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Abstract: The interaction of water flow, ice, and structures is common in fluvial ice processes,
particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods.
To evaluate the effectiveness of ICSs, it is essential to understand the complex interaction between
water flow, ice and the structure. Numerical modeling is a valuable tool that can facilitate such
understanding. Until now, classical Eulerian mesh-based methods have not been evaluated for
the simulation of ice interaction with ICS. In this paper we evaluate the capability, accuracy, and
efficiency of a coupled Computational Fluid Dynamic (CFD) and multi-body motion numerical model,
based on the mesh-based FLOW-3D V.2023 R1 software for simulation of ice-structure interactions in
several benchmark cases. The model’s performance was compared with results from meshless-based
models (performed by others) for the same laboratory test cases that were used as a reference for the
comparison. To this end, simulation results from a range of dam break laboratory experiments were
analyzed, encompassing varying numbers of floating objects with distinct characteristics, both in the
presence and absence of ICS, and under different downstream water levels. The results show that
the overall accuracy of the FLOW-3D model under various experimental conditions resulted in a
RMSE of 0.0534 as opposed to an overall RMSE of 0.0599 for the meshless methods. Instabilities were
observed in the FLOW-3D model for more complex phenomena that involve open boundaries and a
larger number of blocks. Although the FLOW-3D model exhibited a similar computational time to
the GPU-accelerated meshless-based models, constraints on the processors speed and the number of
cores available for use by the processors could limit the computational time.

Keywords: ice structure interaction; ice control structure (ICS); CFD modeling; FLOW-3D; multi-body
motion model

1. Introduction

The interaction of ice with hydraulic structures, such as dams and bridges, is common
in cold-region rivers and can pose substantial risks to infrastructure, environment, and
human safety. It is also a common feature of Ice Control Structures (ICSs) that are designed
to manage the movement of ice within rivers and streams. They include ice booms,
ice retention weirs, and ice deflectors and are key measures for mitigating ice jams and
resulting floods and infrastructural damage [1–4]. Effective ice jam management through
ICS mitigates the impacts on ecology and socio-economics and protects infrastructure from
ice-related damage [5–7].

Due to climate change and the increased likelihood of mid-winter breakups, it is crucial
to periodically reevaluate ICSs for their effectiveness in controlling ice jam floods [8,9]. Vari-
ous methods are used to assess ICS performance, including historical and field observations,
laboratory experiments, and numerical simulations. Historical studies provide insights into
ice jam floods before and after ICS construction [10]. Laboratory experiments are useful for
new structure implementations or when numerical approaches fall short [11,12]. Numerical

Water 2024, 16, 2454. https://doi.org/10.3390/w16172454 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16172454
https://doi.org/10.3390/w16172454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-3695-504X
https://orcid.org/0000-0002-7620-7433
https://orcid.org/0000-0001-8219-1469
https://doi.org/10.3390/w16172454
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16172454?type=check_update&version=2


Water 2024, 16, 2454 2 of 23

modeling is increasingly important for evaluating ICS under various conditions, from
initial implementation [13] to modification and removal impacts [14,15]. By leveraging
numerical modeling, researchers can thoroughly evaluate ICS capabilities in managing ice
jam floods and preventing related damage. The interaction between fast flowing water,
ice, and ICSs is complex and requires sophisticated modeling and analysis to predict and
manage effectively. These advanced numerical models should initially be validated through
simple test cases, such as evaluating the effects of variations in triangular slope, before
being applied to more complex scenarios [16,17].

Numerical models for simulating river ice dynamics range from simple one-dimensional
(1D) models like HEC-RAS [18], CRISP1D [19], and RIVICE [20] to sophisticated two-
dimensional (2D) models such as DynaRICE [21]. Shen [22] reviewed 2D models for ice
processes, including jamming and release. The Discrete Element Method (DEM) [23], re-
viewed by Tuhkuri and Polojärvi [24], is primarily used for sea ice but has also been applied
to river ice and ICS studies [25,26]. These models often couple DEM with analytical or
depth-averaged hydrodynamics, practical for large-scale applications but insufficient for
complex three-dimensional interactions in ICS problems. Advances in continuum-based
mesh-free Lagrangian methods like Smoothed Particle Hydrodynamics (SPH) [27] and
Moving Particle Semi-Implicit (MPS) [28] provide flexibility for simulating dynamic fluid
flows. When combined with DEM, these methods effectively model dynamic fluid flow
and multi-body solid interactions [29,30], suitable for river ice simulations. Recent ap-
plications of these techniques in river ice problems are shown by Amaro et al. [31] and
Billy et al. [32,33]. Furthermore, classical Eulerian methods like those using, fixed, moving
and deforming meshes [34] have not been evaluated for the simulation of ice interaction
with ICS. FLOW-3D, a commercial mesh-based Eulerian model, is an example of such
models which uses the Volume of Fluid (VOF) method for fluid flow simulation [35–38] and
have different application from river to coastal engineering [39] and incorporates a General
Moving Objects (GMO) model based on DEM and the Fractional Area Volume Obstacle
Representation (FAVOR) technique. While application of GMO model was evaluated by
Wei [40] and Wang et al. [41], its application in ice engineering needs further study [42].

In this study, the FLOW-3D numerical model is evaluated to determine its capabilities
to simulate ice blocks movement and their interaction with ICSs. Additionally, the accuracy
and efficiency of the numerical model is assessed. To this end, the model is applied to a
series of dam break scenarios previously tested by Amaro et al. [31] and Billy et al. [33].
The case studies cover several levels of complexities including the variation of the number
of moving blocks, adjusting the water level downstream of the tank, and incorporating
an ICS within the tank. Subsequently, simulations were conducted for a straight channel
with different flow conditions featuring an ICS and additional blocks to mimic natural
conditions. In all cases, the results of the FLOW-3D numerical model (referred to as
the “current numerical model”) were compared both qualitatively and quantitatively to
laboratory experiments and other numerical models. These steps demonstrate the model’s
capabilities in handling wave-ice interactions and ice jam simulations, as well as the
accuracy of the results. In the final phase, the computational time is evaluated to assess the
efficiency of the numerical simulations.

2. Methodology

The methodology is divided into four sections. The first section describes the test
cases selected for the basis of comparison and validation of the results of the numerical
modeling, along with the rationale for their selection. The second section details the
numerical modeling methods used in the current study and provides a concise explanation
of the formulas and approaches implemented in the current numerical model. Following
by the third section which describes the model setup and the parameters values chosen for
this study. Finally, the fourth section describes the evaluation criteria used to assess the
accuracy of the current numerical model.
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2.1. Test Cases

In this section, an overview of the test cases (TC), used for the evaluation of the current
numerical model is presented. The TC involved various dam-break cases with floating ice
blocks, with and without downstream structures, based on the experimental and numerical
works of Amaro et al. [31] and Billy et al. [33]. They were selected for their simplicity,
abundance of quality experimental and numerical data, and inclusion of characteristics
that mimic ice-structure interactions in real fluvial systems.

