The Impact of Low Temperatures on the Hatching Success of Eurytemora pacifica (Copepoda, Calanoida) Resting Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling
2.2. Isolation of Resting Eggs
2.3. Egg Hatching Success Experiment
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karl, T.R.; Trenbeth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, Y.J.; Senan, R.; Vitart, F.; Balsamo, G.; Weisheimer, A.; Doblas-Reyes, F.J. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010. Clim. Dyn. 2016, 47, 1325–1334. [Google Scholar] [CrossRef]
- Ashfold, M.J.; Latif, M.T.; Samah, A.A.; Mead, M.I.; Harris, N.R.P. Influence of northeast monsoon cold surges on air quality in Southeast Asia. Atmos. Environ. 2017, 166, 498–509. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Walsh, J.E.; Ballinger, T.J.; Euskirchen, E.S.; Hanna, E.; Mård, J.; Overland, J.E.; Vihma, T. Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev. 2020, 209, 103324. [Google Scholar] [CrossRef]
- Kleppel, G.S. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 1993, 99, 183. [Google Scholar] [CrossRef]
- Turner, J.T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 2004, 43, 255–266. [Google Scholar]
- Kwon, E.Y.; Primeau, F.; Sarmiento, J.L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2009, 2, 630–635. [Google Scholar] [CrossRef]
- Parekh, P.; Dutkiewicz, S.; Follows, M.J.; Ito, T. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 2006, 33, 2–5. [Google Scholar] [CrossRef]
- Hays, G.C.; Richardson, A.J.; Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 2005, 20, 337–344. [Google Scholar] [CrossRef]
- Hooff, R.C.; Peterson, W.T. Copepod biodiversity as an indicator of changes in ocean and climate conditions of the northern California current ecosystem. Limnol. Oceanogr. 2006, 51, 2607–2620. [Google Scholar] [CrossRef]
- Marcus, N.H. Abundance in bottom sediments and hatching requirements of eggs of Centropages hamatus (Copepoda: Calanoida) from the Alligator Harbor region, Florida. Biol. Bull. 1989, 176, 142–146. [Google Scholar] [CrossRef]
- Marcus, N.H. Calanoid copepod, cladoceran, and rotifer eggs in sea-bottom sediments of northern Californian coastal waters: Identification, occurrence and hatching. Mar. Biol. 1990, 105, 413–418. [Google Scholar] [CrossRef]
- Næss, T. Marine calanoid resting eggs in Norway: Abundance and distribution of two copepod species in the sediment of an enclosed marine basin. Mar. Biol. 1991, 110, 261–266. [Google Scholar] [CrossRef]
- Belmonte, G.; Rubino, F. Resting cysts from coastal marine plankton. Oceanogr. Mar. Biol. 2019, 57, 1–88. [Google Scholar]
- Marcus, N.H.; Lutz, R.; Burnett, W.; Cable, P. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: Evidence of an egg bank. Limnol. Oceanogr. 1994, 39, 154–158. [Google Scholar] [CrossRef]
- Stempniewicz, L.; Błachowiak-Samołyk, K.; Węsławski, J.M. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2934–2945. [Google Scholar] [CrossRef]
- Richardson, A.J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef]
- Ekvall, M.K.; Hansson, L.A. Differences in recruitment and life-history strategy alter zooplankton spring dynamics under climate-change conditions. PLoS ONE 2012, 7, e44614. [Google Scholar] [CrossRef]
