
Citation: Huang, S.; Nie, H.; Jiao, J.;

Chen, H.; Xie, Z. Tidal Level

Prediction Model Based on

VMD-LSTM Neural Network. Water

2024, 16, 2452. https://doi.org/

10.3390/w16172452

Academic Editor: Paul Kucera

Received: 1 July 2024

Revised: 10 August 2024

Accepted: 27 August 2024

Published: 29 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Tidal Level Prediction Model Based on VMD-LSTM
Neural Network
Saihua Huang 1 , Hui Nie 1,* , Jiange Jiao 2, Hao Chen 1 and Ziheng Xie 2

1 College of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric
Power, Hangzhou 310018, China; huangsh@zjweu.edu.cn (S.H.); chenhao@zjweu.edu.cn (H.C.)

2 College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;
careerjiao@cjlu.edu.cn (J.J.); p23010854133@cjlu.edu.cn (Z.X.)

* Correspondence: nieh@zjweu.edu.cn

Abstract: The fluctuation of the tide is closely related to the production and life of people in coastal
areas, and the change in the tide level will have a significant impact on the safety of infrastructure,
ship travel, ecological environment, and other issues. Therefore, it is of great significance to analyze,
study, and forecast the change in tide level. Aiming at the complex characteristics of nonlinearity,
time-varying dynamics, and uncertainty generated by celestial bodies’ movements and influenced by
geographical as well as hydrometeorological factors, this paper proposes a combined model based
on variational mode decomposition (VMD) and long short-term memory neural networks (LSTM).
A tidal level prediction procedure is proposed by combining the harmonic analysis method with
a neural network and takes the point tide data of Luchao Port from 2021 to 2022 as the applied
data. First, the VMD algorithm decomposes the tidal level data into model components. Then, the
LSTM model is used to predict each component. Finally, the predicted value of each component is
superposed to obtain the final prediction result. Standard evaluation indexes were used to analyze
the performance of the proposed model. The model’s RMSE, MAE, MAPE, and R2 were 0.0385,
0.0267, 5.8327, and 99.91%, respectively, superior to other compared models (BP, SVM, and LSTM).
This study can provide a reference for tidal level prediction. These results show that the VMD-LSTM
model is an effective and reliable tidal level prediction tool with considerable potential in offshore
engineering and maritime management.

Keywords: tidal prediction; variational mode decomposition; intrinsic mode functions; long short-term
memory neural networks

1. Introduction

Tides, influenced by the gravitational forces of the moon and sun, significantly affect
coastal areas’ economy and ecology [1]. The study of tidal change is very important for
the exploitation of marine resources, disaster warning, and the construction of engineering
projects [2]. Accurate tide forecasting is important to ensure safe navigation and efficient
use of port resources, and prediction errors can lead to serious maritime accidents [3,4].

In tidal prediction, standard methods include hydrodynamic models, harmonic analy-
sis, and mathematical models. With the development of artificial intelligence, deep learning
is gradually being applied to tidal prediction. Predicting tides using hydrodynamic models
holds a prominent position. For instance, Luo et al. [5] utilized the MIKE21 hydrodynamic
model to predict tides on the coast of Zhejiang. Yin et al. [6] combined the ADCIRC
hydrodynamic model with the SWAN model to predict the maximum significant wave
heights in Houshui Bay effectively. Yang et al. [7] proposed a multi-stage forecasting system
for daily ocean tidal energy. Zhang et al. [8] combined non-stationary harmonic analysis
with a deep-learning neural network model to improve tidal forecasts in tidal rivers and
estuaries. Additionally, mathematical–statistical methods, such as the traditional tidal
harmonic analysis [9], based on the least squares method, calculate the harmonic constants
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for each tidal component—amplitude and phase—and subsequently use them to predict
tidal levels [10]. Thomas et al. [11] presented a hybrid model for the short-term online
tidal current forecast, in which harmonic residual analysis (HRA) and singular spectrum
analysis (SSA) are integrated. Wang [12] improved the tidal harmonic analysis method by
employing a stepwise regression approach and quadratic analysis techniques. Simultane-
ously, through the individual analysis and discrimination of multiple tidal components,
the optimal tidal component combination was selected to enhance the reliability of the
computational results. However, the tidal harmonic analysis method can only predict tidal
variations caused by gravitational forces from celestial bodies, such as the sun and the
moon. In practical situations, non-astronomical factors such as atmospheric pressure, wind
speed, wind direction, water temperature, continental shelves, and coastal topography can
significantly impact tidal changes [13,14]. Therefore, harmonic analysis methods may not
effectively adapt to fundamental environmental factors.