Figure 1 presents schematic of the TC and Table 1 summarize their characteristics.
The experimental dimensions utilized by Amaro et al. [31] and Billy et al. [33] is similar to
those employed in previous experimental studies [43–45]. It is important to note that these
experiments were not directly designed to replicate field observations from a specific study
site, but rather to assess the capabilities of numerical models to simulate such dynamic
events. The detail of the experimental procedures, experimental setup scaling, material
properties definition and estimation, and the numerical methods used for their simulations
can be found in Amaro et al. [31] and Billy et al. [33].
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Figure 1. (a) Schematic view of the TC, and arrangement of blocks with (b) TC4, (c) TC9, and
(d) TC25. Hdo and Hup show downstream and upstream water depth, Ldo and Lup indicate water
length downstream and upstream of the gate, and W displays the width of the tank. Note that TC4
and TC9 did not have ICS downstream of the gate.

Table 1. Details of experimental setup and materials used in the test cases as well as the numerical
parameters used for respective simulations.

Test Case Definition

Dam Break with 4 Blocks
with Different

Downstream Water Level
(Source:

Amaro et al. [31])

Dam Break with 9 Blocks
with Different

Downstream Water Level
(Source:

Amaro et al. [31])

Dam Break with ICS and
25 Blocks with Different

Material
(Source: Billy et al. [33])

Test case ID TC4 TC9 TC25

Test cases scenarios ID

TC4-0.0: 0.0 cm
downstream water depth

TC4-1.0: 1.0 cm
downstream water depth

TC4-2.5: 2.5 cm
downstream water depth

TC4-5.0: 5.0 cm
downstream water depth

TC9-0.0: 0.0 cm
downstream water depth

TC9-1.0: 1.0 cm
downstream water depth

TC9-2.5: 2.5 cm
downstream water depth

TC9-5.0: 5.0 cm
downstream water depth

TC25-I: 25 real ice blocks
TC25-PP: 25 Polypropylene

(PP) blocks



Water 2024, 16, 2454 4 of 23

Table 1. Cont.

Test Case Definition

Dam Break with 4 Blocks
with Different

Downstream Water Level
(Source:

Amaro et al. [31])

Dam Break with 9 Blocks
with Different

Downstream Water Level
(Source:

Amaro et al. [31])

Dam Break with ICS and
25 Blocks with Different

Material
(Source: Billy et al. [33])

Upstream water depth (Hup) (cm) 15

Downstream water depth
(Hdo) (cm) 0.0, 1.0, 2.5, 5.0 2.5

Compared numerical
model/method

MPARS
DEM-MPS

DualSPHysics
DEM-SPH

Blocks

Material PP PP PP real ice

Number 4 9 25 25

Dimensions
Length × width ×

height (cm)
7.25 × 7.25 × 1.95 ± 0.06 4.8 × 4.8 × 1.95 ± 0.06 4.6 × 4.6 × 0.9 4.7 × 4.7 ×

(1.3 ± 0.2)

Density (ρs) (kg/m3) 868 868 900 920

Young Modulus
(Es) (GPa) 3.3 3.3 3.3 6.3

Poisson Ratio (υs) 0.4 0.4 0.4 0.3

Restitution coefficient 0.68 0.68 0.68 0.2

static friction
coefficient (µs)

0.412 0.412 0.412 0.1

Tank

Material prismatic plexiglass prismatic plexiglass prismatic plexiglass

Dimensions
Length × width ×

height (cm)
70 × 15 × 30 70 × 15 × 30 100 × 25 × 30

Young Modulus
(Es) (GPa) 1 1 1

Poisson Ratio (υs) 0.37 0.37 0.37

Restitution coefficient 0.2 0.2 0.2

static friction
coefficient (µs)

0.412 0.412 0.412

Piers
(ICS)

Usage No No Yes

Material - - PVC

Number - - 3

Position of ICS from
upstream (cm) - - 30

Diameter and
inter-spacing (cm) - - 3.1/3.75

Young Modulus
(Es) (GPa) - - 3

Poisson Ratio (υs) - - 0.3

Restitution coefficient - - 0.6

static friction
coefficient (µs)

- - 0.4
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The first and second TC, TC4 and TC9, were proposed by Amaro et al. [31] and involve
dam-breaks, with different downstream depths, with 4 and 9 floating artificial ice blocks
(for TC4 and TC9, respectively), without any downstream structure. Experiments were
conducted at the hydraulic laboratory of Polytechnique Montreal. Amaro et al. [31] used
a fully Lagrangian particle-based numerical method, based on DEM and MPS methods
(within their in-house model MPARS) to simulate their TCs. In total, eight different
scenarios were simulated as shown in Table 1. In absence of structures, these test cases
evaluate the ability of the present model in simulation of wave-ice interaction simulation.

The third TC, TC25, is based on the experimental and numerical study of Billy et al. [33]
in the same facility as the previous TC. It involves dam-break, with 25 floating ice blocks
with several piers downstream of the dam replicates as an ICS.

Billy et al. [33] maintained fixed water depth for both upstream and downstream and
performed two experimental scenarios utilizing two different materials for the blocks, real
and artificial PP (Polypropylene) ice blocks (Table 1). Billy et al. [33] simulated these TC
using the DualSPHysics open-source model, which is based on SPH and DEM particle-
based numerical methods.

Several factors influenced the selection of these TC for the objectives of this research.
Firstly, detailed and comprehensive experimental data as well as referenced numerical
modeling results are available for these TC. Secondly, the TC incrementally add complexity,
which is crucial for studying wave-ice-structure interactions near ICS. In TC4 a dam break
scenario with 4 blocks is presented, and then the number of blocks increased to 9 blocks for
TC9, both with varying downstream water depths, which introduces greater complexity to
the analysis. TC25 further increase the complexity by not only increasing the number of
blocks to 25 but also incorporating ICS, thereby enriching the study’s ability to simulate
more intricate interactions. Additionally, TC25 compares the use of real ice versus artificial
ice for simulating water and ice movement alongside ICS. One should mention that in
the reference experimental result, up to three repetitions (here referred as R1, R2, and R3)
were performed to confirm the repeatability of the results. Limitations on the laboratory
TC and reasons for missing data of laboratory TC are explained in Amaro et al. [31] and
Billy et al. [33].

2.2. Numerical Methods

For this research, the commercial modeling software FLOW-3D V.2023 R1 was em-
ployed. Detailed governing equations and the numerical methods are extensively docu-
mented in the software’s manual [46]. An overview of the procedures employed is provided
here. In this study, the system is modeled in two phases: the fluid phase, which is simu-
lated using the CFD module, and the solid phase, involving rigid blocks, which is solved
using the DEM-like rigid body’s motion module. The modeling framework independently
solves separate sets of governing equations for each phase and integrates their interactions
through a coupling algorithm.

For the problems that involve moving objects interacted with a free surface fluid
flow, the flow governing equations include the continuity (Equation (1)) and momentum
(Equation (2)) equations, as well as a transport equation for the Volume of Fluid (VOF)
(Equation (3)) used to tracking the free surface.