- Villarino, E.; Chust, G.; Licandro, P.; Butenschön, M.; Ibaibarriaga, L.; Larrañaga, A.; Irigoien, X. Modelling the future biogeography of North Atlantic zooplankton communities in response to climate change. Mar. Ecol. Prog. Ser. 2015, 531, 121–142. [Google Scholar] [CrossRef]
- Penn, J.L.; Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 2022, 376, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.M.; Boyce, D.G.; Hofmann, M.; Matthiessen, B.; Sommer, U.; Worm, B. Effects of sea surface warming on marine plankton. Ecol. Lett. 2014, 17, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Maugendre, L.; Gattuso, J.P.; Louis, J.; De Kluijver, A.; Marro, S.; Soetaert, K.; Gazeau, F. Effect of ocean warming and acidification on a plankton community in the NW Mediterranean Sea. ICES J. Mar. Sci. 2015, 72, 1744–1755. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Brown, M.B. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 2016, 6, 323–330. [Google Scholar] [CrossRef]
- Kleppel, G.S.; Burkart, C.A. Egg production and the nutritional environment of Acartia tonsa: The role of food quality in copepod nutrition. ICES J. Mar. Sci. 1995, 52, 297–304. [Google Scholar] [CrossRef]
- Chinnery, F.E.; Williams, J.A. The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar. Biol. 2004, 145, 733–738. [Google Scholar] [CrossRef]
- Holste, L.; Peck, M.A. The effects of temperature and salinity on egg production and hatching success of Baltic Acartia tonsa (Copepoda: Calanoida): A laboratory investigation. Mar. Biol. 2005, 148, 1061–1070. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lee, E.H.; Shin, S.S.; Lim, Y.H.; Soh, H.Y. Optimal photoperiod for the reproduction of Eurytemora pacifica: Potential live feed for fish larvae. Aquac. Int. 2022, 30, 2389–2401. [Google Scholar] [CrossRef]
- Lavens, P.; Sorgeloos, P. Manual on the Production and Use of Live Food for Aquaculture; FAO Fisheries Technical Papers 361; FAO: Rome, Italy, 1996. [Google Scholar]
- Marcus, N.H. Calanoid copepods, resting eggs, and aquaculture. In Copepods in Aquaculture; Lee, C.S., O’Bryen, P.J., Marcus, N.H., Eds.; Blackwell Publishing: Oxford, UK, 2005; pp. 3–9. [Google Scholar]
- Dodson, S.I.; Skelly, D.A.; Lee, C.E. Out of Alaska: Morphological diversity within the genus Eurytemora from its ancestral Alaskan range (Crustacea, Copepoda). Hydrobiologia 2010, 653, 131–148. [Google Scholar] [CrossRef]
- Brylinski, J.M.; Courcot, L.; David, V.; Sautour, B. Expansion of the North Pacific copepod Eurytemora pacifica Sato, 1913 (Copepoda: Calanoida: Temoridae) along the Atlantic coast of France. Bioinvasions Rec. 2016, 5, 245–250. [Google Scholar] [CrossRef]
- Wang, Y.G.; Tseng, L.C.; Sun, R.X.; Liu, Z.Y.; Lin, M.; Hwang, J.S. Effects of the China Coastal Current on the community structure of planktonic copepods in early spring, with notes on Eurytemora pacifica Sato, 1913 in the western Taiwan Strait. Crustaceana 2020, 93, 487–506. [Google Scholar] [CrossRef]
- Moon, S.Y.; Yoon, H.S.; Soh, H.Y.; Choi, S.D. Environmental factors and variation characteristics of zooplankton communities in Gamak Bay. Ocean Polar Res. 2006, 28, 79–94. [Google Scholar] [CrossRef]
- Moon, S.Y.; Oh, H.J. Seasonal changes in copepod biomass and production in Gamak Bay, Korea. Fish Aquat. Sci. 2021, 24, 171–179. [Google Scholar] [CrossRef]