As a result, methods that separate astronomical tidal factors from non-astronomical tidal
factors have gained widespread application. Zhang et al. [15] employed the Grey–GMDH
and harmonic analysis models to simulate and separately predict the non-astronomical and
astronomical components of tides. The predicted results of these two components were then
integrated to form the final tidal forecast. With the advancement of mathematical applications,
many more precise mathematical models have continuously emerged and been employed
in tidal prediction work. Examples include Gaussian processes, autoregressive integrated
moving average models (ARIMA), and others. Abdollah Kavousi-Fard [16] utilized the
ARIMA model for tidal prediction in Canada’s Fundy Bay. To capture the maximum linear
components, appropriate orders for the ARIMA model were determined using the Akaike
Information Criterion, effectively enhancing the accuracy of tidal level predictions.

In recent years, with the rapid development of deep learning, algorithms such as Back-
propagation (BP) [17], CEEMDAN [18,19], Support Vector Machine (SVM), and Nonlinear
Autoregressive with eXogenous inputs (NARX) have gradually found applications in tidal
prediction. He et al. [20] employed the BP neural network to predict tidal data in the Cangqian
station of the Qiantang River, achieving effective short-term tidal forecasts. Yao et al. [21] es-
tablished a Support Vector Machine (SVM) tidal prediction model to forecast the average daily
tidal level of Sanjiangying station. Nunno [22] and colleagues applied the NARX network
to conduct tidal prediction experiments at three different observation points in the Venice
Lagoon. Long short-term memory (LSTM) is a variant of recurrent neural networks (RNNs)
that can selectively remember or forget information [23]. It addresses issues such as gradient
vanishing, gradient exploding, and insufficient long-term memory capacity in RNNs [24],
leading to fast convergence when handling long-time-series problems. This enables neural
networks to utilize temporal information over extended periods effectively. The LSTM model,
by adapting to the data’s temporal features and dynamic changes in hydrological processes,
can capture long-term dependencies and nonlinear correlations in time series, demonstrating
excellent performance in tidal prediction [25]. Yang et al. [26] established a tidal prediction
model based on the LSTM neural network. Tidal prediction experiments in locations such as
Rizhao, Sanya, and Beihai indicated that the model can achieve reliable forecasting results.
Liu et al. [27] utilized a multivariate LSTM neural network to establish a storm surge pre-
diction model at the Chiwan tidal station in Shenzhen, effectively predicting abnormal tidal
changes caused by tropical storms. Xu et al. [28] combined the LSTM neural network with the
non-stationary harmonic analysis method, achieving accurate predictions for the tidal level at
the Nanjing station. Stefanos et al. [29] applied the LSTM method to improve the accuracy
of storm surge prediction. Ian et al. [30] introduced the bidirectional attention-based long
short-term memory (LSTM) storm surge architecture, BALSSA, improving the accuracy of
storm surge predictions.