Vf

ρ

∂ρ

∂t
+

1
ρ
∇·
(

ρ
→
u A f

)
= −

∂Vf

∂t
(1)

∂
→
u

∂t
+

1
Vf

(→
u A f ·∇

→
u
)
= −1

ρ

(
∇p +∇·

(
τA f

))
+
→
G (2)

∂F
∂t

+
1

Vf
∇·
(

F
→
u A f

)
= − F

Vf

∂Vf

∂t
(3)
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where, ρ is the fluid density, t is time,
→
u is the fluid velocity, Vf is the volume fraction, A f the

area fraction, p the pressure, τ the viscous stress tensor,
→
G gravity, and F the fluid fraction.

The rigid body’s motion is decomposed into translational (Equation (4)) and rotational
(Equation (5)) components given by [46–48]:

→
F = m

d
→
VG
dt

(4)

→
T G = [J]·d

→
ω

dt
+
→
ω ×

(
[J]·→ω

)
(5)

where,
→
F represents the total force, m denotes the mass of the rigid body,

→
VG represents

translational velocity,
→
T G is the total torque about the center of mass G, [J] is the moment

of inertia tensor about G within a body-fitted reference system, and
→
ω represents angular

velocity. The velocity of any point on a rigid body can be expressed as the sum of the
velocity of a selected base point on the object plus the velocity resulting from the object’s
rotation about that base point. In scenarios involving six degrees of freedom (6-DOF), the
General Motion Object (GMO) model identifies the body’s center of mass as the base point.
An impulse-based contact force algorithm handles three-dimensional rigid-body collisions.
This algorithm operates under the assumption that all interacting bodies are rigid, which
implies that any deformation during collisions is negligible, and velocity changes occur
instantaneously upon impact. Friction, which may be present during collisions involving
bodies with rough surfaces, is modeled based on Coulomb’s Law of friction. Additionally,
the energetic coefficient of restitution, as defined by Stronge [49], is used to finalize the
collision integration process. Notably, this model does not incorporate Newton’s law for
impact nor Poisson’s hypothesis for collision due to potential increases in energy where
friction exists [49,50].

It’s crucial to understand that the collision model in the current numerical model
does not directly calculate contact force or collision time; rather, it determines the impulse,
representing the product of these two quantities [51]. However, several limitations are
inherent to this built-in collision model. As Wei [51] points out, when an object encounters
multiple objects simultaneously, the model segments these interactions into sub-collisions.
The sequence in which these sub-collisions are addressed can significantly impact the
simulation outcomes. Moreover, ongoing contact between moving objects is modeled as
a sequence of micro-collisions. In cases where collisions are only partially elastic or the
simulation timestep is unsuitable, there is a risk of mutual penetration between bodies,
which could undermine the accuracy of the simulation results. These issues are critical
considerations when employing the built-in collision model in current numerical model, as
they can affect both the behavior and the fidelity of the simulated collision processes [41,51].

In the GMO model, Equations (4) and (5) are resolved at each time step, either explic-
itly or implicitly, depending on the object’s motion in relation to the fluid. For coupled
solid-fluid motion, the explicit scheme is utilized only when the moving object is heavier
than the fluid. In contrast, the implicit scheme can be applied regardless of the object’s
relative weight to the fluid. The implicit GMO method used in this study employs an
implicit approach to solve these equations. Unlike the explicit GMO method, which pro-
cesses object and fluid motions separately, the implicit method integrates them through
iterative solutions, enhancing the robustness of the coupling between flow and object
motion calculations. This approach continuously monitors and updates the positions and
orientations of all moving objects, along with the area and volume fractions. Ultimately,
the new position of the solid phase is calculated.

2.3. Numerical Model Setup

In this section, some of the parameters used to set up the FLOW-3D numerical model
are presented. In the current paper, FLOW-3D results are referred to as “the current
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numerical results”. For all simulations, the gravity acceleration (g) was set to 9.81 m/s2.
The density of water (ρ) was chosen as 998.2 kg/m3, which is typical for water at 20 ◦C. The
density does not vary significantly within the tested temperature range [52]. As outlined
in the section on numerical modeling methods, the current numerical model computes
the impulse within the collision model. Consequently, the parameters utilized by the
current numerical model include the restitution and friction coefficients for each material,
as defined in Table 1. The RNG turbulence model was selected to estimate the shear stress
near the wall, as it has been proven to be sufficiently accurate.

The Unsplit Lagrangian method and the Split Lagrangian method (also known as
TruVOF) represent advanced implementations of the VOF technique used in the current
numerical model. These methods are specifically designed to enhance the accuracy and
definition of fluid interfaces. TruVOF increases the precision of tracking fluid interfaces
through a more sophisticated treatment of the advection of the volume fraction

(
Vf

)
. This

approach minimizes numerical diffusion of the interface, thereby maintaining a sharp and
clear distinction between different fluids [46]. TruVOF also incorporates adaptive time-
stepping mechanisms to manage rapid changes in fluid interfaces, ensuring stability and
accuracy without unduly restricting the time step sizes needed for convergence. The Split
Lagrangian method is favored for these simulations because it typically produces a lower
cumulative volume error compared to other methods available in the current numerical
model, although the volume error may increase when this method is combined with GMO.

The FAVOR™ (Fractional Area/Volume Obstacle Representation) method is an es-
sential component used in the current numerical model to effectively simulate fluid flows
around complex geometries. However, like all discrete methods, it is influenced by the
resolution of the computational grid. The preprocessor calculates area fractions for each
cell face within the grid by determining which corners of the face lie inside a defined geom-
etry. The FAVOR Tolerance option sets the minimum cell volume fraction, which in these
simulations is considered to be 0.0001, based on recommendations from the manual [46].
The order of approximation for the momentum equations is set to the second order. The
current numerical model utilizes a variety of numerical solvers to compute solutions to the
discretized fluid equations, which include:

- Pressure Correction Schemes: These schemes adjust the pressure field to ensure the
flow remains incompressible.

- Implicit and Explicit Methods: Depending on the scenario, the current numerical
model employs either implicit or explicit time-stepping methods. Implicit methods
are typically more stable and allow for larger time steps, though they require more
computational effort.

- Adaptive Time-Stepping Approach: The software dynamically adjusts the time step
size based on the flow conditions, enhancing both stability and accuracy.

For these numerical simulations, the Generalized Minimal Residual Method (GMRES)
solver, implemented in the current numerical model [46,53,54] were chosen due to their
high accuracy, efficiency, and good convergence. In the current numerical model, the
relaxation factor adjusts the convergence path by modifying each post-iteration value
using a weighted average of the old and new values. The default value is one; values
less than one slow down and stabilize convergence, while values greater than one can
accelerate convergence [46]. A value of 0.3 was used in these simulations based on trial and
error. Regarding the time step, although fixed time steps similar to Amaro et al. [31] and
Billy et al. [32,33] were initially tested, the adaptive time-stepping approach was ultimately
utilized to minimize trials in finding the optimal time step for convergence and stability.

