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Abstract: The spatial mapping and prediction of groundwater quality (GWQ) is important for
sustainable groundwater management, but several research gaps remain unexplored, including
the inaccuracy of spatial interpolation, limited consideration of the geological environment and
human activity effects, limitation to specific pollutants, and unsystematic indicator selection. This
study utilized the entropy-weighted water quality index (EWQI), the LightGBM model, the pressure-
state-response (PSR) framework and SHapley Additive exPlanations (SHAP) analysis to address
the above research gaps. The normalized importance (NI) shows that NO3

− (0.208), Mg2+ (0.143),
SO4

2− (0.110), Cr6+ (0.109) and Na+ (0.095) should be prioritized as parameters for remediation, and
the skewness EWQI distribution indicates that although most sampled locations have acceptable
GWQ, a few areas suffer from severely poor GWQ. The PSR framework identifies 13 indicators from
geological environments and human activities for the SMP of GWQ. Despite high AUROCs (0.9074,
0.8981, 0.8885, 0.9043) across four random training and testing sets, it was surprising that significant
spatial uncertainty was observed, with Pearson correlation coefficients (PCCs) from 0.5365 to 0.8066.
We addressed this issue by using the spatial-grid average probabilities of four maps. Additionally,
population and nighttime light are key indicators, while net recharge, land use and cover (LULC), and
the degree of urbanization have the lowest importance. SHAP analysis highlights both positive and
negative impacts of human activities on GWQ, identifying point-source pollution as the main cause of
the poor GWQ in the study area. Due to the limited research on this field, future studies should focus
on six key aspects: multi-method GWQ assessment, quantitative relationships between indicators
and GWQ, comparisons of various spatial mapping and prediction models, the application of the
PSR framework for indicator selection, the development of methods to reduce spatial uncertainty,
and the use of explainable machine learning techniques in groundwater management.

Keywords: groundwater quality; mapping and prediction; EWQI; ensemble learning models; SHAP;
spatial uncertainty

1. Introduction

Groundwater is an indispensable freshwater resource across many regions, supporting
essential services such as water supply, agricultural irrigation, and industrial develop-
ment [1]. However, in recent decades, groundwater quality (GWQ) has been significantly
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compromised due to factors such as urbanization, climate change, overexploitation and
inadequate resource management [2–6]. In many areas, deteriorated groundwater is still
used for drinking purposes due to the absence of alternative sources, which leads to sig-
nificant health risks to local populations [7–9]. Moreover, as a crucial component of the
global hydrological cycle, the degradation of GWQ directly impacts ecological stability
and regional sustainability [10,11]. Under these circumstances, the precise spatial map-
ping and prediction of GWQ is essential for identifying pollution sources and informing
comprehensive water management strategies for sustainable groundwater management.

Currently, numerous index-based methods are available for assessing GWQ, includ-
ing the water quality index (WQI) and its adaptations, such as the entropy-weighted
WQI (EWQI) [12], principal component analysis (PCA)—WQI [13], the integrated WQI
(IWQI) [14], the drinking WQI (DWQI) [15], and the CCME-WQI [16]. Additionally, other
methodologies, like the Nemerow index [17] and the comprehensive pollution index
(CPI) [18], are also widely employed in GWQ assessment. However, while these methods
enable us to indicate the overall GWQ based on samples, they fail to map the spatial
distribution of GWQ across larger areas [19–21]. This research gap restricts decision-makers
in managing groundwater spatially, thereby obstructing the implementation of effective
groundwater management strategies across different regions.

Currently, for the spatial prediction of GWQ, spatial interpolation is primarily used
(e.g., kriging and inverse distance weighting), which estimates values at unsampled loca-
tions by assuming that closer points are more similar than distant ones based on spatial
autocorrelation [22–27]. However, while spatial interpolation offers a convenient means to
estimate the spatial distribution of GWQ, its limitations are significant. Firstly, the accuracy
of predictions heavily depends on the density and distribution of sampling points, with
sparse data leading to unreliable results [28,29]. Secondly, these methods often assume
spatial homogeneity, failing to account for complex environmental variability and exter-
nal factors like human activities, both of which can significantly influence GWQ [30–32].
Lastly, the accuracy of these methods diminishes near the edges of the study area due
to fewer data points, known as edge effects [33,34]. Therefore, there is a critical need for
new approaches in GWQ mapping and prediction that address the limitations of these
traditional interpolation methods, accommodate spatial heterogeneity, and ensure accuracy
in data-sparse areas.

Recent studies have increasingly utilized machine learning (ML) models due to their
ability to accurately assess and predict GWQ. For example, Singha et al. [35] conducted a
comparative analysis of random forest (RF), extreme gradient boosting (XGBoost), artificial
neural networks (ANNs), and deep learning (DL) methods in GWQ assessment, concluding
that phosphates have a high relative importance. El Bilali et al. [36] found that while adap-
tive boosting (AdaBoost) and RF models performed better in forecasting GWQ for irrigation
purposes, ANNs and support vector regression (SVR) models exhibited greater generaliz-
ability. Jeihouni et al. [37] used five decision-tree-based data mining algorithms to identify
high-quality groundwater zones, finding RF to be the most accurate for creating reliable
GIS-based GWQ maps. However, while these studies primarily focus on the physical and
chemical characteristics of GWQ and their interrelations, they often overlook the critical
impacts of geological environment settings (e.g., geology, topography and climate) and
human activities (e.g., urbanization and pollution source) on GWQ. This oversight leads to
the challenges in accurately assessing the factors contributing to groundwater pollution.
Meanwhile, research on ML models for single pollutants like nitrate, arsenic, salinity, and
fluoride is more detailed, focusing on their predictive accuracy in GWQ prediction. For
example, the ML models, such as RF, ANN, XGBoost, CART, BRT, SVR, and KNN, and
Bayesian-based methods are employed in mapping and the spatial prediction of nitrate
distribution, incorporating geological environmental parameters [19,38–42]. Podgorski
et al. [43] employed RF and multivariate logistic regression (MLR) to screen 25 indicators
and predict the distribution of fluoride across India. Xia et al. [44] utilized four models
(XGBoost, RF, AdaBoost, and SVM) to perform spatial predictions for fluoride, arsenic,
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and iodine in the Hetao Basin, China by considering different environmental factors. Tran
et al. [45] identified ten environmental indicators to compare the performance of various
ML models in predicting groundwater salinity in coastal areas and found that the Cat-
Boost regression model provides the highest accuracy. Podgorski and Berg [46] used RF
and eleven geological and climatic indicators to carry out spatial predictions of arsenic
contamination globally. However, although these studies account for various geological en-
vironmental factors for GWQ spatial prediction, they primarily focus on specific pollutants.
The analysis of all GWQ parameters and environmental stress indicators in these studies is
insufficient, and the application of ML models for the spatial prediction of overall GWQ
indexes, such as the EWQI, the IWQI, and the CPI, remains underexplored.

The pressure-state-response (PSR) framework, developed by the Organization for
Economic Cooperation and Development (OECD), provides a structured framework to
analyze the dynamic interactions between human activities, environmental conditions,
and management responses [47–49]. This framework has been ingrained in regulatory
approvals and development management plans across Australia, especially for mining
applications and environmental assessments. Also, many studies, such as those focused
on ecological security [50], ecological vulnerability [51], forest management [52], mine
area contamination assessment [53], and urban resilience [54], also demonstrated its wide
application. However, its application in GWQ prediction for indicator selection is still
limited. In fact, in GWQ prediction, there is a lack of systematic approach in the selection
of indicators, especially concerning those related to human activities. The PSR framework
aptly provides a structured methodology to identify and analyze various indicators crucial
for assessing GWQ. This framework is especially suitable in rapidly urbanizing areas,
where the dual impact of human activities on GWQ (both detrimental and beneficial)
presents a complex challenge that demands further exploration.

Building upon identified research gaps, this study aims to conduct spatial GWQ map-
ping and prediction using the Guanzhong Basin as the study area. This research integrates
the PSR framework, the EWQI, the LightGBM model, and explainable machine learning
techniques (EMLTs). In Guanzhong Basin, studies on GWQ primarily include contamina-
tion risk [55], human health risk [56], hydrogeochemical processes [57], and water quality
assessment [58]. However, the spatial prediction of GWQ has not yet been explored. There-
fore, this study include three innovations: (1) It pioneers the use of the advanced LightGBM
model and the EWQI to perform spatial mapping and carry out predictions of GWQ, as this
has not been explored; (2) It utilizes the PSR framework to systematically to select indicators
for GWQ mapping and prediction, considering geological environment indicators, spatial
uncertainty and dual impacts of human activities on GWQ; (3) It incorporates SHapley
Additive exPlanations (SHAP), a widely used advanced explainable machine learning
technique (EMLT), to visualize the influence of these indicators on GWQ distribution,
thereby supporting decision-making in sustainable groundwater management.

2. Study Area

The Guanzhong Basin, located in the central part of Shaanxi Province, China, serves
as an essential agricultural and industrial area; it is bordered by the Qinling Mountains to
the south and the Bei Mountains to the north [59]. This basin covers an area of approxi-
mately 18,955.25 km2 and is characterized by its longitudinal range of 107◦–110◦30′ E and
latitudinal span of 34◦00′–35◦40′ N (Figure 1). Geologically, the basin is distinguished by a
thick layer of Mesozoic sedimentary rocks and is underlain by complex hydrogeological
structures formed from tertiary river-lake facies, heavily influenced by historical tectonic
activities [60]. The region’s climate is classified as temperate, with four distinct seasons and
an average annual temperature of 13.3 ◦C, and annual rainfall varies from 544 to 863 mm,
predominantly occurring during the summer months [55]. However, the area is prone to
droughts due to its high annual evaporation rate of 800–1200 mm [61]. Hydrologically,
the Guanzhong Basin is dominated by the Weihe River, the largest tributary of the Yellow
River, which plays a crucial role in the regional water system by linking surface water
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interactions with the groundwater [62]. Despite its natural water riches, the basin faces
challenges related to water scarcity and the uneven seasonal distribution of rainfall, which
can impact both agricultural productivity and urban water supply. Groundwater in the
basin is found mainly in unconfined aquifers with thicknesses varying from 5 to 80 m,
predominantly recharged by precipitation and lateral flows from adjacent mountainous
regions [55]. The infiltration coefficients of the floodplains and terraces further highlight
the complex interaction between surface and groundwater systems. The significant human
activities, including dense urbanization and industrial operations in cities like Xi’an and
Xianyang, intensify the demand for water and place additional pressures on the groundwa-
ter systems. Given these factors, this study aims to leverage advanced machine learning
models to enhance the prediction and management of GWQ within the Guanzhong Basin,
focusing on integrating environmental, climatic, and anthropogenic indicators to provide a
comprehensive analysis of the region’s groundwater sustainability.
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Figure 1. Study area (Guanzhong Basin).

