined approach enhances our understanding of flood dynamics, it has
its limitations. The hydrological and hydraulic models’ accuracy depends on the quality
of the input data, such as the topography and land use class, and assumes homogeneity
within grid cells (subject to varying resolution), which may not reflect the real-world
variability [40].

5.2. Accuracy and Limitations of Flooded Area Mapping Using Sentinel-1 Imagery

Our study showcases the potential of flood mapping using Sentinel-1 data, coupled
with the integration of global flood datasets like GSW, to achieve higher accuracy in
estimating flooded areas compared to using optical, satellite-based datasets. Optical
images often yield lower accuracy in delineating the extent of flooding due to issues
such as cloud cover and a coarse revisit time (16 days). In contrast, Sentinel-1 satellite
data offers advantages in identifying the extent of flooding due to radar transmission
in the microwave spectrum, which remains unaffected by cloud cover, heavy rain, and
low visibility, even operating at night [41,42]. However, it is worth noting that Sentinel-1
images may underestimate the flooding extent due to the spatial resolution (10 m), which
may not be a sufficient resolution for flood extent quantification [11]. Nonetheless, at the
(regional and national) scales in our study, these images can provide a satisfactory view
of the problem. For local-scale assessments, we recommend considering radar images
with much higher spatial resolutions, such as TerraSAR-X datasets [43], and comparing
the results obtained with Sentinel-1 data. Despite Sentinel-1’s relatively high temporal
resolution (6 days), it may still underestimate flooded areas. More frequent (i.e., daily)
satellite observations may become critical for more exhaustive mapping of the extent
of flooding.

Temporal analysis of the extent of the flooding in all regions of Senegal during July,
August, September, and October of the 2022 flood event reveals that the Saint-Louis [4]
region experienced the most extensive flooding. This can likely be attributed to the combi-
nation of floodwater overflow from the Senegal river (Saint-Louis), potentially triggered by
heavy rain, urban runoff, and rising groundwater.

The areas with the highest amount of flooding were observed in August 2022, a trend
undoubtedly linked, at least in part, to the heavy rainfall recorded by the National Agency
of Civil Aviation and Meteorology during August 2022. The total rainfall for August
2022 reached 105 mm, with an average daily rainfall of 3.36 mm, and a record single-day
rainfall of 28.9 mm. Similar rainfall patterns were observed in the Saint-Louis [4] region,
contributing to the extensive flooding there. While there was a strong correlation between
rainfall and flooding, various contributing factors, such as infrastructure failures, pipeline
blockages, the overflow of lakes, and the discharge of household septic tanks by the local
population, were discussed previously by Sy et al. [5] in an earlier paper. These factors
worsened the flood, by either increasing the quantity of water or obstructing the typical
flow, for different locations and events.

5.3. Comparison of Remote Sensing Flood Extent and Flooding for a One-in-a-Hundred-Year
Flood Event

We observed a lower level of agreement between the flooded areas derived in this study
using Sentinel-1 data and those derived from the hydrological and hydraulic modeling
conducted as part of the PGIIS project. This low level of agreement highlights both the
strengths and limitations of satellite-based and modeling approaches. Our results from the
GEE platform significantly deviate from the scenario corresponding to the flooding for a
one-in-a-hundred-year flood event in terms of the flooded areas. However, by combining
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the strengths and complementarity of the GEE platform (remote sensing observations over
four months) and hydrological and hydraulic modeling (estimating flooding for a one-in-a-
hundred-year flood event), stakeholders could benefit from an enhanced understanding
of flood exposure, informing future risk assessments and risk management planning.
Emphasis should be placed on regions such as Dakar [1], where the overlap between
remote sensing and modeling is more significant. Targeted mitigation measures and the
allocation of adequate resources in such regions are crucial.