The current numerical model offers a wide range of meshing capabilities such as
linked, nested, conforming, and/or partially overlapping mesh blocks [36–38]. For this
study, various meshing techniques and mesh sizes were evaluated, and a single, uniform
mesh with a cell size of 2.6 mm (around 1.8 million cells in total) was chosen for the TC4
and TC9 scenarios, and 3.47 mm (around 1.8 million cells in total) for the TC25 scenarios.
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This single and uniform meshing approach provided better accuracy and computational
efficiency compared to more complex techniques, such as nested meshing. Moreover, as
previously mentioned, the current numerical model employs an adaptive time-stepping
approach. By utilizing a single uniform mesh size, this approach allows the use of larger
time steps to achieve stability and convergence, thereby reducing computational time. The
meshing technique and cell sizes were carefully selected in accordance with the guidelines
outlined in the software manual. Minimizing the number of mesh blocks (e.g., nested mesh)
is crucial, as each additional block introduces new boundaries that require interpolation,
potentially leading to truncation errors. In regions characterized by high pressure or
momentum gradients, or where surface tension effects are significant, it is particularly
important to maintain cell aspect ratios uniformly close to 1.0. The use of an elongated
mesh is generally discouraged, as large cell aspect ratios can result in significant challenges
with pressure iteration [46]. The coarser mesh was selected for the dam break scenario
with ICS (TC25) due to the larger size of the tank compared to the dam break with 4 and
9 blocks (TC4 and TC9). A finer mesh size of 2.5 mm (around 4.8 million cells in total) for
the TC25 case demonstrated that the mesh doesn’t have significant impact on the results,
and it can triple the computational time (from 55 h to 165 h). Regarding the boundary
conditions, all boundaries were set as walls. Additionally, different water levels, as specified
in Table 1, were applied as initial conditions in the model. Details on computational time
are discussed in the results and discussion section. It should be noted that computational
performance is also limited by the number of cores provided with each license, in addition
to other parameters.

2.4. Numerical Model Evaluation

Using statistical metrics is essential for assessing model accuracy. For this study the
Root Mean Square Error (RMSE) is used because it emphasizes larger errors due to its
squaring of error terms [55–57]. To assess the accuracy of all numerical models relative to
the laboratory experiments, the RMSE was calculated for each model using Equation (6).

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (6)

In which, yi is the value obtained from laboratory TC, ŷi is the value obtained from nu-
merical models, and n is number of all observation. Three different approaches were first
considered for the calculation of the RMSE. In the first approach, the RMSE was calculated
for each numerical simulation result compared to each individual repetition of the labora-
tory TC. This approach provides insights into the accuracy of the numerical simulations
results versus each laboratory TC, but the volume of data can make it challenging to answer
how accurate the results are to simulate the overall behavior of the TC. In the second
approach, the median of the laboratory TC results was calculated and compared to each
set of numerical simulation results. The disadvantage of this approach is when there was
significant missing data, such as for TC25-I, where only two sets of incomplete laboratory
TC results were available, this approach is not valid since the median is either only es-
timated from one data point, or otherwise discontinuous in the timeseries. In the third
approach, all data points at each timestep for each repeated laboratory TC were treated as
a larger, continuous dataset in each direction (x or z direction). Then the RMSE for each
set of numerical simulations were calculated and compared to these combined laboratory
datasets. This approach facilitated a more straightforward comparison of the accuracy of
numerical simulation results. This third approach was adopted for the estimation of the
RMSE in the current study. At each time step, if laboratory data were available, they were
used for the RMSE estimation, otherwise, linear interpolation was employed. Given the
small timesteps for data collection in numerical simulations, linear interpolation does not
significantly impact the calculated RMSE.
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3. Results and Discussion
3.1. Ability to Simulate Ice-Structure Interactions

In order to assess the ability of the model to simulate the interaction of floating ice
blocks with a dam break wave and/or ICS, the free surface profiles and block positions
were analyzed through snapshots at different time steps. For TC4 and TC9, these snapshots
were taken at six different timesteps: 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4 s. While all snapshots
are included in the Supplementary Materials (Figures S1–S8), for illustration purposes
Figures 2 and 3 are presents here for TC4-2.5 and TC9-2.5, respectively (Table 1).
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In TC4-2.5, at the instant t = 0.40 s, the wavefront travels smoothly downstream
and impacts the downstream wall. However, the presence of the initial downstream
fluid layer significantly alters the flow behavior. As depicted in Figure 2 (refer also to
the Supplementary Material Figures S1–S4), the downstream fluid remains unaffected by
the wave, resulting in the formation of a mushroom-like jet, as previously reported by
Stansby et al. [58] and M. Jánosi et al. [59]. At t = 0.8 s, a backward wave or fluid run-up is
generated in these cases, subsequently moving towards the upstream wall. By t = 1.60 s, the
wave moves back to the downstream wall after hitting the upstream wall, creating a flow
run-up. Regarding the positioning of the blocks, when the gate opens, the current numerical
model indicates that blocks A1 and B1 move slightly faster than observed in the laboratory
TC results. As the wave rebounds from both the upstream and downstream walls, the
blocks in the current numerical model exhibit more pronounced differences compared to
the laboratory TC. Such discrepancies are expected given the challenging and chaotic nature
of the phenomena over time, including breaking waves, wave splash, and plunging jets.
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Similar behavior is observed in the results from the TC4-N [31]. A qualitative comparison
of the free-surface profiles and block positioning between the current numerical model
and the laboratory TC results indicates that the current numerical model has successfully
reproduced the dam-break flow behavior across all the TC4 scenarios.
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Results for TC9-2.5 are shown in Figure 3 and the rest of TC9 simulations are presented
in Supplementary Material (Figures S5–S8). A reasonable agreement was observed between
the current numerical simulation results and the laboratory experiments of TC9 from
when the gate opened, and the blocks were released up until t = 1.2 s. Afterward, the
convergence of the collapsing upward water flow and the reflected wave significantly
disturbed the water surface, resulting in more chaotic motion of the solids, particularly
those downstream.

Early in the simulation at t = 0.40 s, the formation of a mushroom-like jet occurs when
a downstream fluid layer is present. At the instants t = 0.8 s and t = 1.60 s, an increase in
the downstream fluid layer leads to slower wave propagation. In other words, events such
as wave impact and run-up occur later as the depth of the downstream fluid increases.
Similar observations were reported in the results of TC9-N derived by Amaro et al. [31].

The results of the current numerical simulation indicated that in the TC9-0.0 and
TC9-1.0, the last row of blocks adhered to the bottom of the tank and did not float back up
after the wave rebounded from the downstream wall (Figures S5 and S6). This issue can be
attributed to the characteristics of mesh-based numerical models. When the water height
beneath the blocks drops below one cell size, the blocks adhere to the bottom, and there is
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no uplift force to cause the blocks to float again. Refining the mesh may or may not solve
this problem, depending on the nature of the issue. As expected, this issue was resolved
when the downstream water level was increased in TC9-2.5 and TC9-5.0 (Figures S7 and S8)
and wasn’t noted in the numerical results of TC9-N conducted by Amaro et al. [31].

Figures 4 and 5 display snapshots of the TC25-PP and TC25-I, respectively with their
associated numerical simulation results of TC25-N by Billy et al. [33] and current numerical
simulation results at different times.
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result, the middle is TC25-N by Billy et al. [33], and the bottom image illustrates the results from the
current numerical model.