- Solokhina, E.V. Two forms of Eurytemora pacifica (Crustacea, Copepoda, Calanoida) from the lagoon Gladskovskaya (the Commandor Islands). Zool. Zhurnal. 1992, 82, 137–139. [Google Scholar]
- Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic Calanoida to temporary freshwater. Water 2021, 13, 100. [Google Scholar] [CrossRef]
- Hwang, D.W.; Kim, P.J.; Jeon, S.B.; Koh, B.S. Geochemical characteristics of intertidal sediment in the semi-enclosed bays of the southern region of Jeollanam Province. Korean J. Fish Aquat. Sci. 2013, 46, 638–648. [Google Scholar] [CrossRef]
- Onbe, T. Sugar flotation method for sorting the resting eggs of marine cladocerans and copepods from sea-bottom sediment. Bull. Jpn. Soc. Fish 1978, 41, 1411. [Google Scholar] [CrossRef]
- Zillioux, E.J.; Gonzalez, J.G. Egg dormancy in a neritic calanoid copepod and its implications to overwintering in boreal waters. In Fifth European Marine Biology Symposium; Battagia, B., Ed.; Piccin Editore: Padova, Italy, 1972; pp. 217–230. [Google Scholar]
- Næss, T. Tolerance of marine calanoid resting eggs: Effects of freezing, desiccation and rotenone exposure: A field and laboratory study. Mar. Biol. 1991, 111, 455–459. [Google Scholar] [CrossRef]
- Brewer, R.H. The phenology of Diaptomus stagnalis (Copepoda: Calanoida) the development and the hatching of the egg stage. Physiol. Zool. 1964, 27, 1–20. [Google Scholar] [CrossRef]
- Kaviyarasan, M.; Santhanam, P. A technique on the culture and preservation of marine copepod eggs. Basic Appl. Zooplankton Biol. 2019, 34, 197–208. [Google Scholar] [CrossRef]
- Drillet, G.; Lindley, L.C.; Michels, A.; Wilcox, J.; Marcus, N.H. Improving cold storage of subitaneous eggs of the copepod Acartia tonsa Dana from the Gulf of Mexico (Florida–USA). Aquac. Res. 2007, 38, 457–466. [Google Scholar] [CrossRef]
- Olivotto, I.; Gaiot, G.; Holste, L.; Tulli, F.; Cardinaletti, G.; Piccinetti, C.C.; Carnevali, O. Are Acartia tonsa cold-stored eggs a suitable food source for the marine ornamental species Amphiprion polymnus? A feeding study. Aquac. Nutr. 2012, 18, 685–696. [Google Scholar] [CrossRef]
- Drillet, G.; Iversen, M.H.; Sørensen, T.F.; Ramløv, H.; Lund, T.; Hansen, B.W. Effect of cold storage upon eggs of a calanoid copepod, Acartia tonsa (Dana) and their offspring. Aquaculture 2006, 254, 714–729. [Google Scholar] [CrossRef]
- Choi, S.Y.; Jeon, S.C.; Soh, H.Y. Effects of cold storage and salinity on Acartia sinjiensis (Copepoda: Calanoida) egg hatching. Aquac. Res. 2022, 53, 3568–3574. [Google Scholar] [CrossRef]
- Radzikowski, J. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res. 2013, 35, 707–723. [Google Scholar] [CrossRef]
- Clegg, J.S.; Trotman, C.N. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology; Springer: Dordrecht, The Netherlands, 2002; pp. 129–170. [Google Scholar]
- Redden, A.M.; Daborn, G.R. Viability of subitaneous copepod eggs following fish predation on egg-carrying calanoids. Mar. Ecol. Prog. Ser. 1991, 77, 307–310. [Google Scholar] [CrossRef]
- Choi, S.Y.; Soh, H.Y.; Shin, K.; Jung, S.W.; Jang, M.C. Effects of hypoxia on benthic eggs of calanoid copepods in the Southern Sea of Korea. Front. Mar. Sci. 2023, 10, 1132851. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kim, H.Y.; Oh, H.J. Seasonal variation of the zooplankton community of Gamak Bay, Korea. Korean J. Environ. Biol. 2020, 38, 231–247. [Google Scholar] [CrossRef]