In practical tidal prediction scenarios, monitoring sensors operate in complex and variable
environments, and data with specific errors is a common occurrence. To address this, many
scholars have combined neural networks with signal decomposition techniques to reduce
the impact of information noise on prediction results, thereby enhancing prediction accuracy.
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Standard decomposition algorithms include wavelet decomposition (WPD), empirical mode
decomposition (EMD). Liu et al. [31] proposed a tidal prediction model based on wavelet
decomposition and ARIMA, using wavelet decomposition to eliminate noise in tidal time
series and better restore the nature of tidal movement. EMD is a method for analyzing
nonlinear and non-stationary data [32]. Its most significant feature is overcoming the lack
of adaptability of base functions [33]. Unlike the Fourier and wavelet transform [34], the
EMD process is a finite filtering process that does not require the pre-specification of any base
functions [35]. Yin et al. [36], when applying neural network models for tidal prediction, first
used the EMD method to preprocess tidal time-series data for stabilization, resulting in more
accurate prediction results. Tao et al. [37] pointed out that the Local-EMD-WaveNet model
can accurately capture the peaks and troughs of waveforms when the wave height changes
considerably. However, mode aliasing and spurious components often occur in EMD-like
decomposition algorithms. Therefore, using variational mode decomposition (VMD) to
process ammonia nitrogen sequences can decompose complex ammonia nitrogen sequences
into modal components of a particular frequency and effectively suppress the mode aliasing
phenomenon [38]. Zhang et al. [39] proposed a hybrid variational mode decomposition
(VMD) and one-dimensional convolutional neural network (1D-CNN) model (VMD-CNN)
for non-stationary wave forecasting. Wang [40] proposes a hybrid model combining improved
empirical wavelet transform decomposition (IEWT) and long short-term memory networks
(LSTM) for predicting significant wave heights. Ban et al. [41] propose a model that combines
the variational mode decomposition (VMD) algorithm with the long short-term memory
(LSTM) neural network to predict tidal levels.

In the past, the neural network method applied to predicting tidal level is relatively
simple, but the combination and improvement of the machine learning algorithm is ex-
pected to improve the prediction accuracy. In light of this, the core of this study is to explore
the application effect of the combination of modal decomposition algorithm and neural
network model in tidal prediction. Compared with the basic neural network algorithm, the
combined model used in this paper can utilize the advantages of VMD algorithm in signal
noise reduction and feature extraction, and can effectively reduce signal interference in
data, thus improving the prediction accuracy. In this paper, a tidal prediction model based
on the combination of VMD and LSTM neural networks is constructed, and the superiority
of this model is verified by comparing it with other neural network models and combined
models. Compared with Ban et al. [41], the comparison of VMD-LSTM with other basic
models and combined models was added in this paper to fully verify the superiority of the
combined model in tidal prediction.

2. Materials and Methods
2.1. Data Normalization

Normalization is a method to simplify calculations by representing all attributes
in the same measurement unit. It involves using a standard scale or range, assigning
equal weights to all data attributes, facilitating easier comparisons and aggregations,
and improving data convergence conditions [42,43]. In tidal sequence prediction, it is
necessary to perform normalization on input data in advance to eliminate the influence of
dimensional and value range differences between indicators. This involves scaling the data
proportionally to fall within a specific range, enabling comprehensive analysis [44].

This study will employ the Min-Max normalization algorithm to preprocess tidal data.
Min-Max normalization, or linear function normalization, entails a linear transformation
of the original data. Equation (1) maps the original data to the range [0, 1], preserving the
original data distribution without alteration.

xnew =
x − xmin

xmax − xmin
, (1)
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where the data to be normalized is represented by x, and xnew denotes the data after Min-
Max normalization. xmax, xnin represent the maximum and minimum values within the
current dataset.

2.2. Variational Mode Decomposition

VMD is an adaptive non-recursive signal decomposition method that synthesizes the
problems existing in EMD and EEMD and improves on this basis to improve the mode
aliasing and end effect problems. The VMD algorithm can decompose the original data f (t)
into K modal components whose center frequency is ωk with limited bandwidth and can
effectively extract the information of the original data at different frequencies. The steps of
the VMD algorithm are as follows:

(1) Construct a variational problem. For each mode, the associated analytical signal
(uk(t)) is computed by a Hilbert transform to obtain a unidirectional spectrum. Then,
each analytic signal is combined with the center frequency (e−jω .