Following the gate’s removal, a dam-break wave forms and carries the blocks down-
stream until it encounters the ICS (around 0.9 s). Most of the blocks are obstructed by the
ICS, as the blocks are larger than the spaces between the ICS. However, a few blocks rotate
and pass through these gaps. There is good overall agreement between the laboratory
TC results and current numerical wave profiles and blocks’ positions. In TC25-PP, the
wave in the current numerical model propagates slightly faster than in the experiment
(Figure 4). This minor discrepancy arises from the constant gate removal speed used in
the numerical model, whereas in the laboratory TC, variations occur due to the gate’s
friction against the tank’s lateral walls. A complete discussion about the vertical gate speed
can be found in Amaro et al. [31]. Slight variations are also observed between laboratory
TC’s repetitions, which relate to the chaotic nature of the experiment. For example, in
the laboratory snapshot of Figure 4a, block 21 (See Figure 1d) flips at 0.3 s due to friction
with the gate, a detail not replicated in the current numerical results. Similar behavior was
reported also in the numerical simulation results of TC25-N by Billy et al. [33].
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The set of laboratory TC results demonstrates that the last row of blocks (i.e., blocks 5,
10, 15, 20, 25 as shown in Figure 1d are transported downstream, although their motion is
much slower in the current numerical simulations for both real ice and PP materials. In the
current numerical model, this row of blocks moves faster compared with in the results of
simulated model in TC25-N [33], but their movement is still slower than observed in the
laboratory TC results. The snapshots at t = 1.2, and 1.5 s display the reflected wave after it
hits the downstream tank face. Wave splashes from the reflected wave impacting the ICS
can be seen in the laboratory TC experiments and the current numerical model but not in
the numerical model results of TC25-N [33]. This feature is captured more effectively by
the current numerical model due to the use of the TruVOF method within the framework
numerical model. The latter snapshot (Figure 4f) indicates that the wave intensity is very
similar between the current numerical model and the laboratory TC results and is slightly
higher in the laboratory TC results compared to the model results of TC25-N [33], yet the
current numerical model achieves sufficient accuracy.

Regarding Figure 5, the current numerical model generally captured the main features
of the laboratory TC. Real ice tended to adhere together more, as observed at t = 0.9, 1.2, and
1.5 s (Figure 5c–e). However, similar to the TC25-N of Billy et al. [33], the current numerical
model could not capture this feature. The reverse wave and the resulting splash, due to the
presence of the ICS, were captured with sufficient accuracy (Figure 5e). Additionally, the
current numerical model showed better agreement in simulating the results compared to
TC25-N and the laboratory test case results when the reverse wave reached the upstream
wall at t = 2.0 s (Figure 5f).
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Some laboratory experiments in a straight channel, based on the work of Billy et al. [33],
involving 160 blocks under varying flow conditions (Froude numbers) and block materials
(real ice and PP) with ICS were tested to examine the capabilities of the current simulation
model with more complex characteristics. Unfortunately, the current numerical model
became unstable and failed to converge. It should be noted that, despite the software’s
indication that it can handle up to 500 moving and non-moving objects [46], the graphical
platform became sluggish with more than 50 blocks. Furthermore, although shapes can
be defined by the software and imported using (.stl) files, each block must be defined
separately to have 6-DOF. As this software is commercial software, the authors could not
verify the exact underlying cause of these issues. Factors such as advection-diffusion,
turbulence, the chaotic nature of block interactions with each other and the ICS, and the
coupling of the solid phase algorithm with the fluid phase could contribute to these insta-
bilities. These laboratory experiments in long channel and related aspects are suggested for
future investigation.

3.2. Accuracy of Simulations

To quantify the accuracy of the results obtained from the current numerical model
compared to the laboratory TC and TC-N conducted by Amaro et al. [31] and Billy et al. [33],
the longitudinal (x direction) and vertical (z direction) motions of different blocks were
tracked and plotted. For the TC4-2.5 and TC9-2.5 scenarios, the longitudinal and vertical
motions of blocks B1 and B2, and blocks C1, C2, and C3 are plotted in Figures 6 and 7
respectively. Similar plots for the rest of the TC4 and TC9 scenarios are included in the
Supplementary Material Figures S9–S16. It should be noted that the data for the laboratory
TC and the TC4-N/TC9-N were extracted from Amaro et al. [31].
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begins generating, both blocks B1 and B2 reach their maximum movement in the x direc-
tion. Subsequently, when the reverse wave hits the blocks, they both move toward the 
downstream wall until t = 1.5 s. Figure 6c,d, illustrates that both the current numerical 
model and TC4-N correctly capture the wave amplitude. Comparing the results of the 
current numerical model and TC4-N [31] reveals a similar tendency in simulating scenar-
ios with 4 blocks across both numerical models (Figure 6). In TC4-0.0 (Figure S9), by 
around 1.2 s, current numerical model results tend to overestimate the motion of block B1 
in the x-direction. This discrepancy may be due to challenges in setting the initial arrange-
ment of the blocks in regular, equally spaced positions, which could lead to values that 

Figure 6. Comparison of the trajectory of the blocks from the laboratory experiment TC4-2.5 (different
lines refer to the results of the different repetitions of the experiments TC4-2.5-R1, TC4-2.5-R2, and
TC4-2.5-R3) with TC4-N from Amaro et al. [31] and the current numerical model for the x-direction
of (a) block B1 and (b) block B2 and along the z-direction for (c) block B1 and (d) block B2.
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Figure 7. Comparison of the trajectory of the blocks from the laboratory experiment TC9-2.5 (different
lines refer to the results of the different repetitions of the experiments TC9-2.5-R1, TC9-2.5-R2, and
TC9-2.5-R3) with TC9-N from Amaro et al. [31] and the current numerical model for the x-direction
of (a) block C1, (b) block C2 and (c) block C3, and along the z-direction for (d) block C1, (e) block C2
and (f) block C3.

Regarding TC4-2.5, the simulated motion of the blocks generally follows the same
trends observed in the laboratory TC. Looking at Figure 6a,b, the results of the current
numerical model show that at around t = 1.0 s, approximately 0.2 s after the reverse
wave begins generating, both blocks B1 and B2 reach their maximum movement in the
x direction. Subsequently, when the reverse wave hits the blocks, they both move toward
the downstream wall until t = 1.5 s. Figure 6c,d, illustrates that both the current numerical
model and TC4-N correctly capture the wave amplitude. Comparing the results of the
current numerical model and TC4-N [31] reveals a similar tendency in simulating scenarios
with 4 blocks across both numerical models (Figure 6). In TC4-0.0 (Figure S9), by around
1.2 s, current numerical model results tend to overestimate the motion of block B1 in the
x-direction. This discrepancy may be due to challenges in setting the initial arrangement
of the blocks in regular, equally spaced positions, which could lead to values that differ
from those computed numerically. Additionally, variations in the gate removal process
may also affect the motions. An average gate removal speed of 0.4 m/s was assumed based
on the results from Amaro et al. [31]. A similar issue was also reported in the TC4-N when
dealing with these scenarios [31].