- Park, C.; Ju, S.J.; Park, W.; Kim, H.W.; Lee, S.R.; Park, J.H. The strategy of population maintenance by coastal copepod inferred from seasonal variations in abundance of adults and resting eggs. Ocean Polar Res. 2018, 40, 213–222. [Google Scholar] [CrossRef]
- Uye, S.I.; Kasahara, S.; Onbe, T. Calanoid copepod eggs in sea-bottom muds. IV. Effects of some environmental factors on the hatching of resting eggs. Mar. Biol. 1979, 51, 151–156. [Google Scholar] [CrossRef]
- Gaudy, R. Etude expérimentale de la ponte chez trois espčces de copépodes pélagiques (Centropages typicus, Acartia clausi et Temora stylifera). Mar. Biol. 1971, 9, 65–70. [Google Scholar] [CrossRef]
- Onoue, Y.; Toda, T.; Ban, S. Morphological features and hatching patterns of eggs in Acartia steueri (Crustacea, Copepoda) from Sagami Bay, Japan. Hydrobiologia 2004, 511, 17–25. [Google Scholar] [CrossRef]
- Castellani, C.; Lucas, I.A.N. Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. J. Plankton Res. 2003, 25, 527–537. [Google Scholar] [CrossRef]
- Marcus, N.H. Planktonic copepods in a sub-tropical estuary: Seasonal patterns in the abundance of adults, copepodites, nauplii, and eggs in the sea bed. Biol. Bull. 1991, 181, 269–274. [Google Scholar] [CrossRef]
- Næss, T. Benthic resting eggs of calanoid copepods in Norwegian enclosures used in mariculture: Abundance, species composition and hatching. Hydrobiologia 1996, 320, 161–168. [Google Scholar] [CrossRef]
- Belmonte, G.; Miglietta, A.; Rubino, F.; Boero, F. Morphological convergence of resting stages produced by planktonic organisms: A review. Hydrobiologia 1997, 335, 159–165. [Google Scholar] [CrossRef]
- Souissi, A.; Souissi, S. Abnormalities in shape and size of Eurytemora affinis (Copepoda, Calanoida) and its eggs under different environmental conditions. Crustaceana 2020, 93, 355–378. [Google Scholar] [CrossRef]
Stage | 10 °C (100 Eggs) |
---|---|
Nauplii | 24 |
Copepodites | 32 |
Adults | 15 |
Non-hatched eggs | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.Y.; Belmonte, G.; Lee, E.H.; Kim, K.Y.; Seo, M.H.; Youn, S.H.; Park, K.W.; Jang, M.-C.; Soh, H.Y. The Impact of Low Temperatures on the Hatching Success of Eurytemora pacifica (Copepoda, Calanoida) Resting Eggs. Water 2024, 16, 2425. https://doi.org/10.3390/w16172425
Choi SY, Belmonte G, Lee EH, Kim KY, Seo MH, Youn SH, Park KW, Jang M-C, Soh HY. The Impact of Low Temperatures on the Hatching Success of Eurytemora pacifica (Copepoda, Calanoida) Resting Eggs. Water. 2024; 16(17):2425. https://doi.org/10.3390/w16172425
Chicago/Turabian StyleChoi, Seo Yeol, Genuario Belmonte, Eun Hye Lee, Kyoung Yeon Kim, Min Ho Seo, Seok Hyun Youn, Kyung Woo Park, Min-Chul Jang, and Ho Young Soh. 2024. "The Impact of Low Temperatures on the Hatching Success of Eurytemora pacifica (Copepoda, Calanoida) Resting Eggs" Water 16, no. 17: 2425. https://doi.org/10.3390/w16172425
APA StyleChoi, S. Y., Belmonte, G., Lee, E. H., Kim, K. Y., Seo, M. H., Youn, S. H., Park, K. W., Jang, M. -C., & Soh, H. Y. (2024). The Impact of Low Temperatures on the Hatching Success of Eurytemora pacifica (Copepoda, Calanoida) Resting Eggs. Water, 16(17), 2425. https://doi.org/10.3390/w16172425