κ t) and modulated to the
corresponding baseband. Finally, the above signal gradient squared L2 norm is calculated
to obtain a constrained model, as shown in Equation (2). min

{uk}{ωk}

{
∑K

k=1 ∥ ∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt ∥

2

2

}
s.t.∑K

k=1 uk(t) = f (t)
(2)

where uk represents the decomposition modal component; * represents the convolution
operator; ωk represents the center frequency of each modal component; ∂t is the partial
derivative of time.

(2) Solve the variational problem. By introducing the Lagrange multiplication oper-
ator λ and penalty factor α, the constrained model is transformed into an unconstrained
variational model:

L
({

uk
}

,
{

ωk
}

, λ
)
=

α∑K
k=1 ∥ ∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt ∥

2

2
+∥ f (t)− ∑K

k=1 uk ∥
2
2 +

〈
λ(t), f (t)− ∑K

k=1 uk

〉 (3)

In order to obtain the optimal value of the constrained variational model, the alter-
nating direction multiplier iterative algorithm is used to update the uk and ωk expressions,
and the termination conditions are as follows:

K

∑
k=1

∥ un+1
k − un

k ∥
∥ un

k ∥2 < ε, n < N (4)

un+1
k (k) =

f (ω)− ∑K
i ̸=k un

i (ω) +
λn(ω)

2

1 + 2α
(
ω − ωn

k
)2 (5)

ωn+1
k =

∫ ∞
0 ω

∣∣un
k (ω)

∣∣2dω∫ ∞
0

∣∣un
k (ω)

∣∣2dω
(6)

where n is the number of iterations; f (ω), un
i (ω) and λn(ω) represent the Fourier change

in f (t), un
i (t) and λn(t), respectively; N indicates the maximum number of iterations.

In this paper, we use the PyVMD toolkit in Python to conduct experiments. PyVMD is
a Python library specially developed for MD decomposition and provides a complete set of
VMD implementation methods, including signal preprocessing, VMD, and result analysis.

2.3. Long Short-Term Memory Neural Network
2.3.1. Basic Principles of RNN

In a traditional feedforward neural network, data streams are delivered hierarchically
through input, hidden, and output layers. Because of its structural characteristics, the
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traditional feedforward neural network has been widely used in computer intelligent
recognition. Similarly, due to the independent structure between the layers, there is no
connection between them, and it is impossible to analyze the current information through
historical information. Therefore, few scholars have studied the time series data through the
traditional feedforward neural network. To solve this problem, recurrent neural networks
(RNNs) have emerged, the structure of which is shown in Figure 1. It can be seen that there
are connections between the cells of the network, demonstrating its ability to analyze and
process time-series data problems.
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Figure 1. RNN structure diagram. Where t represents the time scale, I is the input information, and S is
the memory formed with storage function, which is calculated by the current input information and
historical processing information; O is the output information obtained through the current memory
calculation analysis; U, V, and W are the three network weights. The tanh is a common activation
function in the field of deep learning that maps the input real numbers to the range −1 to 1. As can be
seen from the figure, each cell of the recurrent neural network has a state line pointing to itself. This state
line increases the information stacking capability of the neural network based on the feedforward neural
network, and there are new inputs and outputs in each time state. This unique structure enables it to
deal with the problem of the connection between the input content before and after.

Although the traditional recurrent neural network can effectively solve the problem of
feedforward neural networks, there are some defects in the network parameter training
process of the traditional recurrent neural network. For the problem consisting of a long
period, its derivation rule will gradually reduce the derivation result until it is ignored,
when the network weight will stop updating, and the model training will fail. The calcula-
tion results of some distant nodes are ignored due to the influence of distance, which is the
so-called phenomenon of gradient disappearance. Therefore, the ordinary recurrent neural
network cannot analyze and store data with a long history, nor can it deal with the current
problem effectively.

2.3.2. Basic Principles of LSTM

The structure of the LSTM neural network improves the original traditional recurrent
neural network. It can analyze the correlation between the two kinds of data and has
multiple spatial and time dimensions.