Discrepancies between remote sensing and modeling results may arise due to several
factors. The standard deviation σ of 2.49 in regard to the data overlap (1.34%) indicates a
moderate level of variability, suggesting that while the model performs relatively consis-
tently, there are noticeable differences in certain areas. The utilization of high-resolution
DTM 2 m × 2 m data for hydraulic modeling may result in more precise floodable area
delineation compared to remote sensing approaches. However, discrepancies may arise
due to differences in data resolution and accuracy between remote sensing and hydraulic
modeling inputs, particularly in areas with complex topography.

Hydrological and hydraulic models rely on various assumptions and parameterization
techniques to simulate flood events accurately [44]. Differences in model assumptions,
such as flood routing algorithms, Manning’s roughness coefficients, and infiltration rates,
may result in discrepancies between model predictions and observed flood extents from
remote sensing data. Remote sensing data capture flood extents during specific time
periods, providing snapshots of inundated areas. In contrast, hydraulic models simulate
flood processes over time, considering factors such as rainfall duration, and antecedent
soil moisture conditions. Temporal dynamics and the representation of flood processes in
hydraulic models may influence flood extent predictions differently compared to remote
sensing approaches.

Integrating remote sensing data with hydrological and hydraulic models can enhance
the accuracy and reliability of flood extent predictions. Future research should focus
on developing methodologies for assimilating remote sensing observations into model
simulations to improve flood hazard mapping. Quantifying the uncertainties associated
with remote sensing and modeling approaches is essential for effective flood risk man-
agement [45]. Understanding the sources of discrepancies and their implications can help
stakeholders make informed decisions and prioritize mitigation measures in floodable
areas. Further efforts should be made to harmonize and validate datasets from remote
sensing and modeling approaches. Data fusion techniques, such as machine learning
algorithms capable of analyzing large datasets to identify complex patterns contributing to
flooding, regression models predicting relationships between weather variables and flood
extent, classification models identifying at-risk areas based on historical flood patterns and
current environmental conditions, and clustering algorithms grouping similar flood events
to understand common characteristics and potential future occurrences, could be employed
to integrate diverse datasets like satellite imagery, citizen science data, and weather data to
potentially improve flood extent predictions.

5.4. Insights and Futures Implications for Flood Exposure Analysis

The combination of global databases on population distribution and density includ-
ing GHLS datasets, along with updated land cover data from MODIS global land cover,
provides great potential for assessing flood exposure in Senegal. Previous studies have
indicated that increases in population exposure are mainly due to the increase in flooded
areas and high-resolution datasets on population density [11,46]. In our study, Dakar [1]
and Diourbel [3] are identified as the most exposed regions, not because they have the most
extensive flooded areas, but due to their high population densities [31]. Dakar [1], being the
capital of Senegal, and Diourbel [3], the religious region of the largest brotherhood in the
country (Touba, in Senegal’s Diourbel region, is a major religious hub as the headquarters of
the influential Mouride Brotherhood. Its Great Mosque is one of Africa’s largest, attracting
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pilgrims nationwide, notably during events like the Grand Magal festival) are the most
densely populated regions.

The population density in the GHLS datasets, used in this work, is based on the
classification of building footprints from fine-scale satellite imagery, allowing for the
distribution of the population over a smaller, more concentrated area. However, other
databases, such as WorldPop, model a non-zero population density across almost the entire
region, which means that the population is present in flooded areas. This may result in
differences depending on the database used. Future work could improve estimates of
the population exposed to flooding by further integrating national census data from the
National Agency of Statistics and Demography [31]. The flood exposure results from this
national census data, as well as from other global databases, can be compared with the
results provided by GHLS datasets.

Furthermore, we could improve flood-exposed population estimates by incorporating
social media population data [47]. Determining the exact percentage impact of incorporat-
ing social media population data on our flood exposure estimates would indeed require
additional analyses. This would involve conducting thorough comparisons between the
national census data, GHLS datasets, and social media population data.

The inclusion of social media data can significantly enhance our flood exposure
estimates. This impact depends on various factors, such as the density and distribution
of social media users in affected areas, and the quality and resolution of the social media
data itself. By comparing the coverage, resolution, and accuracy of social media data with
traditional data sources, we can provide a more precise estimate of its contribution. This
assessment will help us understand how much more accurate our flood exposure estimates
can become by integrating social media data.