3. Methodology

Figure 2 illustrates the methodological framework of this study, which includes four
parts: indicator determination based on the PSR framework; GWQ assessment based on
the EWQI; GWQ mapping and spatial prediction based on LightGBM and the TPE; and
indicator analysis based on SHAP values. It is crucial to note that GWQ assessment relies
on solely groundwater sample analysis using the EWQI to obtain overall GWQ. Conversely,
spatial GWQ mapping and prediction extend these EWQI calculations spatially through
indicators identified by the PSR framework. Finally, future directions are proposed for
sustainable groundwater management.
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3.1. Groundwater Samples Descriptions

The groundwater samples used in this study were derived from the research conducted
by Chengzhu et al. [63], which originally comprised 200 groundwater samples. After
excluding 10 blank samples and 10 duplicates, a total of 180 samples remained for analysis.
The samples were evaluated for various physicochemical parameters and selected for
this study if they exceeded the Type III groundwater standards of China (GB/T 14848-
2017) [64]. For parameters not covered by the GB/T 14848-2017 standards, the World
Health Organization (WHO) drinking water guidelines and a related study [35] were used.
A total of 16 indicators were selected, and a description of these data is provided in Table 1.
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Table 1. GWQ samples descriptions (mg/L).

Parameters Min Max Mean SD Standard

pH 6.96 9.89 7.84 0.32 6.5–8.5
Total Hardness (TH) 9 1885 478.87 291.5 450

Total Dissolved Solids (TDS) 196 10570 1077.61 1098.60 1000
Calcium (Ca2+) 0.56 301 92.58 55.91 75

Magnesium (Mg2+) 1.8 352 60.24 53.36 30
Potassium (K+) 0.13 49.5 3.17 5.82 12
Sodium (Na+) 6.36 1160 140.62 155.88 200
Chloride (Cl−) 3.7 2135 106.54 195.99 250
Sulfate (SO4

2−) 1.33 4255 230.9 434.04 250
Bicarbonate (HCO3−) 117 1349 509.41 189.46 300

Nitrate (NO3−) 0 373 47.32 53.59 20
Fluoride (F−) 0.12 4.26 0.98 0.77 1
Zinc (Zn2+) 0.001 0.066 0.008 0.008 1

Hexavalent chromium (Cr6+) 0.001 0.45 0.033 0.055 0.05
Aluminum (Al3+) 0.003 0.1 0.008 0.01 0.2

Iron (Fe3+) 0 0.35 0.105 0.074 0.3

3.2. GWQ Assessment
3.2.1. EWQI Calculation

The EWQI method employs an entropy-based objective weighting system for each pa-
rameter, making it extensively applicable in the assessment of GWQ [12,65–68]. Compared
to the traditional WQI, the EWQI provides a more objective evaluation by reducing the
subjectivity in parameter weighting, thereby offering a more reliable assessment of GWQ
across diverse environments. Given m groundwater samples and n parameters, an m × n
matrix (X) can be constructed, as shown as Equation (1).

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

Due to variations in units and magnitudes across different parameters, the normaliza-
tion step is essential, resulting in a standardized matrix R.

Rij =
xij − min

(
xj
)

max(x j )−min(x j )
(2)

where Rij denotes the normalized value of the ith groundwater sample for jth parameter,
and min (xj ) and max (x j ) are the minimum and maximum values of the jth parameter,
respectively.

The entropy value (Hj) is then calculated to determine its relative importance by
Equation (3), as lower entropy indicates greater parameter significance.

Hj = − 1
ln(m)∑

m
i=1 Pijln(P ij ) (3)

where Pij =
Rij

∑m
i=1 Rij

and Pijln(P ij ) = 0 if Pij = 0.

The weight Wj for each parameter is subsequently derived from the entropy values
using Equation (4).

Wj =
1 − Hj

n − ∑m
j=1 Hj

(4)
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To evaluate the quality index (Qij) of groundwater sample i for parameter j, Equation (5)
is employed.

Qij =


100 × xij

Sj
CpH − 7
SpH − 7

(5)

where Sj refers to the reference value for parameter j (See Table 1); CpH is the value of pH;
and SpH is the permissible limit of pH, which can be either 6.5 or 8.5. When the pH is less
than 7, the limit is set at 6.5; when it is greater than 7, the limit is set at 8.5.

Finally, the EWQI is computed the following equation:

EWQI = ∑n
j=1 Wj × Qij (6)

3.2.2. Parameter Analysis

Similar to other WQIs, the EWQI calculates the overall GWQ of a sample point
but cannot assess the conditions of individual parameters within the area. Moreover,
existing methods for single-parameter water quality analysis do not fully consider the
importance of the parameters and their exceedance rates. Therefore, this study defines
a new term, normalized importance (NI), considering both importance and exceedance
rates to reflect the priority level for management of a single GWQ parameter in the study
area. Parameters with high NI values should be prioritized for management to reduce the
impact of groundwater pollution in the study area. The formula for NI is

NI = ∑n
j=1 Wj × Ej (7)

where Wj is the weight value for parameter j, and Ej is the exceedance rate of groundwater
samples for parameter j compared to the reference value.

3.3. GWQ Mapping and Prediction
3.3.1. Data Split

First, 180 groundwater samples were categorized based on their calculated EWQI
values into two groups: 0 (90 samples), representing good GWQ, and 1 (90 samples),
representing poor GWQ. To determine the optimal split between training and validation
sets, we conducted a preliminary analysis by comparing the average model performance
and standard deviation (SD) of six split ratios (65/35, 70/30, 75/25, 80/20, 85/15 and
90/10) based on four random selections. This preliminary analysis has been validated as
an effective method for selecting training and validation sets [69–72].

3.3.2. Indicator Selection by PSR Framework

Based on the PSR framework, 13 indicators were selected, including potential pressure
indicators, state indicators, and potential response indicators. The reason these are con-
sidered “potential” is that it is not yet clear whether the human responses they represent
are beneficial or detrimental to GWQ, necessitating further investigation. Table 2 displays
information on the data sources, scales, and relevant details of these indicators. To ensure
consistency across all indicators during modeling, we standardized the spatial resolution.
For vector data such as the point, line and polygon, we utilized the vector-to-raster conver-
sion tool in GIS to achieve a resolution of 30 m (Note: point density was used for PPSD).
For raster data of varying resolutions, we applied resampling techniques to uniformize
the resolution to 30 m. This standardization ensures uniformity and reliability in our
data analysis.
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Table 2. Thirteen indicators determined by PSR framework.

Group Indicators Sources Scale Format

Pressure
Population SEDAC 250 m Raster

PPSD SPDEE 1:300,000 Point
LULC Yang and Huang [73] 30 m Raster

State

Depth to groundwater MWRPIC 1:300,000 Line
Net recharge Peng et al. [74] 1 km Raster

Aquifer water yield capacity Hydrogeological map 1:300,000 Polygon
Slope NASADEM data 30 m Raster

Impact of the vadose zone Zhang et al. [55] 1:300,000 Polygon
Conductivity Zhang et al. [55] 1:300,000 Polygon

Potential response

GDP2015 GRDC 1 km Raster
Ten years change of NDVI Yang et al. [75] 30 m Raster

Degree of urbanization SEDAC 250 m Raster
Nighttime lights Elvidge et al. [76] 1 km Raster

Note(s): SEDAC (Socioeconomic Data and Application Center); SPDEE (Shaanxi Provincial Department of ecology
and environment); MWRPIC (Ministry of Water Resource of the People’s Republic of China); GRDC (Geographic
Data Sharing Infrastructure, global resources data cloud).

Potential Pressure Indicators

Potential pressure indicators are the factors that many influence GWQ through exter-
nal forces, such as agricultural activities, industrial emissions, and urban expansion. In
this study, population, land use and cover (LULC) and potential pollution-source density
(PPSD) are selected as potential pressure indicators for GWQ mapping and prediction
(Figure 3). The population size may drive groundwater demand and contribute to wastew-
ater and solid waste production, which can contaminate groundwater [77,78]. Higher
population densities typically increase the risk of over-extraction and pollution. In terms of
LULC, urbanization increases impervious surfaces, decreasing groundwater recharge and
increasing runoff that may carry pollutants [79]. Agricultural practices often use fertilizers
and pesticides, risking groundwater contamination through leaching and infiltration [80,81].
PPSD measures the concentration of potential contaminant sources like industrial areas,
waste disposal sites, and chemically intensive agriculture [82]. Higher PPSD elevates the
contamination risk to groundwater systems.
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State Indicators

State indicators, referencing the DRASTIC model in groundwater vulnerability, are
utilized to measure the fundamental hydrogeological conditions that determine GWQ.
Groundwater vulnerability is used to measure capacity to resist pollutants entering the
groundwater system, which reflects the current state and attributes of the area [83]. In this
study, six indicators were selected, including depth to groundwater, net recharge, aquifer
water yield capacity, slope, impact of the vadose zone, and conductivity (Figure 4). We
removed the indicator of soil media because the net recharge is calculated by multiplying
rainfall by an infiltration coefficient, which is determined based on soil type. The influence
of these indicators on GWQ and the scores for each indicator can be found in many
groundwater vulnerability studies [83–89]. A higher score indicates that the aquifer system
in the area is more vulnerable to contamination, while a lower score suggests greater
resistance to pollution.
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Potential Response Indicators

Response indicators represent the measures and policies implemented to address
or mitigate impacts on GWQ. Due to the dual impact of human activities on GWQ, we
selected several potential indicators for the response category. These include GDP2015,
ten-year changes in the NDVI, degree of urbanization, and nighttime lights (Figure 5).
GDP reflects economic activity levels, where higher values are not only linked to greater
environmental impacts from industrial and agricultural runoff affecting GWQ but also
indicate increased potential for funding and implementing policies aimed at mitigating
these impacts [51,90]. Ten-year changes in the NDVI, the degree of urbanization settle-
ment, and nighttime lights collectively represent the dual impacts of human activities on
GWQ. The changes in the NDVI indicate variations in vegetation cover that can either
enhance groundwater recharge and pollutant filtration with increased greenery or reduce
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these capabilities through land degradation [91–93]. Urbanization increases impervious
surfaces and pollution runoff, degrading natural water infiltration and quality, yet it also
prompts opportunities for implementing advanced urban planning and sustainable infras-
tructure to protect groundwater [3,94,95]. Similarly, increased nighttime lights correlate
with intensified urban and industrial activities that elevate contamination risks, but they
also mark areas where targeted environmental regulations and remediation efforts can
effectively mitigate these impacts [96,97]. Each indicator not only reflects the challenges
posed by human activities but also underscores the potential for proactive groundwater
management responses.
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3.3.3. Correlation Analysis

To ensure the accuracy and effectiveness of our model, a correlation analysis was
conducted on the dataset variables before modeling. We used the Pearson correlation
coefficient (PCC) to identify linear relationships between variables. Any pair of variables
with a correlation coefficient exceeding 0.7 was considered strongly correlated, and one
variable from each pair was removed to avoid multicollinearity, which can impair model
stability and interpretability. The equation of PCC is shown as follows:

r = ∑ (xi − x)(yi − y)√
∑ (xi − x)2∑(yi − y)2

(8)

where xi and yi are the values of the two variables, x and y are the means of variables,
respectively.