In the LSTM architecture, three unique structures endow it with the ability to handle
correlations in long-time sequences. These structures are known as the “forget gate”, “input
gate”, and “output gate”. An extra memory cell Ct is also introduced alongside the regular
output ht at each unit. This memory cell selectively carries memory backward through
each layer, significantly enhancing the memory capacity of the LSTM [45]. The structure of
the LSTM network is illustrated in Figure 2.
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(1) Forget Gate: The role of the forget gate is to determine which information to discard
from the cell state at the current time step. It generates an output between 0 and 1 through a
sigmoid function, where 0 indicates complete forgetting, and 1 indicates complete retention.
This gate aims to enable the model to autonomously learn and decide when to forget past
information, facilitating the handling of extended sequential information.

Ft = σ
(

W f [ht−1, xt] + b f

)
Ft = σ

(
W f [ht−1, xt] + b f

)
, (7)

where Ft represents the value of the forget gate, which determines the information to be
discarded from the cell state at the current time step. The computation of the forget gate
involves several components: xt denotes the information input at the current time step,
ht−1 represents the output of the unit from the previous time step, Wf is the weight matrix
of the forget gate, bf is the bias term associated with the forget gate, and σ denotes the
“sigmoid” activation function.

(2) Input Gate: The input gate updates the content within the cell state. It amalgamates
the input at the current time step with the hidden state from the previous time step,
generating an output from 0 to 1 through the sigmoid function. Simultaneously, it produces
a candidate value that encapsulates the current input information using the tanh function.
The amalgamation of these two components constitutes a candidate update for the cell
state at the current time step. Subsequently, the output of the input gate determines the
extent to which the candidate update should be assimilated into the cell state.

It = σ(Wt·[ht − 1, xt] + bt), (8)

∼
Ct = tanh(Wc·[ht − 1, xt] + bc), (9)

Ct = ft·Ct − 1 + It·
∼
Ct. (10)

where It represents the value of the input gate, Wt is the weight matrix of the input gate,
bt is the bias term of the input gate, denotes the updated information at the current time
step, Wc is the weight matrix of the cell state, bc is the bias term of the cell state, and tanh
denotes the hyperbolic tangent activation function, which produces a new cell state value.

(3) Output Gate: The output gate determines the hidden state at the current time step.
It generates an output between 0 and 1 through the sigmoid function, deciding which part
of the cell state will be output at the current time step. A portion of the cell state is used to
calculate the hidden state at the current time step. This hidden state is then transmitted to
the next time step and, when necessary, output to the external network.

Ot = σ(Wo·[ht − 1, xt] + bo), (11)

ht = Ot·tan(Ct). (12)
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where Ot represents the value of the output gate, ht is the current time step’s unit output information,
Wo is the weight matrix of the output gate, and bo is the bias term of the output gate.

2.4. VMD-LSTM Model

The flowchart of the tidal level prediction model, which combines variational mode
decomposition (VMD) with long short-term memory (LSTM) neural networks, is illus-
trated in Figure 3. The network structure diagram of the model is shown in Figure 4.
The construction of the model primarily involves three main components:

(1) Preprocess the data using the Min-Max normalization algorithm.
(2) Decompose the original tidal level data using variational mode decomposition (VMD)

to obtain k intrinsic mode functions.
(3) Utilize the long short-term memory (LSTM) neural network model to independently

predict each IMF component (IMFi) and the residual (RES). Finally, the predicted
results of each IMFi component are summed up with the residual RES to obtain the
ultimate tidal level prediction.
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3. Example Analysis
3.1. Data Source