In terms of flood exposure, absolute numbers provide an indication of the magnitude
of an issue but lack context regarding its severity relative to the population size. Relative
figures enable a comparison of exposure levels between different regions of Senegal, consid-
ering their respective population sizes. By considering relative figures, it becomes possible
to identify the most exposed populations or regions in proportion to their size. Relative
figures facilitate tracking changes in exposure over time, considering demographic growth
or changes in population distribution. Considering both absolute and relative figures is
crucial for a comprehensive assessment, leading to a more representative understanding of
the extent of the hazard and potential exposure, therefore better informing decision-making
for risk management actions.

As mentioned by authors such as Rentschler et al. [22], the results of estimations of
population flood exposure cannot provide a complete picture of flood risk. Here, it is
crucial to also consider the income levels of flood-exposed populations by region, as these
can serve as proxies for people’s vulnerability, capacity, and resilience. Vulnerability refers
to the susceptibility to harm, capacity is the ability to mitigate and cope with floods, and
resilience is the ability to recover from disasters.

For example, in the Dakar region [1], populations exposed to floods are more likely
to have access to rapid government support systems post-disaster compared to those in
regions like Kédougou [13] and Tambacounda [5]. Floods in low-income areas tend to have
devastating and lasting impacts on livelihoods. Therefore, actions aimed at strengthening
disaster prevention and recovery capacity are most urgently needed where low income and
flood exposure coincide.

The total population in Senegal is expected to increase in the future [31], regardless of
the population or flood dataset used. The increase in population exposure will primarily
result from increases in the extent of flooding and changes in population growth, so we can
expect increases in population exposure in the future. In any case, we could compare the
findings of this population exposure study with future population exposure studies that
incorporate 2030 estimation data to identify regions with slowing, continuing, or increasing
flood exposure trajectories. This analysis may enable prioritization of adaptation measures
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in regions where flood exposure has been growing or is expected to grow faster than the
total population, especially under changing climate conditions.

The exposure of agricultural areas appears to be greatly underestimated by the MODIS
dataset. This underestimation could be due to the spatial resolution of the data, but also to
classification that is not verified by field studies. It is possible that agricultural areas are
classified into other categories such as forests or others. Moreover, previous studies have
shown that exposure estimated using this data is underestimated [11]. Therefore, it will be
necessary in the future to find a method to verify this data, especially when working on a
national scale.

6. Conclusions

This study presents a robust framework utilizing the GEE web platform for flood
extent mapping and exposure assessment at both national and regional scales in Senegal.
Our findings underscore the effectiveness of integrating radar satellite data with GWS
and HydroSHEDS data, facilitating the mapping of flood extent over an extensive area of
196.722 km². The standard deviation (σ) of 2.49 for the data overlap (1.34%) indicates a mod-
erate level of variability, suggesting that while the model performs relatively consistently,
there are noticeable differences in certain areas due to differences in the data resolution,
model assumptions, and temporal dynamics.

High-resolution DTM 2 m × 2 m data enhances the precision of hydrological and
hydraulic modeling, but also introduces variability when compared to remote sensing
data. Differences in flood routing algorithms, roughness coefficients, and temporal factors,
further contribute to these discrepancies.

Our study emphasizes the potential of integrating water indices, machine learning,
SAR data, time-series analysis, citizen science data, and data fusion techniques, to improve
flood detection accuracy and efficiency. The generated flood extent maps and exposure
assessments underscore the importance of developing a prioritization scheme for imple-
menting flood mitigation and adaptation measures across diverse geographic regions.

Future research should focus on integrating remote sensing observations, citizen
science data with hydrological and hydraulic models, validating datasets, and developing
real-time flood monitoring systems. Creating user-friendly tools will facilitate broader
adoption and utilization of flood extent information.

In conclusion, this study provides an efficient framework for flood risk hazard and
exposure assessment in Senegal, offering valuable insights for flood mitigation efforts and
contributing to the resilience of flood-prone communities.
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