3.3.4. LightGBM Model

In our analysis, the LightGBM model, developed by Ke et al. [98], was employed
due to its effectiveness in processing large-scale and high-dimensional datasets. This
model integrates two key innovations: gradient-based one-side sampling (GOSS) and
exclusive feature bundling (EFB) [99]. EFB reduces the dimensionality of the feature space
by grouping features that are rarely active at the same time, treating the combination
as a graph coloring problem where features are vertices connected by edges when not
mutually exclusive. GOSS enhances the training process by focusing on instances with
larger gradients by maintaining all instances in the top a percentile (denoted as Ghigh) and
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sampling a fraction b from the lower gradients (Glow) [100]. The information gain from a
feature j at split d is calculated using the formula:

∼
V j(d) =

1
n
(

(
∑xi∈Al

gi +
1−a

b ∑xi∈Bl
gi

)2

nj
l(d)

+

(
∑xi∈Ar gi +

1−a
b ∑xi∈Br gi

)2

nj
r(d)

) (9)

where Al and Ar are subsets of Ghigh, and Bl and Br are subsets of the sampled Glow, with

nj
l(d) and nj

r(d) representing the number of instances on the left and right sides of the split,
respectively.

3.3.5. Hyperparameter Selection and Optimization

Hyperparameter selection and optimization are crucial in ML, as they significantly
enhance model performance by fine-tuning settings to align precisely with specific data
characteristics and learning objectives [101]. In this study, six hyperparameters and their
corresponding parameter spaces are presented in Table 3. The meanings of these hyperpa-
rameters are shown in Appendix A.

Table 3. Hyperparameter spaces and optimal hyperparameters.

Hyperparameters Hyperparameter Spaces

bagging_fraction hp.uniform(‘bagging_fraction’, 0.5, 0.9)
bagging_freq hp.choice(“bagging_freq”, range(4, 7))
boosting_type hp.choice(“boosting_type”, [‘gbdt’, ‘dart’, ‘rf’])

feature_fraction hp.uniform(‘feature_fraction’, 0.5, 0.9)
learning_rate hp.uniform(‘learning_rate’, 0.01, 0.5)
num_leaves hp.choice(“num_leaves”, range(15, 128))

Also, we used the tree-structured parzen estimator (TPE) for hyperparameter
optimization—a method within Bayesian optimization used for its efficiency in refin-
ing model parameters by leveraging historical performance data. Specifically, we utilized
the “1-area under the receiver operating characteristic curve (AUROC)” as the objective
function for minimization, and the iterations were set as 1000. The detailed information
about the TPE approach can be found in Xiong et al. [102], Nguyen et al. [103], Rong
et al. [104] and Tao et al. [105].

3.3.6. Model Performance Evaluation

Model performance evaluation is crucial in assessing the efficacy and reliability of
ML models, providing insights into their predictive accuracy and guiding improvements
to ensure robust real-world applications [106,107]. In this study, building on previous
research [108,109], we utilized precision (Equation (10)), recall (Equation (11)), F1 score
(Equation (12)), overall accuracy (OA) (Equation (13)), and AUROC (Equation (14)) as
metrics to comprehensively evaluate the performance of the model.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 score = 2 × 2TP
2TP + FP + FN

(12)

OA =
TP + TN

TP + TN + FP + FN
(13)

AUROC = ∑n−1
i=1 (FPRi+1 − FPRi)× (

TPRi+1 + TPRi
2

) (14)
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In this analysis, TP denotes instances where the model correctly identified poor GWQ
samples, while FP indicates cases where good GWQ samples were mistakenly classified as
poor. TN represents instances where good GWQ samples were correctly recognized, and
FN refers to cases where the model failed to identify poor GWQ samples. Additionally,
FPRi measures the proportion of good GWQ samples incorrectly classified as poor at the ith

threshold. TPRi quantifies the percentage of actual poor GWQ instances that were correctly
identified at the same threshold.

3.4. Spatial Uncertainty Analysis

Some studies have indicated that different sampling methods can affect the uncertainty
of the results [110], and similar model performance does not necessarily indicate similar
spatial distributions [111]. Therefore, we conducted a spatial uncertainty analysis for
four random selections. The spatial uncertainty of four GWQ maps was assessed by two
methods. The first approach involves calculating the PCC for all grid cells between each
pair of the four GWQ maps to obtain an overall correlation. Stronger correlations (closer to
1) in PCC analysis indicate lower spatial uncertainty

The second method is to spatially visualize the uncertainty between each pair of the
four GWQ maps across the study area. For a specific grid cell at position (i, j) in the study
area, the spatial uncertainty can be calculated using Equation (15).

Uncertainty =
2

n(n − 1)∑
n−1
k=1 ∑n

l=k+1|x(k, j)− x(l, j)| (15)

where n is the number of GWQ maps, and x(k, j) represents the probability of GWQ from
the kth map at grid cell (i, j). In this study, n equals 4.

3.5. Indicator Importance Analysis and SHAP Analysis

SHAP analysis offers a systematic approach within an EMLT to quantitatively detail
the contribution of each feature to a model’s predictions; it has been widely used in the
groundwater field [112–114]. This approach is crucial for understanding the role of input
features (indicators) in determining model outcomes [115]. SHAP analysis is frequently
utilized with ensemble models like XGBoost [116], LightGBM [117], CatBoost [118], and
RF [119] due to its code compatibility. In SHAP analysis, two key values are included:
the SHAP value and the feature value. The former quantifies the impact of each feature
(indicator) on the model’s prediction. Its positive or negative sign indicates contributions
to the binary outcomes of 1 and 0, respectively. The latter refers to the actual value of the
indicator itself, which is used as an input in the model. The SHAP method assigns a value
to each feature based on its influence, calculated using Equation (16):

∅j = ∑S⊆N/j
|S|!(n − |S| − 1)!

n!
[ f (S ∪ j)− f (S)] (16)

where ∅j represents the SHAP value for feature j, derived by summing contributions over
all possible subsets of features excluding j; |S| is the number of features in subset S; n is the
total number of features; f (S) denotes the model’s output using subset S without feature j;
and f (S ∪ j) is the output when feature j is included.

4. Results
4.1. GWQ Assessment Results

Table 4 presents the weights, exceedance rate and NI of different parameters. The
results revealed that the NI of NO3

− is the highest (0.208), followed by Mg2+ (0.143), SO4
2−

(0.110), Cr6+ (0.109) and Na+ (0.095). Additionally, while the NI of HCO3−, Ca2+, and pH is
not high, their exceedance percentages are significantly elevated, at 90%, 60%, and 38.89%,
respectively. These findings should prompt significant attention from managers in the
study area due to the potential impact on GWQ.
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Table 4. Weights, exceedance percentage and NI of parameters.

Parameters Weights Exceedance Rate NI

pH 0.008052 38.89% 0.015521
Total Hardness (TH) 0.021665 34.44% 0.036983

TDS 0.062166 1.67% 0.005146
Calcium (Ca2+) 0.024363 60.00% 0.072454

Magnesium (Mg2+) 0.041843 68.89% 0.142876
Potassium (K+) 0.104982 4.44% 0.023104
Sodium (Na+) 0.068902 27.78% 0.094873
Chloride (Cl−) 0.105335 7.22% 0.037696
Sulfate (SO4

2−) 0.107567 20.56% 0.109618
Bicarbonate (HCO3

−) 0.014792 90.00% 0.065986
Nitrate (NO3

−) 0.067453 62.22% 0.208023
Fluoride (F−) 0.042884 35.56% 0.075585
Zinc (Zn2+) 0.064638 0.00% 0

Hexavalent chromium (Cr6+) 0.124156 17.78% 0.109416
Aluminum (Al3+) 0.108349 0.00% 0

Iron (Fe3+) 0.032851 1.67% 0.002719

Figure 6 shows the boxplot and distribution of the EWQI based on 180 groundwater
samples. As shown in the boxplot, the median EWQI value is at approximately 64.68,
with the interquartile range extending from 48.72 to 100.26. Some outliers can be observed
beyond the whiskers, indicating that the distribution is skewed. The histogram further illus-
trates the distribution of EWQI values, emphasizing a right-skewed trend (skewness = 3.26
and maximum EWQI = 534.72). A majority of the samples cluster towards the lower range
of EWQI values (EWQI < 100), which indicates that most of the 180 groundwater samples
from the study area are categorized as “Excellent”, “Good” and “Moderate,” using the
standards outlined in many studies [67]. As a result, combined with Figure 6, the overall
GWQ in the study area is generally good. However, a few areas suffer from severely poor
quality, which warrants urgent attention.
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4.2. Indicator Selection by Correlation Analysis

Figure 7 presents the PCCs between indicators. It is evident that all the PCCs are below
0.7, indicating that multicollinearity among these indicators is not significant. Notably,
the coefficient between nighttime light and GDP is 0.63, which can be attributed to the
fact that areas with higher economic output often have increased nighttime lighting due
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to urbanization and industrial activity [120,121]. Similarly, the PCC between aquifer
media and net recharge is 0.66, and this is because the characteristics of aquifer media
directly influence the rate and volume of groundwater recharge through their porosity
and permeability properties [122]. Despite the correlations among the indicators, their
correlations are not strong enough to undermine the models’ independence for modeling.
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4.3. Optimal Hyperparameters, Model Performance, and Spatial GWQ Mapping

Based on the preliminary analysis, it was found that the 80/20 split ratio had high
model performance (average AUROC = 0.8989) and the highest robustness (SD = 0.0083)
(Table 5). Comparing other splits, 80/20 not only maximizes the predictive accuracy but
also ensures the model’s stability across different test sets. Table 6 illustrates the optimal
hyperparameters for four different random sample selections, which highlights that the
best optimization results under the TPE approach vary with each sampling method.

Table 5. Data split determination for training and validation dataset by average AUROC and SD.

Selection No. 65/35 70/30 75/25 80/20 85/15 90/10

1 0.8291 0.823 0.8856 0.9074 0.8797 1
2 0.8291 0.8697 0.8573 0.8981 0.8571 1
3 0.7954 0.8011 0.8855 0.8858 0.8546 0.9383
4 0.7808 0.823 0.8601 0.9043 0.8731 0.9877

Average 0.8086 0.8292 0.8721 0.8989 0.8661 0.9815
SD 0.0211 0.0250 0.0135 0.0083 0.0106 0.0254
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Table 6. Optimal hyperparameters for different random sample selections.