In all numerical simulations results of TC, after t = 1.5 s, block B1 is propelled by
the reflected wavefront, leading to larger discrepancies between the current numerical
simulation and laboratory TC results. A similar pattern was observed in the simulation
results for block B2 as well. These discrepancies, which also appear between laboratory
repetition, are understandable given the chaotic nature of this stage. This chaos is due
to an intense splash created by the vertical run-up jet falling onto the underlying fluid,
mixing air with water as reported by Amaro et al. [31]. In fact, processes such as wave-
splash, plunging jet penetration, and breaking waves typically exhibit chaotic behaviors, as
extensively documented through laboratory observations and numerical simulations in
Wei et al. [60]. Similar scenarios were observed in the laboratory TC with varying water
levels downstream, but the noted differences between simulated values compared to
laboratory values generally decrease with the increase of water depth downstream.

Similar to TC4-2.5, the current numerical simulations for TC9-2.5 generally follow
the same trends observed in the laboratory experiments. Comparing the results of the
current numerical model and TC9-N [31] reveals a similar tendency in simulating scenarios
with 9 blocks across both models (Figure 7). For the TC9-0.0 and TC9-1.0 cases, the last
row of blocks—specifically C1 as a representative—tends to stick to the bottom of the tank
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after the downstream wave travels upstream, as shown in the Supplementary Material
Figures S13 and S14. A similar movement trend of block C1 was also observed in the
TC9-N by Amaro et al. [31]. Similar to the TC4, the fluid flow becomes chaotic at this
stage, with solid motions influenced by factors such as wave breaking and multiple solid
collisions. Overall, the current numerical simulations demonstrated better agreement in
simulating the motion of block C3 in the x-direction compared to blocks C1 and C2. In
the z direction, except for the two previously mentioned cases, although the numerical
simulations show some local discrepancies when compared with laboratory TC results, the
overall characteristics of the vertical motions are well captured by the numerical models.

The RMSE for TC4 and TC9 is presented in Figure 8. For TC4, both numerical models
result demonstrate comparable accuracy in simulating block movements in the z-direction
with an average RMSE of 0.0114 for current numerical model and 0.0116 for TC4-N. In the
x-direction, the accuracy decreases with an average RMSE of 0.0572 for current numerical
model and 0.0635 for TC4-N (see Figure 8a). Neither model results exhibit a consistent
trend relative to the water level downstream and both show reduced accuracy at TC4-2.5,
especially in simulating motion in the X direction, with RMSE values of 0.0650 for current
numerical model and 0.0791 for TC4-N. Considering all TC4 across both directions, current
numerical model performed better in TC4-5.0 with an RMSE of 0.0313, while simulated
numerical results of TC4-N by Amaro et al. [31] excelled in TC4-1.0, achieving an RMSE of
0.0263. Overall, both the current numerical model and TC4-N exhibit sufficient accuracy in
handling TC4, with the current numerical model achieving an overall RMSE of 0.0418, and
TC4-N recording an RMSE of 0.0472.
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the current model with TC4-N and TC9-N for (a) TC4, and (b) TC9, respectively.

For TC9, a general decreasing trend in RMSE with increasing water depth downstream
was observed in the accuracy of TC9-N and the current numerical model results, with the
exception of the RMSE for the current numerical model for TC9-2.5 being smaller than
that of TC9-5.0 (see Figure 8b). Current numerical model results were less accurate (higher
RMSE) in the x-direction for the TC9-1.0 and TC9-5.0 when compared to TC9-N. However,
the accuracy of current model simulations at TC9-2.5 was considerably higher than TC9-N,
with RMSE values of 0.0324 and 0.0124 in the x and z directions, respectively. Overall, both
the current numerical model and TC9-N demonstrate sufficient accuracy in handling TC9,
with an overall average RMSE of 0.0527, and 0.0507 respectively.

Comparing the accuracy of the results of the current numerical model with TC4-N
and TC9-N, it was found that the current numerical model achieves more accurate results
in for the TC4 (4 blocks) cases compared to the TC9 (9 blocks) cases.

For TC25-PP and TC25-I, the trajectories of blocks C6 and C12 in the x-direction, and
C21 and C22 in the z-direction are plotted in Figures 9 and 10 respectively. The tracking
of block positions shows generally good agreement between the laboratory TC and both
the current numerical model and the TC25-N results. The trajectories indicate that block
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positions are highly correlated with free-surface waves (dam-break and return waves) in
TC25-N, although the return wave was better simulated in the current numerical model. For
example, block C6 in TC25-PP (Figure 9a) in the current numerical model, hits the ICS and
then passes it reaching a maximum distance of 0.41 m. However, when the wave returns
from the downstream wall, this block becomes jammed downstream of the ICS, causing its
trajectory to stall at a distance of about 0.33 m. This issue in the current numerical model
maybe can be resolved by refining the mesh. However, the chaotic nature of the phenomena,
and the increase in computational time required for refining the mesh is significant enough
that this flaw may be deemed acceptable. A similar issue was observed in the trajectory
in the z-direction of the TC25-N results of block C21 (Figure 10c). The block remained in
the same depth once it hit the ICS and couldn’t move with the returning wave. Regarding
Figure 10a, the results of the current numerical model show that until t = 0.7 s, the model
closely captures the movement of block C6 compared to the laboratory TC. After this time,
some discrepancies are observed, likely due to the chaotic nature of the phenomenon.
It should be noted that this block is in the first row, and factors such as gate speed and
friction between the block and the gate can significantly impact the results. On the other
hand, Figure 10b shows that the results of the current numerical model are more accurate
compared to TC25-N by Billy et al. [33] after t = 1.5 s. Regarding the movement in the
z-direction and Figure 10c,d, both the current model and TC25-N correctly capture the main
features at the earlier stage. Following this, discrepancies can be observed due to the chaotic
nature of the phenomenon. These differences were also observed in the repetitions of the
laboratory test case and reported by Billy et al. [33], indicating that they are unavoidable.
Like in the TC4 and TC9, the numerical models perform better in simulating movement in
the z-direction. Overall, the main features of the blocks’ movements were well captured in
the current numerical model.
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Figure 9. Comparison of the trajectory of the blocks from the laboratory experiment TC25-PP
(different lines refer to the results of the different repetitions of the experiments TC25-PP-R1, TC25-
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Figure 10. Comparison of the trajectory of the blocks from the laboratory experiment TC25-I (different
lines refer to the results of the different repetitions of the experiments TC25-I-R1, and TC25-I-R2) with
TC25-N from Billy et al. [33] and the current numerical model for the x-direction of (a) block C6 and
(b) block C12, and along the z-direction for (c) block C21 and (d) block C22.