The data utilized in this study are derived from the measured tidal level data at the
Lu Chaosha Tide Gauge Station, located in Lingang, Shanghai, in the northern part of
Hangzhou Bay. Hangzhou Bay is a typical horn-shaped bay, wide outside, narrow inside,
deep outside, and shallow inside. The estuary of the river is 100 km wide; to the west,
toward Ganpu, the width is reduced to more than 20 km, the shrinkage rate is 1:1, the water
depth in the bay is mostly about 10 m, the tide waves spread into the bay, and the reflection
of the two sides makes the tidal range increase. Hangzhou Bay fluctuates twice a day with
a period of 745 min. The day tide is different from the night tide. The night tide is larger
than the day tide from spring to the autumn equinox. The daily tide is more significant
from the autumn equinox to the next spring equinox. The experimental dataset consists of
hourly tidal level data from 1 January 2021 to 31 December 2022, totaling 17,520 records.
The distribution of the data is illustrated in Figure 5. In order to show the details and
features in the original data more clearly, the tidal level data of the first 1000 h in the original
data were selected and mapped separately, as shown in Figure 6.
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3.2. VMD

After research and experimental tests, combined with the previous research methods
of BAN [30] and Zhao [46], we set the modal decomposition number K of VMD to 4 and
the penalty factor α to 2000.



Water 2024, 16, 2452 9 of 17

As evident from Figure 4, the tidal level data sequence exhibits nonlinearity and
non-stationarity. The variational mode decomposition (VMD) method is employed to
mitigate the complexity of the original data sequence. The results of the VMD are depicted
in Figure 7.

Water 2024, 16, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Distribution of tidal level data in the local time. 

3.2. VMD 
After research and experimental tests, combined with the previous research methods 

of BAN [30] and Zhao [46], we set the modal decomposition number K of VMD to 4 and 
the penalty factor α to 2000. 

As evident from Figure 4, the tidal level data sequence exhibits nonlinearity and non-
stationarity. The variational mode decomposition (VMD) method is employed to mitigate 
the complexity of the original data sequence. The results of the VMD are depicted in 
Figure 7. 

 
Figure 7. VMD results of tidal level data. 

As shown in Figure 7, IMF1 to IMF4 are modal components decomposed from the 
original sequence using VMD. These four modal components reflect the local features of 
the data at different time scales. After VMD, the non-stationarity of the tidal level time 
series data is significantly reduced, effectively mitigating the prediction errors caused by 
tidal level fluctuations. Using the LSTM prediction model to independently forecast each 
local feature achieves non-interfering effects, enhancing prediction accuracy. 

  

Figure 7. VMD results of tidal level data.

As shown in Figure 7, IMF1 to IMF4 are modal components decomposed from the
original sequence using VMD. These four modal components reflect the local features of
the data at different time scales. After VMD, the non-stationarity of the tidal level time
series data is significantly reduced, effectively mitigating the prediction errors caused by
tidal level fluctuations. Using the LSTM prediction model to independently forecast each
local feature achieves non-interfering effects, enhancing prediction accuracy.

3.3. Prediction Results and Analysis

Four modal components are obtained through VMD, input into the LSTM network for
prediction. During the experiment, the first 70% of the data are divided into the training set,
and the last 30% are divided into the test set. We adopted the Sparrow search optimization
algorithm to determine the value of LSTM hyperparameters [47]. After optimization, the
number of hidden layer neurons was 100, the epochs value was 99, the batch_size value
was 42, and the learning rate was 0.007. Based on empirical knowledge and multiple
experimental results, this study configured the LSTM model hyperparameters as follows:
32 neurons in the hidden layer, 50 epochs, a batch size of 16, a learning rate of 0.001, and a
time-window size of 12.

The neural network model in this paper utilized a sliding time window to construct
samples. The width of the sliding window was set to 12, implying the use of the tidal
data from the previous 11 time points to predict the tidal height at the next time point.
Through the continuous movement of the sliding window, shifting one data unit length at
a time, a series of overlapping sample data was formed. This approach is highly suitable
for handling time-series data, effectively utilizing temporal information while mitigating
temporal variability.

As shown in Table 1, after several experimental tests, it can be seen that when the
sliding window is set to 12, the error of the model prediction value is the smallest, so the
size of the sliding window is determined to be 12 during data segmentation.
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Table 1. Comparison of different sliding window sizes.