Hyperparameters Selection 1 Selection 2 Selection 3 Selection 4

bagging_fraction 0.755129 0.578798 0.628146 0.817471
bagging_freq 5 4 5 5
boosting_type gbdt gbdt gbdt gbdt

feature_fraction 0.861003 0.561902 0.899878 0.677141
learning_rate 0.310296 0.069457 0.353949 0.314827
num_leaves 102 45 47 21

Figure 8 displays the testing results of the model for four random splits with an 80/20
ratio. It is evident that the model exhibits excellent performance in all four cases, achieving
AUROC values of 0.9074, 0.8981, 0.8858, and 0.9043, respectively. Other metrics, including
precision, recall, F1 score, and OA, further corroborate the results. The consistently high
performance not only validates the appropriateness of the selected indicators for GWQ
mapping and prediction but also reflects the effectiveness of the LightGBM model combined
with the TPE, as stated in Li et al. [123], Guo et al. [124] and Li et al. [125]. However, as
emphasized by Xiong et al. [102], similar model performances do not necessarily imply
similar spatial distributions. We therefore mapped the spatial distribution of GWQ based
on the optimal hyperparameters (Figure 9a–d). The natural break method was used to
categorize spatial GWQ into five classes (very high, high, moderate, low and very low).
The areas of the five classes in the four GWQ maps are displayed in Table 7. It is found that
despite similar model performances, there are significant differences in spatial distribution
for the four maps. Therefore, we averaged the possibility of each grid cell from the spatial
GWQ maps of the four random selections (Figure 9e). This may be a possible strategy to
address the spatial uncertainty caused by selecting different datasets.
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Table 7. Areas of the five classes in the four GWQ maps.

Areas Selection 1 Selection 2 Selection 3 Selection 4

Very high (km2) 2625.53 1278.48 1984.58 2261.95
High (km2) 3736.37 4915.00 3261.57 3981.42

Moderate (km2) 3559.01 6026.96 4728.50 5181.86
Very low (km2) 5242.62 4353.83 4695.23 4305.54

Low (km2) 3791.72 2380.98 4285.36 3224.49

4.4. Spatial Uncertainty in GWQ Mapping

Figure 10 shows the spatial uncertainty analysis results with PCC values. It is found
that PCCs among these four maps range from 0.5365 to 0.8066, confirming the observed
differences in Figure 9. Particularly notable is the variance between selection 2 and 3, with
a PCC of 0.5365. Even for the most similar pair of selections (1 and 4), the PCC is only
0.8066. Figure 10g displays the final results of spatial uncertainty with an average PCC of
0.6707. It indicates that the spatial uncertainty caused by four random selections of training
and validation groundwater samples is pronounced. We have highlighted three typical
areas with particularly high uncertainty on the map, providing a basis for supplementing
groundwater samples in future groundwater management.
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Figure 10. Spatial uncertainty analysis with PCC values. (a) Selection 1 and 2; (b) Selection 1 and
3; (c) Selection 1 and 4; (d) Selection 2 and 3; (e) Selection 2 and 4; (f) Selection 3 and 4; (g) Final
average result.

4.5. Indicator Analysis with Importance and SHAP Value

Figure 11 shows the results of feature importance for different randomly selected
training and testing sets, based on the Python code “feature importance”. Table 8 shows
the accumulated importance of 13 indicators for four random selections. It is evident that
population (18.55%) and nighttime light (17.65%) are the most critical indicators, leading
over aquifer media, GDP2015, and groundwater yield. After removing population and
nighttime light and rerunning the model, a significant decrease in model performance was
observed (Appendix B). In contrast, LULC (2.32%), degree of urbanization (1.50%) and net
recharge (0.67%) have relatively low importance. Interestingly, both the most and least
important indicators include those related to human activities.

Table 8. Accumulated importance of 13 indicators for four random selections.

Indicators Accumulated Importance Rank Proportion

Population 74.22 1 18.55%
Nighttime light 70.59 2 17.65%
Aquifer media 41 3 10.25%

GDP2015 39.49 4 9.87%
Groundwater yield 34.37 5 8.59%

Conductivity 31.23 6 7.81%
Change of NDVI 28.85 7 7.21%

Depth to groundwater 25.21 8 6.30%
PPSD 21.32 9 5.33%

Topography 15.75 10 3.94%
LULC 9.29 11 2.32%

Degree of urbanization 5.99 12 1.50%
Net recharge 2.7 13 0.67%
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Figure 12 shows the SHAP analysis results from four random selections, and high
and low feature values (indicator values) are represented by red and blue, respectively.
The broader the distribution of an indicator’s feature values, covering a wider range of
SHAP values, the more important that indicator is considered. It is found that the indicator
importance observed here is consistent with that shown in Figure 11 by “feature importance”
code. By analyzing the relationship between feature values and SHAP values, we found that
population density, nighttime lights, and GDP, which are theoretically positively correlated,
exhibit diverse distributions (Figure 12). Specifically, the contributions of nighttime lights
and population to GWQ prediction are opposing, with the areas of poorest GWQ (high
SHAP values) being those with higher population density but not necessarily high GDP.
Also, the areas with significant NDVI changes and high PPSD exhibit poor GWQ (positive
SHAP values), which aligns with the expected outcomes. Additionally, the SHAP analysis
results are generally consistent with the scores from the DRASTIC model for groundwater
vulnerability, except for the conductivity indicator.
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5. Discussion
5.1. Discussion on GWQ Assessment

The EWQI offers a refined approach compared to traditional composite GWQ assess-
ment methods like the CPI (GB/T 14848-2017) and the Nemerow index [126]. While the
CPI often penalizes overall water quality for a single poor parameter due to its averaging
approach, the EWQI mitigates this by using entropy to weight parameters based on their
variability and significance. This results in a more balanced and realistic assessment of
GWQ [127]. In contrast to the Nemerow index method, which tends to emphasize the
worst-case scenario, EWQI provides a broader perspective, integrating various indicators
without letting a single outlier skew the overall results [128]. This makes the EWQI partic-
ularly useful for creating targeted and effective water management strategies. In fact, if
multiple methods are used to evaluate groundwater samples, more comprehensive anal-
ysis results can be obtained, and such comparative studies can serve as a future research
direction [129,130].

Unlike other studies based on the EWQI [68,126], this paper further considers the
quality of individual parameters on the basis of the NI approach. For the single GWQ
parameter, the NI value reflects the priority level of management for the petameter. NO3

−

has the highest priority, which is likely highly related to the extensive agricultural land
and the use of fertilizers in the study area [56,131,132]. The relatively high NI of Mg2+,
SO4

2−, and Na+ is primarily linked to specific hydrogeochemical processes such as rock
weathering, cation exchange, and evaporation [57,133,134]. Additionally, the significant
presence of SO4

2− may be attributed to the oxidation of pyrite [135]. It is noted that the NI
of Cr6+ reached 0.109, highlighting the serious health risks it poses when concentrations
exceed safe levels in groundwater. The elevated Cr6+ concentrations in groundwater
primarily stem from low groundwater velocity in the loess aquifer, cation exchange in
alkaline environments, and industrial activities [136]. In terms of other common GWQ
parameters such as HCO3−, Zn2+ and F−, Fe3+, Al3+, comparing NI values, weights and
exceedance rates can provide managers with prioritized information for management. The
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managers can develop varying levels of macro-strategic groundwater management plans
based on their circumstances, such as economic and policy factors.

5.2. Model Performance and Spatial Uncertainty

In this study, all four selections demonstrated high model performance, with AU-
ROC values of around 0.9. However, spatial differences and uncertainties were evident
(average PCC = 0.6707). In fact, some studies have demonstrated that similar model per-
formances do not necessarily imply similar spatial distributions in groundwater potential
mapping [102] and landslide susceptibility mapping [111]. This is primarily because of
the training and testing sets being sourced from specific geographic locations. When these
models are generalized spatially, the diversity of indicators and the variation in optimal
hyperparameters can lead to inconsistencies in spatial distribution. However, in ML-based
spatial predictions, the dataset used for training is inherently limited. It is challenging to
guarantee that spatial samples (e.g., groundwater samples) are both sufficient and evenly
distributed, which implies that spatial uncertainty cannot be fully eliminated. Therefore,
considering that sampling is both time-consuming and expensive, balancing the number of
sampling points with spatial uncertainty is an important direction for future research.

Many studies have employed k-fold cross validation to reduce uncertainty in ML
models [137–140]. This technique enhances model reliability by ensuring robustness and
consistency across different data subsets [141]. However, the effectiveness of k-fold cross-
validation in addressing spatial uncertainty is still very limited. This study proposed a
possible method that averaged the grid cells from the spatial GWQ maps of four selections.
This averaging approach reduces variability and enhances the stability of spatial predictions
by mitigating the effects of outliers and random sampling errors. Also, we have highlighted
three typical areas with particularly high uncertainty in Figure 10, identifying potential
locations for additional groundwater sampling. With more sampling data, the spatial
uncertainty of the groundwater quality map is expected to decrease accordingly. However,
these methods serve as a starting point, and the current research on spatial uncertainty is
notably insufficient. Under this condition, we strongly encourage the development and
discussion of more solutions to address spatial uncertainty. Such approaches should be
extended beyond GWQ to a broader range of ML-based spatial prediction applications like
landslide susceptibility [142], groundwater salinity [143], groundwater potential [72] and
nitrate concentrations [19].

5.3. SHAP Observation and Discussion

SHAP analysis is one of the most important EMLTs, and this study further verifies
its applicability in spatial GWQ mapping and prediction. In very poor GWQ areas (high
SHAP value), the feature value trends of population density and GDP2015 show the
variations rather than the expected similarity. The population is depicted in red in poor
GWQ areas, while GDP2015 shows the different pattern. The red points for the GDP2015
indicator mainly appear at slightly positive SHAP values, indicating that regions with
severe groundwater pollution are not necessarily high-GDP areas. This inconsistency
further highlights the importance of considering both the positive and negative impacts of
these human related indicators in the analysis. This is why we use the term “potential” in
Section 3.3.2 for indicator selection. However, it is found that when it comes to population
growth and economic development, many researchers assume their impact on groundwater
is primarily groundwater deterioration or some other negative effect [144–147]. Here, we
want to emphasize that the positive impacts of these indicators on GWQ should not be
ignored. Given the current lack of detailed studies exploring the impacts of economic or
population indicators on GWQ, we propose two viewpoints. First, we hypothesize that
the impact of these indicators on GWQ may exhibit an inverse U-shape, similar to findings
in studies on greenspace and economic growth [148] or population aging and economic
growth [149] and carbon emissions and population size [150]. This may be because as
economic or population development reaches a certain level, corresponding groundwater
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protection and remediation measures are likely to improve, and these indicators may
shift from being “pressure” indicators to “response” indicators. Second, we also strongly
recommend conducting more research to find evidence that supports the hypothesis or to
further investigate the relationship between economic and population indicators and GWQ.