The RMSE for the trajectory of the blocks in the x- and z-direction for TC25-PP and
TC25-I for the current numerical model and TC25-N is illustrated in Figure 11. The RMSE
for the x-direction in TC25-PP shows that the current numerical model performs slightly
better than the TC25-N with a RMSE of 0.0953, while that for the TC25-N is 0.1081. The
same performance is shown for the TC25-I with lower values for the RMSE of 0.0552 and
0.0704 for the current model and TC25-N, respectively. The overall RMSE in both x- and
z-direction is 0.0753 and 0.0860 for the current numerical model and TC25-N, respectively.
Both models performed better for the TC25-I with an overall RMSE of 0.0441 and 0.0557 for
the current numerical model and TC25-N, respectively. The higher values of the RMSE for
TC25-PP as opposed to TC25-I arises from the fact that block C6 in the current numerical
model and block C16 in the TC25-N became jammed downstream of the ICS when the
return wave hit the ICS. This phenomenon was not observed in the TC25-I simulation
results, which highlight the benefits and importance of using real ice material properties in
the simulations.
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3.3. Computational Efficiency

Computational efficiency refers to the performance of algorithms or systems in terms
of resource utilization, processing time, and scalability. While current numerical model, and
the models used for TC4-N/TC9-N and TC25-N by Amaro et al. [31] and Billy et al. [33],
respectively, process different algorithms, to provide a clearer understanding of computa-
tional time, the computational cost of each model is reported in Table 2.

Table 2. Computational performance of numerical models.

Numerical
Model MPARS FLOW-3D DualSPHyics

Description
Numerical model

used by
Amaro et al. [31]

Current numerical model Numerical model used by Billy et al. [33]

Scenario TC4 and TC9 TC4 and TC9 TC25 TC25

System type Local computer Local computer Local computer
Compute
Canada
servers

CHLab server

CPU

Intel® Xeon®

Processor E5 v2
Family @ 2.80 GHz
(Intel Corporation,

Santa Clara,
CA, USA)

Intel(R) Core(TM) i7-10700 @
2.90 GHz

(Intel Corporation, Santa Clara,
CA, USA)

Intel(R) Core(TM)
i7 @ 3.60 GHz

(Intel
Corporation,
Santa Clara,
CA, USA)

x

Intel(R) Xeon(R)
Gold @ 3.00 GHz

(Intel
Corporation,
Santa Clara,
CA, USA)

CPU cores 6 8 8 8 14 48

GPU x x x NVIDIA GeForce
GT 730

Tesla V100-
SXM2-32GB

NVIDIA
Quadro P400

CUDA cores x x x 384 5120 3840

Number of
particles/cells ≈1,500,000 ≈1,800,000 ≈1,800,000 1,797,790 1,797,790 1,797,790

Run time (h) ≈30 to 60 ≈25 to 40 ≈33 23.5 10.2 1.5

The numerical model used in TC25-N by Billy et al. [33] is based on the DEM-SPH
method. The DEM method is used to address the solid motion and interaction, while
the SPH method is used to solve the fluid conservation equations. The coupling of the
two methods is presented in Canelas et al. [61]. The most time-consuming aspect of this
model involves calculating contacts between solids. The Lagrangian methods require
a large number of particles and have time step restrictions to ensure stability, which
incurs high computational costs. However, these costs can be reduced by optimizing the
parallelization of the code [32]. A GPU-accelerated version of this model was used in
studies by Billy et al. [32,33], and more information about CPU and GPU implementations
of the code is detailed in Domínguez et al. [62]. Different computational performances were
recorded regarding the available resources for simulating the TC25-N by Billy et al. [33]
and is reported in Table 2.

The numerical model used in TC4-N/TC9-N by Amaro et al. [31], is based on the
MPS and DEM methods are used to solve the governing equations of the continuum phase
(water) and discrete phase (solid ice blocks), respectively. Like other particle-based methods,
the DEM-MPS method also suffers from high computational costs associated with the large
number of particles required to address large-scale practical engineering problems. The
results for TC4-N and TC9-N were obtained using parallel computing in shared memory
systems using OpenMP® 3.0 [63] to simulate these cases within a reasonable processing
time [31]. Although Amaro et al. [31] did not distinguish the computational performance of
this particle method for TC4-N and TC9-N, they reported a range for it, as shown in Table 2.
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On the other hand, the current numerical model operates within a Eulerian framework.
Factors such as the size of each cell, which determines the number of cells used, parameters
to be simulated (e.g., GMO), and the number of cores provided by the software license,
dictate the speed of the simulation. In Table 2, simulations were conducted on various
machines, including personal computers, the HPC server of Computational Hydrosystems
Lab (CHLab) at Polytechnique Montreal, and a Compute Canada server. It should be
noted that the computational times for the numerical models results of TC4-N/TC9-N and
TC25-N are sourced from Amaro et al. [31] and Billy et al. [33], and the physical simulation
time for laboratory TC was 3 s.

4. Conclusions

In this study, the FLOW-3D numerical model (referred to as “current numerical
model”) was evaluated to determine its capability to simulate ice blocks movements
using the GMO module. The accuracy and efficiency of the numerical model were also
investigated by comparing results with laboratory experiments TC and other numerical
models (conducted by others) across dam break scenarios with varying numbers of blocks,
materials, and the presence or absence of an ICS. The following is a summary of the
conclusions drawn from the current study:

- The current numerical model which is a structured mesh-based model, has a user-
friendly graphical interface that can model a wide range of hydraulic problems, which
is its primary advantage. On the other hand, meshless methods are particularly
well-suited for handling complex conditions without the need for a predefined grid,
offering greater flexibility in defining material properties and setting up simulations
with high accuracy, such as simulating the jamming of blocks behind an ICS. However,
these methods can be more challenging to configure. Moreover, meshless models often
make more efficient use of computational resources by leveraging GPU acceleration,
in contrast to commercial software like the current numerical model, which is typically
constrained to CPU processing and the number of cores available under the license.
For instance, the computational time for TC25 using a meshless method, as conducted
by Billy et al. [33] was approximately 1.5 h, compared to nearly 33 h required by the
current numerical model.

- Comparing the qualitative results through the snapshots of the current numerical
model and the laboratory TC shows that the current numerical model can accurately
capture the main features of the dam breaking, such as the reverse wave and the
breaking of the reverse wave. Additionally, the current numerical model produces
acceptable results when adding complexity to the cases, such as incorporating floating
blocks, increasing the downstream water level, and adding ICS to the tank.

- The results also indicated that the current numerical model could accurately reproduce
the movement of blocks in simple dam break cases with varying numbers of blocks
and downstream water levels, both with and without an ICS. An RMSE of 0.0418 and
0.0527 was obtained for the current numerical model when dealing with 4 and 9 blocks
with different downstream water levels, respectively.

- For the 25 blocks cases with an ICS, the current numerical model showed an RMSE of
0.0441 and 0.0753, for the real and artificial ice blocks, respectively. The lower accuracy
is due to the jamming of the block downstream of the ICS when the reverse wave
comes back from the upstream wall of the tank. Moreover, the simulation accuracy
of real ice blocks (RMSE) is enhanced compared to artificial blocks, therefore, it is
essential to define the material properties correctly to obtain correct results, especially
in real ice simulations.

- In general, both, the current numerical model and the meshless models were more
accurate in reproducing the trajectory of blocks in the z-direction compared to the
x-direction. Nevertheless, the current numerical model was slightly more accurate
with an average overall RMSE of 0.0534 from all cases (and directions), compared to
an average RMSE of 0.0599 for the meshless models.
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- Although the current numerical model exhibited a similar computational time (ranging
from 25 to 40 h for 3 s of physical time) to the particle method numerical model
conducted by Amaro et al. [31], constraints on the number of cores available for use
by the processors (depending on the license type) and reliance on CPU processing
resulted in greater resource consumption.