Sliding Window RMSE MAE MAPE R2

2 0.1602 0.1424 12.545 0.9511
3 0.1554 0.1324 12.002 0.9547
4 0.1385 0.1217 11.754 0.9583
5 0.1404 0.1235 11.781 0.9571
6 0.1322 0.1054 10.855 0.9642
7 0.1275 0.1022 10.843 0.9663
8 0.1281 0.1014 10.837 0.9666
9 0.1180 0.0945 10.115 0.9734

10 0.1103 0.0912 9.854 0.9773
11 0.1012 0.0905 9.801 0.9814
12 0.0965 0.0844 9.527 0.9889
13 0.0982 0.0895 9.912 0.9809
14 0.1194 0.1025 10.154 0.9701
15 0.1162 0.1011 10.038 0.9720
16 0.1245 0.1067 10.845 0.9653

The VMD-LSTM model proposed in this study is compared with six commonly used
models: BP, SVM, LSTM, EMD-LSMT, EEMD-LSTM, and CEEMDAN-LSTM. The pre-
diction results of each model are depicted in Figure 8. Only 100 sampling points have
been selected for demonstration in this section to enhance the visibility and clarity of the
prediction result charts.

Figure 8 shows that the predictive values of the VMD-LSTM model used in this study
are closer to the actual values than other models. Furthermore, upon closer examination
of specific sampling points (top left corner), it is evident that the VMD-LSTM model
outperforms traditional BP, SVM, and LSTM neural network models in predicting data
peaks and troughs. As can be seen from the local detail zoom in the upper left corner
of Figure 9, compared with other basic models, VMD-LSTM can better capture the high
complexity and irregularity of tidal time-series data, and the predicted results are more
consistent with the actual values with less error. It is suggested that the VMD method can
effectively improve the data quality, make it better fit the training data, and predict the
unknown data more accurately, which is conducive to the subsequent tide prediction.
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To provide a more objective and comprehensive assessment of the predictive per-
formance of each model, four evaluation metrics were selected to evaluate the forecast-
ing effectiveness: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Coefficient of Determination (R2), as shown in
Equations (12)–(15). Here, Xi represents the actual values,
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ues, n is the size of the time series, and X denotes the mean value. Smaller values for RMSE
and MAE indicate more minor prediction errors, while a value closer to 1 for R2 signifies
higher prediction accuracy.
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Table 2 presents the evaluation metrics for different models. The VMD-LSTM model
consistently exhibits high prediction accuracy (RMSE = 0.0385 m, MAE = 0.0267 m,
R2 = 0.9991) across Luchao Port. Compared to the BP model, the VMD-LSTM model
has reduced RSME, MAE, and MAPE by 79.42%, 83.24%, and 64.75%, respectively, and
increased R2 by 11.41%. Compared to the SVM model, the VMD-LSTM model shows
reductions of 74.26%, 77.62%, and 59.36% in RSME, MAE, and MAPE, respectively, along
with a 6.71% increase in R2. Compared with the single LSTM model, the VMD-LSTM model
exhibits decreases of 66.22%, 77.37%, and 48.88% in RSME, MAE, and MAPE, respectively,
and an increase of 2.98% in R2. In comparison to both the EMD-LSTM, EEMD-LSTM, and
CEEMDAN-LSTM models, accuracy evaluation indexes exhibit significant improvements.
Compared to the CEEMDAN-LSTM model, the VMD-LSTM model achieved an average
reduction of 28.3% in RMSE, 37.2% in MAE, and an average improvement of 0.3% in
R2. Compared with the EMD–LSTM model, the VMD–LSTM model exhibited even more
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significant improvements in the accuracy of its prediction, with a reduction of 59.2% in the
RMSE, a reduction of 66.8% in the MAE, and an increase of 0.9% in the R2.

Table 2. Evaluation indicators of different prediction models (the improvement in accuracy of the
VMD-LSTM model over the EMD-LSTM model is denoted by I1, while I2 and I3 represent the
corresponding improvement over the EEMD-LSTM and CEEMDAN-LSTM models, respectively).