We observed that in areas with poor GWQ (positive SHAP value), the feature value of
nighttime light is low while PPSD is high, whereas in areas with good GWQ, the situation
is reversed. Nighttime light is often a complex factor that often correlates with GDP,
LULC, population, PPSD, urbanization, and other socio-economic indicators (Figure 7).
Considering the possible inverse U-shape relationship observed in the analysis of GDP
and population, along with the low importance of LULC and degree of urbanization,
we have made a reasonable inference regarding the causes of poor GWQ in the study
area. Point-source pollution (e.g., industry, farms, mine exploration, hazardous waste
disposal sites, and landfills) is the primary cause of GWQ deterioration. The pollution
in these areas is characterized by concentrated, localized contamination, often confined
to specific sites. Additionally, these areas have low nighttime light intensity and are less
influenced by land use and urbanization, which further supports the positive correlation
with the PPSD indicator. The impact of point-source pollution on GWQ explains why
there is a substantial difference between the spatial distribution map of GWQ created in
this study and the groundwater vulnerability map created in current study [55]. This also
implies that when using specific pollutant parameter (NO3

−) to validate groundwater
vulnerability models, it is crucial to consider and mitigate the influence of point-source
pollution on the results. Therefore, for these potential pollution sources, conducting regular
GWQ testing, enhancing wastewater treatment facilities, and providing education on best
practices for pollution prevention are top priorities for protecting groundwater in the
study area. Additionally, implementing stricter regulations on industrial discharges and
monitoring land use changes can further mitigate the risks posed by point-source pollution.

The poorer GWQ in areas with significant NDVI changes indicates that human expan-
sion activities over the past decade have generally degraded GWQ. The low importance
of the degree of urbanization further suggests that it is the process of human activity or
expansion, rather than the presence of constructed areas themselves, that has led to the
deterioration. Human expansion activities often include deforestation, land conversion
for agriculture, industrial development, and infrastructure construction [151,152]. These
processes contribute to GWQ degradation by disturbing soil and vegetation during land
clearing, increasing surface runoff, introducing pollutants before adequate infrastructure is
in place, and disrupting natural water recharge areas. Although groundwater protection
measures may improve following urban expansion, it is crucial to regulate human activi-
ties, particularly by controlling land use changes, implementing sustainable development
practices, and enforcing stricter environmental regulations during the human expansion
process to address this issue.

In terms of the “state” indicators group, the SHAP analysis results are generally con-
sistent with the scores from the DRASTIC model for groundwater vulnerability [153–155],
except for the conductivity indicator. This can also be explained by point-source pollution.
In cases of point-source pollution, low conductivity indicates that the polluted groundwater
does not easily disperse, thereby affecting regional GWQ. In areas with high conductivity,
pollutants from the source diffuse with the water flow, diluting the contaminants and
resulting in improved GWQ. Based on the SHAP analysis, the preliminary causes of GWQ
condition in the study area have been identified. The next step is for managers to conduct
detailed investigations according to these preliminary hypotheses and develop correspond-
ing management strategies. However, it is important to emphasize that SHAP analysis only
explains the association between indicators and outcomes from a statistical perspective
and does not necessarily imply a definitive causal relationship, particularly for complex
indicators like nighttime light. The inferences we make based on SHAP results require
further validation through concrete evidence. Causal analysis, as explored by Jia et al. [156],
is a direction worth pursuing in future research following SHAP analysis.
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5.4. Limitations and Future Research

Although the findings of this study are interesting, there are four limitations to consider.
Firstly, for a study area of nearly 20,000 km2, the use of 180 sample points is somewhat
insufficient for both training and validation sets, which may be a significant reason for
spatial uncertainty. However, this issue is common in groundwater studies due to the
limited economic and time resources available for extensive sampling. This also highlights
the value of our research on spatial uncertainty and provides a foundation for locating
where additional groundwater bores need to be drilled. Secondly, although SHAP analysis
is an ELMT, the explanation provided is statistical. For some complex socio-economic
indicators, the causal relationships between the indicators themselves and between the
indicators and the outcomes have yet to be confirmed. Thirdly, this study only used
the LightGBM model with an 80/20 split ratio of training and validation datasets for
spatial uncertainty analysis. Introducing more models and a broader range of data-split
comparisons could increase the stability of the results. Fourth, when determining GWQ
standards, we used Chinese, international, and other literature standards, which might
introduce some bias to the results. Nonetheless, these limitations have a minimal impact on
the findings of this study. Based on this study, future research should include the following
six aspects:

• When evaluating GWQ, it is recommended to use multiple methods, including the
EWQI, the CPI, and the Nemerow index, and to promote the single parameter analysis
method of the NI proposed in this study.

• It is encouraging to confirm the causal relationships between indicators and between
the indicators and outcomes, ensuring that the associations identified through SHAP
analysis are supported by robust evidence.

• Introduce and compare more models, including deep learning, reinforcement learning,
and ensemble learning, to enhance the stability and accuracy of the results.

• Further promote the contribution of the PSR framework in spatial mapping and
prediction for indicator selection to ensure the completeness of model construction.

• In addition to calculating spatial average probabilities and supplementing with addi-
tional groundwater samples, develop more methods to reduce spatial uncertainty to
provide managers with more accurate mapping results.

• Further develop the application of EMLTs in groundwater management.

6. Conclusions

The spatial mapping and prediction of GWQ is essential for identifying pollution
sources and informing comprehensive groundwater management strategies. However,
this area has not yet been fully explored. The research gaps mainly include the inaccu-
racy of traditional spatial interpolation for spatial mapping, insufficient consideration of
the geological environment and human activities in ML models, the limitation to single
pollutants, and the lack of a systematic approach in the selection of indicators. By taking
Guanzhong Plain as a case study, this study utilized the EWQI, the LightGBM model, the
TPE optimization method, the PSR framework, and SHAP analysis for the spatial mapping
and prediction of GWQ, aiming to address the aforementioned research gaps. Through
analysis and discussion, we have made several interesting and important findings.

Firstly, according to the NI results for various parameters, NO3
−, Mg2+, SO4

2−, Na+

and Cr6+ should be prioritized for remediation. The skewed distribution of the EWQI
indicates that the overall GWQ in the study area is generally good, but a few areas suffer
from severely poor quality, which warrants urgent attention. Secondly, based on four
randomly selected training and testing sets, although their model performances were
high (with AUROC around 0.9), they exhibited spatial uncertainty, with the lowest spatial
correlation being only 0.5365 (between selection 2 and 3). This issue is not limited to spatial
GWQ mapping and prediction but also extends to other fields. The spatial averaging
method and additional groundwater samples may be possible solutions for this issue, but
further methods need to be explored. Thirdly, population and nighttime light are the most
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critical indicators, while the indicators of net recharge, LULC and degree of urbanization
have the lowest importance. Combining SHAP values, we infer that economic development
and population have both positive and negative impacts on GWQ, while point-source
pollution is the main cause of the decline in GWQ in the study area. Additionally, we
speculate that human expansion activities over the past decade have generally had a
negative impact on GWQ.

Due to the limited research on the spatial mapping and prediction of GWQ, future
studies should include six different aspects in this field, involving multi-method GWQ
assessment; causal relationships between indicators and between the indicators and out-
comes; the introduction and comparison of more spatial mapping and prediction models;
the application of the PSR framework for indicator selection; the development of more
methods to reduce spatial uncertainty; and the application of EMLTs in groundwater man-
agement. In this way, future research will support the development of the spatial mapping
and prediction of GWQ from different perspectives, aiming to further assist groundwater
managers in achieving sustainable groundwater management in the future.
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Appendix A. The Meaning of Hyperparameters in LightGBM Model

The LightGBM model in this study includes seven hyperparameters, the significance
of which is detailed in Table A1. These hyperparameters play a crucial role in controlling
the model’s complexity, preventing overfitting, and optimizing the trade-off between model
accuracy and training efficiency.

Table A1. The meaning of hyperparameters in the LightGBM model.

Hyperparameters Meanings

bagging_fraction This parameter specifies the fraction of data to be randomly selected for each iteration, which helps in
preventing overfitting.

bagging_freq This defines how frequently (in terms of iterations) bagging is performed. For instance, setting it to
5 means that bagging is applied every five iterations.

boosting_type This parameter determines the type of boosting algorithm to use.

feature_fraction This controls the fraction of features (columns) to be randomly selected for each iteration, helping to
improve model generalization.

learning_rate This is the step size that controls how much the model is adjusted with each iteration, balancing the
trade-off between model accuracy and training time.

num_leaves This specifies the maximum number of leaves in one tree, which directly impacts the complexity and
accuracy of the model.
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Appendix B. The Results of Model Performance after Removing Population and
Nighttime Light

Given that population and nighttime light are important indicators, we removed the
two indicators and conducted four additional tests to validate this finding (Table A2). This
shows a significant decline in model performance, further confirming the crucial role these
indicators play in accurately predicting GWQ.

Table A2. Model performance after removing population and nighttime light.

Performance Metrics Test 1 Test 2 Test 3 Test 4

AUROC 0.8348 0.8534 0.8673 0.8380

Precision 0.8333 0.9167 0.7778 0.7857

Recall 0.6 0.6111 0.7778 0.6111

F1 score 0.6977 0.7333 0.7778 0.6875

Overall accuracy 0.6389 0.7778 0.7778 0.7222

References
1. Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature

2012, 488, 197–200. [CrossRef] [PubMed]
2. Belitz, K.; Fram, M.S.; Johnson, T.D. Metrics for assessing the quality of groundwater used for public supply, CA, USA: Equivalent-

population and area. Environ. Sci. Technol. 2015, 49, 8330–8338. [CrossRef]
3. Brindha, K.; Schneider, M. Impact of urbanization on groundwater quality. GIS Geostat. Tech. Groundw. Sci. 2019, 2019, 179–196.
4. Barbieri, M.; Barberio, M.D.; Banzato, F.; Billi, A.; Boschetti, T.; Franchini, S.; Gori, F.; Petitta, M. Climate change and its effect on

groundwater quality. Environ. Geochem. Health 2023, 45, 1133–1144. [CrossRef]
5. Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A global focus on the ‘local resource’. Curr. Opin. Environ. Sustain.

