Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Batch Experiments
2.2. Water Quality Analysis
2.3. DNA Extraction
2.4. High-Throughput Sequencing of 16S rRNA
2.5. Construction of nirS and cbbL Libraries in DB0
2.6. Quantitative PCR of 16S rRNA, nirS, and cbbL
3. Results
3.1. Influence of OC and DO on the Performance of Fe(0)/C-AND
3.2. Community Structure of ADBs in Fe(0)/C-ADN
3.3. Influencing Characteristics of OC and DO on ADBs in Fe(0)/C-ADN
3.4. Quantification of 16S rRNA, nirS, and cbbL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef]
- You, N.; Deng, S.; Wang, C.; Ngo, H.H.; Wang, X.; Yu, H.; Tang, L.; Han, J. Review and Opinions on the Research, Development and Application of Microalgae Culture Technologies for Resource Recovery from Wastewater. Water 2023, 15, 1192. [Google Scholar] [CrossRef]
- Sun, S.P.; Pellicer i Nàcher, C.; Merkey, B.; Qi, Z.; Xia, S.Q.; Yang, D.H.; Sun, J.H.; Smets, B.F. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review. Environ. Eng. Sci. 2010, 27, 111–126. [Google Scholar] [CrossRef]
- Trois, C.; Pisano, G.; Oxarango, L. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost. J. Hazard. Mater. 2010, 178, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, J. Various electron donors for biological nitrate removal: A review. Sci. Total Environ. 2021, 794, 148699. [Google Scholar] [CrossRef]
- Deng, S.; Li, D.; Yang, X.; Xing, W.; Li, J.; Zhang, Q. Biological denitrification process based on the Fe(0)–carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition. Bioresour. Technol. 2016, 219, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lu, H.; Khanal, S.K.; Zhao, Q.; Meng, L.; Chen, G.H. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification. Water Res. 2016, 104, 507–519. [Google Scholar] [CrossRef]
- Fan, L.; Yao, H.; Deng, S.; Jia, F.; Cai, W.; Hu, Z.; Guo, J.; Li, H. Performance and microbial community dynamics relationship within a step-feed anoxic/oxic/anoxic/oxic process (SF-A/O/A/O) for coking wastewater treatment. Sci. Total Environ. 2021, 792, 148263. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Xia, Y.; Zhang, T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour. Technol. 2013, 128, 703–710. [Google Scholar] [CrossRef]
- Xiao, Y.; Zheng, Y.; Wu, S.; Yang, Z.H.; Zhao, F. Bacterial community structure of autotrophic denitrification biocathode by 454 pyrosequencing of the 16S rRNA gene. Microb. Ecol. 2015, 69, 492–499. [Google Scholar] [CrossRef]
- Deng, S.; Peng, S.; Ngo, H.H.; Oh, S.J.-A.; Hu, Z.; Yao, H.; Li, D. Characterization of nitrous oxide and nitrite accumulation during iron (Fe(0))- and ferrous iron (Fe(II))-driven autotrophic denitrification: Mechanisms, environmental impact factors and molecular microbial characterization. Chem. Eng. J. 2022, 438, 135627. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, J.; Wang, A.; Peng, Y. Denitrifying phosphorus removal from municipal wastewater and dynamics of “Candidatus Accumulibacter” and denitrifying bacteria based on genes of ppk1, narG, nirS and nirK. Bioresour. Technol. 2016, 207, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Selesi, D.; Schmid, M.; Hartmann, A. Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl. Environ. Microbiol. 2005, 71, 175–184. [Google Scholar] [CrossRef]
- Wu, X.; Ge, T.; Yan, W.; Zhou, J.; Wei, X.; Chen, L.; Chen, X.; Nannipieri, P.; Wu, J. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil. FEMS Microbiol. Ecol. 2017, 93, fix154. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, D.; Deng, S.; Liu, Y.; Ma, C.; Zhang, C. Combination with catalyzed Fe(0)-carbon microelectrolysis and activated carbon adsorption for advanced reclaimed water treatment: Simultaneous nitrate and biorefractory organics removal. Environ. Sci. Pollut. Res. 2019, 26, 5693–5703. [Google Scholar] [CrossRef]
- Xing, W.; Li, D.; Li, J.; Hu, Q.; Deng, S. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification. Bioresour. Technol. 2016, 211, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Peng, S.; Xie, B.; Yang, X.; Sun, S.; Yao, H.; Li, D. Influence characteristics and mechanism of organic carbon on denitrification, N2O emission and NO2− accumulation in the iron [Fe(0)]-oxidizing supported autotrophic denitrification process. Chem. Eng. J. 2020, 393, 124736. [Google Scholar] [CrossRef]