- The use of sophisticated mesh techniques, such as nested meshes, not only reduced
computational time but also diminished the accuracy of the results. Therefore, a single
mesh block was recommended based on the recommendations of the software manual.
Like other mesh-based methods, refining the mesh in the current numerical model
could enhance accuracy but increases computational time.

- The current numerical model did not converge and became unstable when dealing
with more complex phenomena, such as jamming several blocks behind an ICS in
a straight channel. This problem could be related to numerous factors, including
the chaotic nature of the phenomena, the embedded collision model, the coupling
of the solid and fluid phases, among others. These aspects are suggested topics for
future investigation.

As a summary, it is recommended to test newer versions of the current numerical
model to determine if it can simulate the more complex phenomena of block jamming with
increased number of blocks. It is also suggested that the particle methods model be further
developed to handle simulations of real-scale ice dynamic problems involving a large
number of ice floes, such as ice-jam formation, breakup, and interactions with hydraulic
structures. This includes improving the resolution of particle interactions, integrating
detailed ice mechanics, and coupling particle methods with high-fidelity hydrodynamic
models. Additionally, developments in computational efficiency and scalability are cru-
cial to handle large-scale simulations effectively. Future studies should also consider a
numerical model capable of simulating internal ice stress and the ice-breaking processes
and coupling them with 3D hydrodynamic flow.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w16172454/s1, Figure S1: Snapshots of the TC4-0.0 at time intervals of
(a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure comprises
three images: the top is the laboratory TC result, the middle is TC4-N by Amaro et al. [31], and the
bottom image illustrates the results from the current numerical model; Figure S2: Snapshots of the
TC4-1.0 at time intervals of (a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s.
Each subfigure comprises three images: the top is the laboratory TC result, the middle is TC4-N by
Amaro et al. [31], and the bottom image illustrates the results from the current numerical model;
Figure S3: Snapshots of the TC4-2.5 at time intervals of (a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s,
(e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure comprises three images: the top is the laboratory TC result,
the middle is TC4-N by Amaro et al. [31], and the bottom image illustrates the results from the current
numerical model; Figure S4: Snapshots of the TC4-5.0 at time intervals of (a) t = 0.4 s, (b) t = 0.8 s,
(c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure comprises three images: the top
is the laboratory TC result, the middle is TC4-N by Amaro et al. [31], and the bottom image illustrates
the results from the current numerical model; Figure S5: Snapshots of the TC9-0.0 at time intervals
of (a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure
comprises three images: the top is the laboratory TC result, the middle is TC9-N by Amaro et al. [31],
and the bottom image illustrates the results from the current numerical model; Figure S6: Snapshots
of the TC9-1.0 at time intervals of (a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s,
and (f) t = 2.4 s. Each subfigure comprises three images: the top is the laboratory TC result, the
middle is TC9-N by Amaro et al. [31], and the bottom image illustrates the results from the current
numerical model; Figure S7: Snapshots of the TC9-2.5 at time intervals of (a) t = 0.4 s, (b) t = 0.8 s,
(c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure comprises three images: the top
is the laboratory TC result, the middle is TC9-N by Amaro et al. [31], and the bottom image illustrates
the results from the current numerical model; Figure S8: Snapshots of the TC9-5.0 at time intervals of
(a) t = 0.4 s, (b) t = 0.8 s, (c) t = 1.2 s, (d) t = 1.6 s, (e) t = 2.0 s, and (f) t = 2.4 s. Each subfigure comprises
three images: the top is the laboratory TC result, the middle is TC9-N by Amaro et al. [31], and
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the bottom image illustrates the results from the current numerical model; Figure S9: Comparison
of the trajectory of the blocks from the laboratory experiment TC4-0.0 (different lines refer to the
results of the different repetitions of the experiments TC4-0.0-R1, TC4-0.0-R2, and TC4-0.0-R3) with
TC4-N from Amaro et al. [31] and the current numerical model for the x-direction of (a) block B1
and (b) block B2 and along the z-direction for (c) block B1 and (d) block B2; Figure S10: Comparison
of the trajectory of the blocks from the laboratory experiment TC4-1.0 (different lines refer to the
results of the different repetitions of the experiments TC4-1.0-R1, TC4-1.0-R2, and TC4-1.0-R3) with
TC4-N from Amaro et al. [31] and the current numerical model for the x-direction of (a) block B1
and (b) block B2 and along the z-direction for (c) block B1 and (d) block B2; Figure S11: Comparison
of the trajectory of the blocks from the laboratory experiment TC4-2.5 (different lines refer to the
results of the different repetitions of the experiments TC4-2.5-R1, TC4-2.5-R2, and TC4-2.5-R3) with
TC4-N from Amaro et al. [31] and the current numerical model for the x-direction of (a) block B1 and
(b) block B2 and along the z-direction for (c) block B1 and (d) block B2; Figure S12: Comparison
of the trajectory of the blocks from the laboratory experiment TC4-5.0 (different lines refer to the
results of the different repetitions of the experiments TC4-5.0-R1, TC4-5.0-R2, and TC4-5.0-R3) with
TC4-N from Amaro et al. [31] and the current numerical model for the x-direction of (a) block B1 and
(b) block B2 and along the z-direction for (c) block B1 and (d) block B2; Figure S13: Comparison of the
trajectory of the blocks from the laboratory experiment TC9-0.0 (different lines refer to the results of
the different repetitions of the experiments TC9-0.0-R1, TC9-0.0-R2, and TC9-0.0-R3) with TC9-N from
Amaro et al. [31] and the current numerical model for the x-direction of (a) block C1, (b) block C2
and (c) block C3, and along the z-direction for (d) block C1, (e) block C2 and (f) block C3; Figure S14:
Comparison of the trajectory of the blocks from the laboratory experiment TC9-1.0 (different lines
refer to the results of the different repetitions of the experiments TC9-1.0-R1, TC9-1.0-R2, and TC9-
1.0-R3) with TC9-N from Amaro et al. [31] and the current numerical model for the x-direction of
(a) block C1, (b) block C2 and (c) block C3, and along the z-direction for (d) block C1, (e) block C2 and
(f) block C3; Figure S15: Comparison of the trajectory of the blocks from the laboratory experiment
TC9-2.5 (different lines refer to the results of the different repetitions of the experiments TC9-2.5-R1,
TC9-2.5-R2, and TC9-2.5-R3) with TC9-N from Amaro et al. [31] and the current numerical model for
the x-direction of (a) block C1, (b) block C2 and (c) block C3, and along the z-direction for (d) block
C1, (e) block C2 and (f) block C3; Figure S16: Comparison of the trajectory of the blocks from the
laboratory experiment TC9-5.0 (different lines refer to the results of the different repetitions of the
experiments TC9-5.0-R1, TC9-5.0-R2, and TC9-5.0-R3) with TC9-N from Amaro et al. [31] and the
current numerical model for the x-direction of (a) block C1, (b) block C2 and (c) block C3, and along
the z-direction for (d) block C1, (e) block C2 and (f) block C3.
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