2013, 5, 685–695. [CrossRef]
6. Pophare, A.M.; Lamsoge, B.R.; Katpatal, Y.B.; Nawale, V.P. Impact of over-exploitation on groundwater quality: A case study

from WR-2 Watershed, India. J. Earth Syst. Sci. 2014, 123, 1541–1566. [CrossRef]
7. Karangoda, R.; Nanayakkara, K. Use of the water quality index and multivariate analysis to assess groundwater quality for

drinking purpose in Ratnapura district, Sri Lanka. Groundw. Sustain. Dev. 2023, 21, 100910. [CrossRef]
8. Adimalla, N. Groundwater quality for drinking and irrigation purposes and potential health risks assessment: A case study from

semi-arid region of South India. Expo. Health 2019, 11, 109–123. [CrossRef]
9. Li, P.; Li, X.; Meng, X.; Li, M.; Zhang, Y. Appraising groundwater quality and health risks from contamination in a semiarid

region of northwest China. Expo. Health 2016, 8, 361–379. [CrossRef]
10. Güler, C.; Kurt, M.A.; Korkut, R.N. Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean

coastal zone (Mersin, Turkey) under conflicting land use practices. Ocean. Coast. Manag. 2013, 71, 141–152. [CrossRef]
11. Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y. Influence of coastal groundwater salinization on the distribution and risks of heavy metals.

Sci. Total Environ. 2019, 652, 267–277. [CrossRef]
12. Amiri, V.; Rezaei, M.; Sohrabi, N. Groundwater quality assessment using entropy weighted water quality index (EWQI) in

Lenjanat, Iran. Environ. Earth Sci. 2014, 72, 3479–3490. [CrossRef]
13. Hajji, S.; Ayed, B.; Riahi, I.; Allouche, N.; Boughariou, E.; Bouri, S. Assessment and mapping groundwater quality using hybrid

PCA-WQI model: Case of the Middle Miocene aquifer of Hajeb Layoun-Jelma basin (Central Tunisia). Arab. J. Geosci. 2018, 11,
620. [CrossRef]

14. Zhang, Q.; Qian, H.; Xu, P.; Hou, K.; Yang, F. Groundwater quality assessment using a new integrated-weight water quality
index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotoxicol. Environ. Saf. 2021, 212, 111992. [CrossRef]
[PubMed]

15. Mohebbi, M.R.; Saeedi, R.; Montazeri, A.; Vaghefi, K.A.; Labbafi, S.; Oktaie, S.; Abtahi, M.; Mohagheghian, A. Assessment of
water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecol. Indic. 2013, 30, 28–34.
[CrossRef]

16. Lumb, A.; Halliwell, D.; Sharma, T. Application of CCME Water Quality Index to monitor water quality: A case study of the
Mackenzie River basin, Canada. Environ. Monit. Assess. 2006, 113, 411–429. [CrossRef] [PubMed]

17. Yang, Q.; Zhang, J.; Hou, Z.; Lei, X.; Tai, W.; Chen, W.; Chen, T. Shallow groundwater quality assessment: Use of the improved
Nemerow pollution index, wavelet transform and neural networks. J. Hydroinformatics 2017, 19, 784–794. [CrossRef]

18. El Mountassir, O.; Bahir, M.; Ouazar, D.; Chehbouni, A.; Carreira, P.M. Temporal and spatial assessment of groundwater
contamination with nitrate using nitrate pollution index (NPI), groundwater pollution index (GPI), and GIS (case study: Essaouira
basin, Morocco). Environ. Sci. Pollut. Res. 2022, 29, 17132–17149. [CrossRef]

https://doi.org/10.1038/nature11295
https://www.ncbi.nlm.nih.gov/pubmed/22874965
https://doi.org/10.1021/acs.est.5b00265
https://doi.org/10.1007/s10653-021-01140-5
https://doi.org/10.1016/j.cosust.2013.10.010
https://doi.org/10.1007/s12040-014-0478-0
https://doi.org/10.1016/j.gsd.2023.100910
https://doi.org/10.1007/s12403-018-0288-8
https://doi.org/10.1007/s12403-016-0205-y
https://doi.org/10.1016/j.ocecoaman.2012.10.010
https://doi.org/10.1016/j.scitotenv.2018.10.250
https://doi.org/10.1007/s12665-014-3255-0
https://doi.org/10.1007/s12517-018-3924-5
https://doi.org/10.1016/j.ecoenv.2021.111992
https://www.ncbi.nlm.nih.gov/pubmed/33529922
https://doi.org/10.1016/j.ecolind.2013.02.008
https://doi.org/10.1007/s10661-005-9092-6
https://www.ncbi.nlm.nih.gov/pubmed/16474922
https://doi.org/10.2166/hydro.2017.224
https://doi.org/10.1007/s11356-021-16922-8


Water 2024, 16, 2375 25 of 30

19. Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine
learning. Sci. Total Environ. 2019, 668, 1317–1327. [CrossRef]

20. Masocha, M.; Dube, T.; Dube, T. Integrating microbiological and physico-chemical parameters for enhanced spatial prediction of
groundwater quality in Harare. Phys. Chem. Earth Parts A/B/C 2019, 112, 125–133. [CrossRef]

21. Maroufpoor, S.; Jalali, M.; Nikmehr, S.; Shiri, N.; Shiri, J.; Maroufpoor, E. Modeling groundwater quality by using hybrid
intelligent and geostatistical methods. Environ. Sci. Pollut. Res. 2020, 27, 28183–28197. [CrossRef]

22. Singh, P.; Verma, P. A comparative study of spatial interpolation technique (IDW and Kriging) for determining groundwater
quality. GIS Geostat. Tech. Groundw. Sci. 2019, 43–56. [CrossRef]

23. Pebesma, E.J.; De Kwaadsteniet, J. Mapping groundwater quality in the Netherlands. J. Hydrol. 1997, 200, 364–386. [CrossRef]
24. Ahmad, A.Y.; Saleh, I.A.; Balakrishnan, P.; Al-Ghouti, M.A. Comparison GIS-Based interpolation methods for mapping ground-

water quality in the state of Qatar. Groundw. Sustain. Dev. 2021, 13, 100573. [CrossRef]
25. Belkhiri, L.; Tiri, A.; Mouni, L. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations.

Groundw. Sustain. Dev. 2020, 11, 100473. [CrossRef]
26. Chakma, A.; Bhowmik, T.; Mallik, S.; Mishra, U. Application of GIS and geostatistical interpolation method for groundwater

mapping. In Advanced Modelling and Innovations in Water Resources Engineering: Select Proceedings of AMIWRE 2021; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 419–428.

27. Lee, K.-J.; Yun, S.-T.; Yu, S.; Kim, K.-H.; Lee, J.-H.; Lee, S.-H. The combined use of self-organizing map technique and fuzzy
c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea. J. Hydrol. 2019, 569, 685–697.
[CrossRef]

28. Paiement, A.; Mirmehdi, M.; Xie, X.; Hamilton, M.C. Integrated segmentation and interpolation of sparse data. IEEE Trans. Image
Process. 2013, 23, 110–125. [CrossRef] [PubMed]

29. Rivest, M.; Marcotte, D.; Pasquier, P. Sparse data integration for the interpolation of concentration measurements using kriging in
natural coordinates. J. Hydrol. 2012, 416, 72–82. [CrossRef]

30. Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53,
173–189. [CrossRef]

31. Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and
impact factors. Ecol. Inform. 2011, 6, 228–241. [CrossRef]

32. Guo, B.; Yang, F.; Wu, H.; Zhang, R.; Zang, W.; Wei, C.; Jiang, G.; Meng, C.; Zhao, H.; Zhen, X. How the variations of terrain
factors affect the optimal interpolation methods for multiple types of climatic elements? Earth Sci. Inform. 2021, 14, 1021–1032.
[CrossRef]

33. Conolly, J. Spatial interpolation. In Archaeological Spatial Analysis; Routledge: London, UK, 2020; pp. 118–134.
34. Gharavi, H.; Gao, S. Spatial interpolation algorithm for error concealment. In Proceedings of the 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 1153–1156.
35. Singha, S.; Pasupuleti, S.; Singha, S.S.; Singh, R.; Kumar, S. Prediction of groundwater quality using efficient machine learning

technique. Chemosphere 2021, 276, 130265. [CrossRef]
36. El Bilali, A.; Taleb, A.; Brouziyne, Y. Groundwater quality forecasting using machine learning algorithms for irrigation purposes.

Agric. Water Manag. 2021, 245, 106625. [CrossRef]
37. Jeihouni, M.; Toomanian, A.; Mansourian, A. Decision tree-based data mining and rule induction for identifying high quality

groundwater zones to water supply management: A novel hybrid use of data mining and GIS. Water Resour. Manag. 2020, 34,
139–154. [CrossRef]

38. Mahboobi, H.; Shakiba, A.; Mirbagheri, B. Improving groundwater nitrate concentration prediction using local ensemble of
machine learning models. J. Environ. Manag. 2023, 345, 118782. [CrossRef] [PubMed]

39. Band, S.S.; Janizadeh, S.; Pal, S.C.; Chowdhuri, I.; Siabi, Z.; Norouzi, A.; Melesse, A.M.; Shokri, M.; Mosavi, A. Comparative
analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration. Sensors 2020, 20, 5763.
[CrossRef]

40. Gholami, V.; Booij, M. Use of machine learning and geographical information system to predict nitrate concentration in an
unconfined aquifer in Iran. J. Clean. Prod. 2022, 360, 131847. [CrossRef]

41. Alkindi, K.M.; Mukherjee, K.; Pandey, M.; Arora, A.; Janizadeh, S.; Pham, Q.B.; Anh, D.T.; Ahmadi, K. Prediction of groundwater
nitrate concentration in a semiarid region using hybrid Bayesian artificial intelligence approaches. Environ. Sci. Pollut. Res. 2022,
29, 20421–20436. [CrossRef]

42. Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based
approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [CrossRef]

43. Podgorski, J.E.; Labhasetwar, P.; Saha, D.; Berg, M. Prediction modeling and mapping of groundwater fluoride contamination
throughout India. Environ. Sci. Technol. 2018, 52, 9889–9898. [CrossRef]

44. Xia, P.; Zhao, Y.; Xie, X.; Li, J.; Qian, K.; You, H.; Zhang, J.; Ge, W.; Pan, H.; Wang, Y. Machine learning prediction of health risk and
spatial dependence of geogenic contaminated groundwater from the Hetao Basin, China. J. Geochem. Explor. 2024, 262, 107497.
[CrossRef]

https://doi.org/10.1016/j.scitotenv.2019.03.045
https://doi.org/10.1016/j.pce.2019.03.003
https://doi.org/10.1007/s11356-020-09188-z
https://doi.org/10.1016/B978-0-12-815413-7.00005-5
https://doi.org/10.1016/S0022-1694(97)00027-9
https://doi.org/10.1016/j.gsd.2021.100573
https://doi.org/10.1016/j.gsd.2020.100473
https://doi.org/10.1016/j.jhydrol.2018.12.031
https://doi.org/10.1109/TIP.2013.2286903
https://www.ncbi.nlm.nih.gov/pubmed/24158475
https://doi.org/10.1016/j.jhydrol.2011.11.043
https://doi.org/10.1016/j.envsoft.2013.12.008
https://doi.org/10.1016/j.ecoinf.2010.12.003
https://doi.org/10.1007/s12145-021-00609-2
https://doi.org/10.1016/j.chemosphere.2021.130265
https://doi.org/10.1016/j.agwat.2020.106625
https://doi.org/10.1007/s11269-019-02447-w
https://doi.org/10.1016/j.jenvman.2023.118782
https://www.ncbi.nlm.nih.gov/pubmed/37597371
https://doi.org/10.3390/s20205763
https://doi.org/10.1016/j.jclepro.2022.131847
https://doi.org/10.1007/s11356-021-17224-9
https://doi.org/10.1016/j.scitotenv.2018.07.054
https://doi.org/10.1021/acs.est.8b01679
https://doi.org/10.1016/j.gexplo.2024.107497