Evaluation
Index

Prediction Model Improvement
Ratio

BP SVM LSTM EMD-
LSTM

EEMD-
LSTM

CEEMDAN-
LSTM

VMD-
LSTM I1 I2 I3

RSME (m) 0.1871 0.1496 0.114 0.0943 0.0537 0.093 0.0385 59.2% 28.3% 58.6%
MAE (m) 0.1594 0.1193 0.1003 0.0805 0.0425 0.076 0.0267 66.8% 37.2% 64.9%
MAPE/% 16.551 14.354 11.412 9.136 8.585 8.862 5.8327 36.2% 32.1% 34.2%

R2 0.8968 0.9363 0.9702 0.9905 0.9963 0.9949 0.9991 −0.9% −0.3% −0.4%

Therefore, in this study, the approach of decomposing the original tidal series using
the VMD algorithm, with each modal component used as an independent input to fore-
cast separately, was used. Finally, the prediction results were superposed, which could
effectively improve the prediction accuracy and verify the effectiveness of this model.

4. Discussion

VMD can effectively extract the characteristics of each frequency band in the tidal
data and predict the characteristics of each frequency band, respectively, which solves
the problem of mode aliasing existing in EMD, EEMD, and other EMD methods and can
effectively improve the prediction accuracy of the model. LSTM can solve the problems of
gradient explosion and gradient disappearance problems in RNN, and is very suitable for
tidal time-series data with strong time dependence. This study combines the advantages of
the modal decomposition algorithm and neural network model to achieve a good prediction
effect. All the experimental results show that combining the VMD algorithm and LSTM
model is an ideal tidal prediction method.

The VMD algorithm can decompose the signal according to the time scale character-
istics of the data itself and decompose the complex and nonlinear tide time series into a
finite number of inherent modal components and trend components. The features of the
decomposed sequences are different, respectively, implying different parts of the original
signal’s features, reducing the data’s complexity. Compared with the direct use of the
BP, SVM, and LSTM models for prediction, using the decomposed data can make the
neural network model better capture the data features in the tide time series, reduce noise
interference, and significantly improve the prediction accuracy.

VMD shows good performance in processing non-stationary and nonlinear signals.
The algorithm goes through a continuous cycle to find the best solution for VMD. Due
to the continuous iteration of the algorithm, the mode function generated by the analysis
signal and the center frequency are also constantly updated. Its core purpose is to de-
compose the original time-series signal into several intrinsic mode functions (IMF) with
different bandwidth constraints that fluctuate around the center frequency. At the same
time, VMD-LSTM completely overcomes many drawbacks of EMD-like methods, such
as endpoint effect and mode component aliasing, so that VMD-LSTM can achieve higher
prediction accuracy than EMD-LSTM, EEMD-LSTM, and CEEMDAN-LSTM.

Due to the limited access to data, we only conducted a prediction study on this one
place. In subsequent studies, we will collect more tidal level data from observation points
for further tests to verify the generalization ability of this model.

5. Conclusions

This study focused on the tidal data from Luchao Port to address the instability
and complexity issues in tidal time-series prediction. The paper proposes a predictive
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model that combines variational mode decomposition (VMD) and long short-term memory
(LSTM), resulting in the following conclusions:

1. Utilizing the VMD method, the tidal level data of Luchao Port is decomposed into
four modal components (IMF), which reduces the complexity of the original tidal
level data and makes the data series stable. LSTM neural network model is used to
predict the IMFi obtained from VMD, respectively, and then these prediction results
are superposed, effectively improving the prediction accuracy.

2. After VMD, the prediction error of the LSTM model is reduced. Compared with the six
prediction modes, the BP, SVM, LSTM, EMD-LSTM, VMD-LSTM, EEMD-LSTM, and
CEEMDAN-LSTM models, the VMD-LSTM model has the smallest error, and the highest
predictive accuracy, with a RMSE of 0.0385 m, MAE of 0.0267 mm, and R2 of 0.9991.

The research proposed that the VMD-LSTM tidal prediction model provides an effec-
tive approach to forecasting, offering valuable insights for understanding tidal variations.
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