- Deng, S.; Wang, C.; Ngo, H.H.; Guo, W.; You, N.; Tang, H.; Yu, H.; Tang, L.; Han, J. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality. Bioresour. Technol. 2023, 376, 128906. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Cui, Y.; Xing, W.; Deng, S. Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment. Environ. Sci. Pollut. Res. 2017, 24, 16651–16658. [Google Scholar] [CrossRef]
- Deng, S.; Li, D.; Yang, X.; Zhu, S.; Xing, W. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process. Environ. Sci. Pollut. Res. Int. 2016, 23, 5361–5373. [Google Scholar] [CrossRef]
- Deng, S.; Li, D.; Yang, X.; Zhu, S.; Li, J. Process of nitrogen transformation and microbial community structure in the Fe(0)-carbon-based bio-carrier filled in biological aerated filter. Environ. Sci. Pollut. Res. Int. 2016, 23, 6621–6630. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Deng, S.; Wang, Q.; Cai, Q.; Ong, S.L.; Hu, J. Efficient bio-refractory industrial wastewater treatment with mitigated membrane fouling in a membrane bioreactor strengthened by the micro-scale ZVI@GAC galvanic-cells-initiated radical generation and coagulation processes. Water Res. 2022, 209, 117943. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, T.; Jin, Z.; Dong, M.; Li, Q.; Wang, S. Decreasing ammonium generation using hydrogenotrophic bacteria in the process of nitrate reduction by nanoscale zero-valent iron. Sci. Total Environ. 2009, 407, 5465–5470. [Google Scholar] [CrossRef]
- Hao, R.; Meng, C.; Li, J. Impact of operating condition on the denitrifying bacterial community structure in a 3DBER-SAD reactor. J. Ind. Microbiol. Biotechnol. 2017, 44, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.Q.; Zhou, Y.X.; Wang, J.L. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour. Technol. 2013, 131, 33–39. [Google Scholar] [CrossRef]
- Straub, K.L.; Benz, M.; Schink, B.; Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 1996, 62, 1458–1460. [Google Scholar] [CrossRef]
- Beller, H.R.; Peng, Z.; Legler, T.C.; Chakicherla, A.; Kane, S.; Letain, T.E.; O’Day, P.A. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans. Front. Microbiol. 2013, 4, 249. [Google Scholar] [CrossRef]
- Xing, W.; Li, J.; Cong, Y.; Gao, W.; Jia, Z.; Li, D. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing. Bioresour. Technol. 2017, 229, 134–142. [Google Scholar] [CrossRef]
- Harrold, Z.R.; Skidmore, M.L.; Hamilton, T.L.; Desch, L.; Amada, K.; Van Gelder, W.; Glover, K.; Roden, E.E.; Boyd, E.S. Aerobic and Anaerobic Thiosulfate Oxidation by a Cold-Adapted, Subglacial Chemoautotroph. Appl. Environ. Microbiol. 2015, 82, 1486. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Liu, X.; He, S.; Huang, J.C. Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors. Appl. Microbiol. Biotechnol. 2017, 101, 447–453. [Google Scholar] [CrossRef]
- Blažková, Z. Influence of Fe3+ Ions on Nitrate Removal by Autotrophic Denitrification Using Thiobacillus denitrificans. Chem. Biochem. Eng. Q. 2017, 31, 167–172. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, P.; Zhang, M.; Zhao, H.P.; Ji, J.Y.; Zhou, X.X.; Li, W. Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification. Bioresour. Technol. 2015, 197, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shan, X.Y.; Wang, Z.Y.; Lin, X.Y.; Li, C.X.; Cai, C.Y.; Abbas, G.; Zhang, M.; Shen, L.D.; Hu, Z.Q.; et al. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities. Water Res. 2016, 88, 758–765. [Google Scholar] [CrossRef]