Water 2024, 16, 2375 26 of 30

45. Tran, D.A.; Tsujimura, M.; Ha, N.T.; Van Binh, D.; Dang, T.D.; Doan, Q.-V.; Bui, D.T.; Ngoc, T.A.; Thuc, P.T.B.; Pham, T.D.
Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer
coastal aquifers in the Mekong Delta, Vietnam. Ecol. Indic. 2021, 127, 107790. [CrossRef]

46. Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [CrossRef] [PubMed]
47. Wu, J.; Wang, X.; Zhong, B.; Yang, A.; Jue, K.; Wu, J.; Zhang, L.; Xu, W.; Wu, S.; Zhang, N. Ecological environment assessment

for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing. Ecol. Indic. 2020, 117, 106521.
[CrossRef]

48. Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the
Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [CrossRef]

49. Chen, Y.; Xiong, K.; Ren, X.; Cheng, C. An overview of ecological vulnerability: A bibliometric analysis based on the Web of
Science database. Environ. Sci. Pollut. Res. 2022, 29, 12984–12996. [CrossRef]

50. Lu, T.; Li, C.; Zhou, W.; Liu, Y. Fuzzy Assessment of Ecological Security on the Qinghai–Tibet Plateau Based on Pressure–State–
Response Framework. Remote Sens. 2023, 15, 1293. [CrossRef]

51. Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single
parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecol. Indic. 2021, 125,
107464. [CrossRef]

52. Wang, Y.-T.; Wang, Y.-S.; Wu, M.-L.; Sun, C.-C.; Gu, J.-D. Assessing ecological health of mangrove ecosystems along South China
Coast by the pressure–state–response (PSR) model. Ecotoxicology 2021, 30, 622–631. [CrossRef]

53. Weaver, T.; Fridell, P.; Ospina, M.; Brooker, R.; Schenkel, M.; Scrase, A. Contamination assessment of mine infrastructure areas for
closure and relinquishment: Hazelwood Coal Mine, Victoria, Australia. In Proceedings of the Mine Closure 2019: Proceedings of the
13th International Conference on Mine Closure, Crawley, Australia, 3–5 September 2019; pp. 1491–1496.

54. Chen, M.; Jiang, Y.; Wang, E.; Wang, Y.; Zhang, J. Measuring urban infrastructure resilience via pressure-state-response framework
in four Chinese municipalities. Appl. Sci. 2022, 12, 2819. [CrossRef]

55. Zhang, Q.; Li, P.; Lyu, Q.; Ren, X.; He, S. Groundwater contamination risk assessment using a modified DRATICL model and
pollution loading: A case study in the Guanzhong Basin of China. Chemosphere 2022, 291, 132695. [CrossRef] [PubMed]

56. Wang, Y.; Li, P. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of
the Guanzhong Plain (China). Environ. Res. 2022, 207, 112210. [CrossRef] [PubMed]

57. Ren, X.; Li, P.; He, X.; Su, F.; Elumalai, V. Hydrogeochemical processes affecting groundwater chemistry in the central part of the
Guanzhong Basin, China. Arch. Environ. Contam. Toxicol. 2021, 80, 74–91. [CrossRef]

58. Nsabimana, A.; Li, P. Hydrogeochemical characterization and appraisal of groundwater quality for industrial purpose using a
novel industrial water quality index (IndWQI) in the Guanzhong Basin, China. Geochemistry 2023, 83, 125922. [CrossRef]

59. Dong, M.; Wang, Z.-x.; Dong, H.; Ma, L.-c.; Zhang, L.-y. Characteristics of helium accumulation in the Guanzhong Basin, China.
China Geol. 2019, 2, 218–226. [CrossRef]

60. Wang, Z.; Wang, J.; Yu, D.; Chen, K. Groundwater potential assessment using GIS-based ensemble learning models in Guanzhong
Basin, China. Environ. Monit. Assess. 2023, 195, 690. [CrossRef] [PubMed]

61. Bei, N.; Xiao, B.; Meng, N.; Feng, T. Critical role of meteorological conditions in a persistent haze episode in the Guanzhong basin,
China. Sci. Total Environ. 2016, 550, 273–284. [CrossRef]

62. Kong, F.; Song, J.; Zhang, Y.; Fu, G.; Cheng, D.; Zhang, G.; Xue, Y. Surface water-groundwater interaction in the Guanzhong
section of the Weihe River basin, China. Groundwater 2019, 57, 647–660. [CrossRef]

63. Chengzhu, L.; Hongyun, M.; Yaoguo, W. An Inorganic Index dataset of groundwater in the Guanzhong Basin (2015). Geol. China
2018, 45, 23–29.

64. GB/T 14848-2017; Standard for Groundwater Quality. China Quality and Standards Publishing & Media Co., Ltd.: Beijing, China,
2017.

65. Gao, M.; Qian, J.; Li, X.; Wang, Z.; Hou, X.; Gui, C.; Bai, Z.; Li, J.; Zuo, X.; Zhao, C. Assessment of groundwater quality using
Entropy-Weighted Quality Index (EWQI) and multivariate statistical approaches in Heilongdong Spring Basin, Northern China.
Environ. Earth Sci. 2024, 83, 196. [CrossRef]

66. Ahmad, S.; Umar, R.; Ahmad, I. Assessment of groundwater quality using Entropy-Weighted Quality Index (EWQI) and
multivariate statistical techniques in Central Ganga plain, India. Environ. Dev. Sustain. 2024, 26, 1615–1643. [CrossRef]

67. Das, C.R.; Das, S. Coastal groundwater quality prediction using objective-weighted WQI and machine learning approach. Environ.
Sci. Pollut. Res. 2024, 31, 19439–19457. [CrossRef] [PubMed]

68. Yang, Y.; Li, P.; Elumalai, V.; Ning, J.; Xu, F.; Mu, D. Groundwater quality assessment using EWQI with updated water quality
classification criteria: A case study in and around Zhouzhi County, Guanzhong Basin (China). Expo. Health 2023, 15, 825–840.
[CrossRef]

69. Pham, B.T.; Jaafari, A.; Prakash, I.; Singh, S.K.; Quoc, N.K.; Bui, D.T. Hybrid computational intelligence models for groundwater
potential mapping. Catena 2019, 182, 13. [CrossRef]

70. Sachdeva, S.; Kumar, B. Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in
Dholpur (Rajasthan), India. Stoch. Environ. Res. Risk Assess. 2021, 35, 287–306. [CrossRef]

71. Martínez-Santos, P.; Renard, P. Mapping groundwater potential through an ensemble of big data methods. Groundwater 2020, 58,
583–597. [CrossRef]

https://doi.org/10.1016/j.ecolind.2021.107790
https://doi.org/10.1126/science.aba1510
https://www.ncbi.nlm.nih.gov/pubmed/32439786
https://doi.org/10.1016/j.ecolind.2020.106521
https://doi.org/10.1016/j.scitotenv.2021.150053
https://doi.org/10.1007/s11356-021-17995-1
https://doi.org/10.3390/rs15051293
https://doi.org/10.1016/j.ecolind.2021.107464
https://doi.org/10.1007/s10646-021-02399-1
https://doi.org/10.3390/app12062819
https://doi.org/10.1016/j.chemosphere.2021.132695
https://www.ncbi.nlm.nih.gov/pubmed/34715108
https://doi.org/10.1016/j.envres.2021.112210
https://www.ncbi.nlm.nih.gov/pubmed/34656636
https://doi.org/10.1007/s00244-020-00772-5
https://doi.org/10.1016/j.chemer.2022.125922
https://doi.org/10.31035/cg2018103
https://doi.org/10.1007/s10661-023-11388-2
https://www.ncbi.nlm.nih.gov/pubmed/37199816
https://doi.org/10.1016/j.scitotenv.2015.12.159
https://doi.org/10.1111/gwat.12854
https://doi.org/10.1007/s12665-024-11458-9
https://doi.org/10.1007/s10668-022-02776-8
https://doi.org/10.1007/s11356-024-32415-w
https://www.ncbi.nlm.nih.gov/pubmed/38355860
https://doi.org/10.1007/s12403-022-00526-9
https://doi.org/10.1016/j.catena.2019.104101
https://doi.org/10.1007/s00477-020-01891-0
https://doi.org/10.1111/gwat.12939


Water 2024, 16, 2375 27 of 30

72. Xiong, H.; Guo, X.; Wang, Y.; Xiong, R.; Gui, X.; Hu, X.; Li, Y.; Qiu, Y.; Tan, J.; Ma, C. Spatial prediction of groundwater potential
by various novel boosting-based ensemble learning models in mountainous areas. Geocarto Int. 2023, 38, 2274870. [CrossRef]

73. Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13,
3907–3925.

74. Peng, S.; Ding, Y.; Li, Z. High-spatial-resolution monthly temperature and precipitation dataset for China for 1901–2017. Earth
Syst. Sci. Data Discuss. 2019, 2019, 1–23.

75. Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y. Divergent shifts in peak photosynthesis
timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [CrossRef]

76. Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from
monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [CrossRef]

77. Karak, T.; Bhagat, R.; Bhattacharyya, P. Municipal solid waste generation, composition, and management: The world scenario.
Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [CrossRef]

78. Singh, S.; Raju, N.J.; Gossel, W.; Wycisk, P. Assessment of pollution potential of leachate from the municipal solid waste disposal
site and its impact on groundwater quality, Varanasi environs, India. Arab. J. Geosci. 2016, 9, 131. [CrossRef]

79. Valtanen, M.; Sillanpää, N.; Setälä, H. The effects of urbanization on runoff pollutant concentrations, loadings and their seasonal
patterns under cold climate. Water Air Soil Pollut. 2014, 225, 1977. [CrossRef]

80. Srivastav, A.L. Chemical fertilizers and pesticides: Role in groundwater contamination. In Agrochemicals Detection, Treatment and
Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–159.

81. El Alfy, M.; Faraj, T. Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use
in arid areas. Environ. Geochem. Health 2017, 39, 231–253. [CrossRef]

82. Li, J.; Shi, Z.; Liu, M.; Wang, G.; Liu, F.; Wang, Y. Identifying anthropogenic sources of groundwater contamination by natural
background levels and stable isotope application in Pinggu basin, China. J. Hydrol. 2021, 596, 126092. [CrossRef]

83. Xiong, H.; Wang, Y.; Guo, X.; Han, J.; Ma, C.; Zhang, X. Current status and future challenges of groundwater vulnerability
assessment: A bibliometric analysis. J. Hydrol. 2022, 615, 128694. [CrossRef]

84. Wang, J.; He, J.; Chen, H. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC
model and groundwater value, Beijing Plain, China. Sci. Total Environ. 2012, 432, 216–226. [CrossRef]

85. Hu, X.; Ma, C.; Qi, H.; Guo, X. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC
model: A case in Weibei Plain, China. Environ. Sci. Pollut. Res. 2018, 25, 32524–32539. [CrossRef]

86. Luo, D.; Ma, C.; Qiu, Y.; Zhang, Z.; Wang, L. Groundwater vulnerability assessment using AHP-DRASTIC-GALDIT comprehen-
sive model: A case study of Binhai New Area, Tianjin, China. Environ. Monit. Assess. 2023, 195, 268. [CrossRef]

87. Wang, Z.; Xiong, H.; Ma, C.; Zhang, F.; Li, X. Assessment of groundwater vulnerability by applying the improved DRASTIC
model: A case in Guyuan City, Ningxia, China. Environ. Sci. Pollut. Res. 2023, 30, 59062–59075. [CrossRef]

88. Barbulescu, A. Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: A review. Water 2020, 12, 1356.
[CrossRef]

89. Shirazi, S.M.; Imran, H.; Akib, S. GIS-based DRASTIC method for groundwater vulnerability assessment: A review. J. Risk Res.
2012, 15, 991–1011. [CrossRef]

90. Zhou, F.; Su, W.; Zhang, F. Influencing indicators and quantitative assessment of water resources security in karst region based on
PSER model—The case of Guizhou. Sustainability 2019, 11, 5671. [CrossRef]

91. Parizi, E.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Normalized difference vegetation index as the dominant predicting
factor of groundwater recharge in phreatic aquifers: Case studies across Iran. Sci. Rep. 2020, 10, 17473. [CrossRef]

92. Elbeih, S.F.; El-Zeiny, A.M. Qualitative assessment of groundwater quality based on land use spectral retrieved indices: Case
study Sohag Governorate, Egypt. Remote Sens. Appl. Soc. Environ. 2018, 10, 82–92. [CrossRef]

93. Rodriguez-Galiano, V.F.; Luque-Espinar, J.A.; Chica-Olmo, M.; Mendes, M.P. Feature selection approaches for predictive modelling
of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Sci. Total Environ. 2018, 624, 661–672.
[CrossRef]

94. Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid
expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577,
124004. [CrossRef]

95. Carlson, M.A.; Lohse, K.A.; McIntosh, J.C.; McLain, J.E. Impacts of urbanization on groundwater quality and recharge in a
semi-arid alluvial basin. J. Hydrol. 2011, 409, 196–211. [CrossRef]

96. Singh, A.; Srivastav, S.K.; Kumar, S.; Chakrapani, G.J. A modified-DRASTIC model (DRASTICA) for assessment of groundwater
vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci. 2015, 74, 5475–5490. [CrossRef]

97. Tan, Y.; Xin, Y.; Guo, C.; Lyu, S.; Zhang, G.; Long, Y.; Zhai, Y.; Packham, H.; Zhou, Y.; Tan, H. Impact of urbanization on baseflow
characteristics in the central catchment of North China Plain, China. J. Hydrol. Reg. Stud. 2023, 50, 101527. [CrossRef]

98. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157.

99. Hajihosseinlou, M.; Maghsoudi, A.; Ghezelbash, R. A novel scheme for mapping of MVT-type Pb–Zn prospectivity: LightGBM, a
highly efficient gradient boosting decision tree machine learning algorithm. Nat. Resour. Res. 2023, 32, 2417–2438. [CrossRef]

https://doi.org/10.1080/10106049.2023.2274870
https://doi.org/10.1016/j.rse.2019.111395
https://doi.org/10.3390/rs13050922
https://doi.org/10.1080/10643389.2011.569871
https://doi.org/10.1007/s12517-015-2131-x
https://doi.org/10.1007/s11270-014-1977-y
https://doi.org/10.1007/s10653-016-9825-1
https://doi.org/10.1016/j.jhydrol.2021.126092
https://doi.org/10.1016/j.jhydrol.2022.128694
https://doi.org/10.1016/j.scitotenv.2012.06.005
https://doi.org/10.1007/s11356-018-3196-3
https://doi.org/10.1007/s10661-022-10894-z
https://doi.org/10.1007/s11356-023-26763-2
https://doi.org/10.3390/w12051356
https://doi.org/10.1080/13669877.2012.686053
https://doi.org/10.3390/su11205671
https://doi.org/10.1038/s41598-020-74561-4
https://doi.org/10.1016/j.rsase.2018.03.001
https://doi.org/10.1016/j.scitotenv.2017.12.152
https://doi.org/10.1016/j.jhydrol.2019.124004
https://doi.org/10.1016/j.jhydrol.2011.08.020
https://doi.org/10.1007/s12665-015-4558-5
https://doi.org/10.1016/j.ejrh.2023.101527
https://doi.org/10.1007/s11053-023-10249-6


Water 2024, 16, 2375 28 of 30

100. Guo, X.; Gui, X.; Xiong, H.; Hu, X.; Li, Y.; Cui, H.; Qiu, Y.; Ma, C. Critical role of climate factors for groundwater potential mapping
in arid regions: Insights from random forest, XGBoost, and LightGBM algorithms. J. Hydrol. 2023, 621, 129599. [CrossRef]

101. Mahmood, J.; Mustafa, G.-e.; Ali, M. Accurate estimation of tool wear levels during milling, drilling and turning operations by
designing novel hyperparameter tuned models based on LightGBM and stacking. Measurement 2022, 190, 110722. [CrossRef]

102. Xiong, H.; Yang, S.; Tan, J.; Wang, Y.; Guo, X.; Ma, C. Effects of DEM resolution and application of solely DEM-derived indicators
on groundwater potential mapping in the mountainous area. J. Hydrol. 2024, 636, 131349. [CrossRef]

103. Nguyen, H.-P.; Liu, J.; Zio, E. A long-term prediction approach based on long short-term memory neural networks with automatic
parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft
Comput. 2020, 89, 106116. [CrossRef]

104. Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of tree-structured parzen estimator optimization
in three typical neural network models for landslide susceptibility assessment. Remote Sens. 2021, 13, 4694. [CrossRef]

105. Tao, S.; Peng, P.; Li, Y.; Sun, H.; Li, Q.; Wang, H. Supervised contrastive representation learning with tree-structured parzen
estimator Bayesian optimization for imbalanced tabular data. Expert Syst. Appl. 2024, 237, 121294. [CrossRef]

106. Kumar, R.; Dwivedi, S.B.; Gaur, S. A comparative study of machine learning and Fuzzy-AHP technique to groundwater potential
mapping in the data-scarce region. Comput. Geosci. 2021, 155, 104855. [CrossRef]

107. Faouzi, E.; Arioua, A.; Namous, M.; Barakat, A.; Mosaid, H.; Ismaili, M.; Eloudi, H.; Houmma, I.H. Spatial mapping of hydrologic
soil groups using machine learning in the Mediterranean region. Catena 2023, 232, 107364. [CrossRef]

108. Ruidas, D.; Pal, S.C.; Towfiqul Islam, A.R.M.; Saha, A. Hydrogeochemical evaluation of groundwater aquifers and associated
health hazard risk mapping using ensemble data driven model in a water scares plateau region of eastern India. Expo. Health
2023, 15, 113–131. [CrossRef]

109. Sarkar, S.K.; Alshehri, F.; Shahfahad; Rahman, A.; Pradhan, B.; Shahab, M. Mapping groundwater potentiality by using hybrid
machine learning models under the scenario of climate variability: A national level study of Bangladesh. Environ. Dev. Sustain.
2024, 1–29. [CrossRef]

110. Nguyen, V.-L.; Shaker, M.H.; Hüllermeier, E. How to measure uncertainty in uncertainty sampling for active learning. Mach.
Learn. 2022, 111, 89–122. [CrossRef]

111. Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat.
Hazards Risk 2018, 9, 249–266. [CrossRef]

112. Alshehri, F.; Rahman, A. Coupling machine and deep learning with explainable artificial intelligence for improving prediction of
groundwater quality and decision-making in Arid Region, Saudi Arabia. Water 2023, 15, 2298. [CrossRef]

113. Niu, X.; Lu, C.; Zhang, Y.; Zhang, Y.; Wu, C.; Saidy, E.; Liu, B.; Shu, L. Hysteresis response of groundwater depth on the influencing
factors using an explainable learning model framework with Shapley values. Sci. Total Environ. 2023, 904, 166662. [CrossRef]

114. Ransom, K.M.; Nolan, B.T.; Stackelberg, P.; Belitz, K.; Fram, M.S. Machine learning predictions of nitrate in groundwater used for
drinking supply in the conterminous United States. Sci. Total Environ. 2022, 807, 151065. [CrossRef]

115. Yang, C.; Chen, M.; Yuan, Q. The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An
exploratory analysis. Accid. Anal. Prev. 2021, 158, 106153. [CrossRef]

116. Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility
based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [CrossRef]

117. Wen, X.; Xie, Y.; Wu, L.; Jiang, L. Quantifying and comparing the effects of key risk factors on various types of roadway segment
crashes with LightGBM and SHAP. Accid. Anal. Prev. 2021, 159, 106261. [CrossRef] [PubMed]

118. Joo, C.; Park, H.; Lim, J.; Cho, H.; Kim, J. Machine learning-based heat deflection temperature prediction and effect analysis in
polypropylene composites using catboost and shapley additive explanations. Eng. Appl. Artif. Intell. 2023, 126, 106873. [CrossRef]

119. Liu, Q.; Gui, D.; Zhang, L.; Niu, J.; Dai, H.; Wei, G.; Hu, B.X. Simulation of regional groundwater levels in arid regions using
interpretable machine learning models. Sci. Total Environ. 2022, 831, 154902. [CrossRef] [PubMed]

120. Wu, J.; Wang, Z.; Li, W.; Peng, J. Exploring factors affecting the relationship between light consumption and GDP based on
DMSP/OLS nighttime satellite imagery. Remote Sens. Environ. 2013, 134, 111–119. [CrossRef]

121. Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE
2015, 10, e0139779. [CrossRef]
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