- Lee, T.K.; Doan, T.V.; Yoo, K.; Choi, S.; Kim, C.; Park, J. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl. Microbiol. BioTechnol. 2010, 87, 2335–2343. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Q.; Zhang, J.; Kwon, S.W.; Zhou, S.G.; Han, L.C.; Chen, M.; Ma, C.; Zhuang, L. Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int. J. Syst. Evol. Microbiol. 2013, 63, 873–878. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, P.; Li, G.; Yin, J.; Li, J.; Zhao, X. Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor. Int. Biodeterior. Biodegrad. 2016, 113, 74–79. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Yan, L.; Wang, A.; Gu, Y.; Lee, D.J. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresour. Technol. 2015, 191, 332–336. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, C.; Wang, A.; Guo, Y.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters. Appl. Microbiol. Biotechnol. 2015, 99, 6463–6469. [Google Scholar] [CrossRef]
- Liu, H.; Yan, Q.; Shen, W. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES). Bioresour. Technol. 2014, 171, 187–192. [Google Scholar] [CrossRef]
- Remmas, N.; Melidis, P.; Katsioupi, E.; Ntougias, S. Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresourc. Technol. 2016, 220, 557–565. [Google Scholar] [CrossRef]
- Zhen, Z.; Qiao, W.; Xing, C.; Shen, X.; Hu, D.; Wang, L. A micro-aerobic hydrolysis process for sludge in situ reduction: Performance and microbial community structure. Bioresour. Technol. 2014, 173, 452–456. [Google Scholar]
- Schwintner, C.; Berna, B.C.S.; Richaud, P.; Sabaty, M. Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides. FEMS Microbiol. Lett. 2010, 165, 313–321. [Google Scholar] [CrossRef]
- Wang, R.; Yang, C.; Zhang, M.; Xu, S.-Y.; Dai, C.-L.; Liang, L.-Y.; Zhao, H.-P.; Zheng, P. Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics. Chem. Eng. J. 2017, 313, 693–701. [Google Scholar] [CrossRef]
- Fahrbach, M.; Kuever, J.; Remesch, M.; Huber, B.E.; Kämpfer, P.; Dott, W.; Hollender, J. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 2215–2223. [Google Scholar] [CrossRef]
- Chen, D.; Wang, H.; Yang, K.; Ma, F. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere 2017, 193, 337–342. [Google Scholar] [CrossRef]
- Yang, N.; Zhan, G.; Wu, T.; Zhang, Y.; Jiang, Q.; Li, D.; Xiang, Y. Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC). J. Environ. Sci. 2018, 66, 216–224. [Google Scholar] [CrossRef]
- Gilbert, E.M.; Agrawal, S.; Brunner, F.; Schwartz, T.; Horn, H.; Lackner, S. Response of different nitrospira species to anoxic periods depends on operational DO. Environ. Sci. Technol. 2014, 48, 2934–2941. [Google Scholar] [CrossRef]
- Van Kessel, M.A.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Hj, O.D.C.; Kartal, B.; Jetten, M.S.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A. Complete nitrification by Nitrospirabacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef]
- Cydzik-Kwiatkowska, A.; Rusanowska, P.; Zielińska, M.; Bernat, K.; Wojnowska-Baryła, I. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant. Bioresourc. Technol. 2014, 154, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.A.; Cornelisse, R.; De Vos, P.; Hadioetomo, R.; Kuenen, J.G. Aerobic denitrification in various heterotrophic nitrifiers. Antonie Van Leeuwenhoek 1989, 56, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Sinigalliano, C.D.; Kuhn, D.N.; Jones, R.D.; Guerrero, M.A. In situ reverse transcription to detect the cbbL gene and visualize RuBisCO in chemoautotrophic nitrifying bacteria. Lett. Appl. Microbiol. 2010, 32, 388–393. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, X.; Deng, S.-H.; Li, Z.; Zhang, B.; Li, D. Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking. Water 2024, 16, 2455. https://doi.org/10.3390/w16172455
Li J, Wang X, Deng S-H, Li Z, Zhang B, Li D. Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking. Water. 2024; 16(17):2455. https://doi.org/10.3390/w16172455
Chicago/Turabian StyleLi, Jinlong, Xiaowei Wang, Shi-Hai Deng, Zhaoxu Li, Bin Zhang, and Desheng Li. 2024. "Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking" Water 16, no. 17: 2455. https://doi.org/10.3390/w16172455
APA StyleLi, J., Wang, X., Deng, S. -H., Li, Z., Zhang, B., & Li, D. (2024). Functional and Microbiological Responses of Iron–Carbon Galvanic Cell-Supported Autotrophic Denitrification to Organic Carbon Variation and Dissolved Oxygen Shaking. Water, 16(17), 2455. https://doi.org/10.3390/w16172455