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Abstract: Monitoring future irrigation water demand as a part of agricultural interventions is crucial
to ensure food security. In this study, the impact of climate change on paddy cultivation in Brunei
is investigated, focusing on the Wasan rice scheme. This research aims to project irrigation water
requirement (IWR) and crop water requirement (CWR) or the main and off season using the WEAP-
MABIA model. Historical data analysis over the past 30 years and future projections up to 2100 are
employed to assess potential impacts. An ensemble of statistically downscaled climate models, based
on seven CMIP6 GCMs under shared socioeconomic pathways (SSPs) (SSP245, SSP370, and SSP585),
was utilised to project the IWR and CWR. Using downscaled CMIP6 data, three future periods
were bias-corrected using quantile delta mapping (QDM) for 2020–2046 (near future), 2047–2073
(mid future), and 2074–2100 (far future). The WEAP-MABIA model utilises a dual crop coefficient
approach to evaluate crop evapotranspiration (ETc), a critical factor in computing IWR. Results
indicate that changes in future temperatures will lead to higher average ETc. Consequently, this
results in elevated demands in irrigation water during the off season, and it is especially prominent
in high-emission scenarios (SSP370 and SSP585). While the main season experiences a relatively
stable or slightly increasing IWR trend, the off season consistently shows a decreasing trend in
IWR. Moreover, the off season benefits from substantial rainfall increases, effectively reducing IWR
despite the rise in both maximum and minimum temperatures. This study also highlights some
recommendations for implementing possible improvements in irrigation management to address
the effects of climate change on rice cultivation in the region. Future investigation should focus on
enhancing crop yield predictions under climate change by integrating a dynamic crop growth model
that adjusts for changing crop coefficient (Kc) values.

Keywords: WEAP; evapotranspiration; irrigation; climate change

1. Introduction

The ongoing rise in the temperature of the earth’s surface persists, with a documented
increase in global temperature of 1.1 ◦C being observed during the period spanning from
2011 to 2020 compared to the time frame between 1850 and 1900, resulting in extreme
hydrometeorological events such as heavy rainfall [1]. A previous study anticipated an
increase in the future rainfall trend in Brunei [2]. This might potentially have adverse
effects on rice cultivation, as recent studies have indicated that rice is susceptible to both
intense rainfall and fluctuations in temperature [3,4]. To ensure national food security, the
Department of Agriculture and Agrifood (DoAA) introduced high-yielding paddy varieties
that are drought-tolerant and reduce crop failure in rain-fed rice production areas. One
such variety is ‘Sembada 188’, which requires supplementary irrigation under the weather
conditions of Brunei Darussalam. In addition to this, the DoAA promotes sustainable
technologies like alternate wetting and drying (AWD) to farmers through Farmers Field
School [5]. The aim is to enhance the productivity and resilience of Brunei’s rice sector
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against climate change. Although some rice fields in the district are still suffering from
water scarcity, Imang Dam’s ongoing expansion has improved irrigation at agricultural
sites [6]. A previous study on the Wasan rice scheme identified numerous challenges faced
by the farmers and the overall impact on economic diversification and food security [7]. One
of the primary challenges is that farmers encounter a major challenge of water insufficiency,
and water availability significantly impacts crop yield and quality in rice farming [7,8]. It is
highly advised to implement the efficient management of irrigation techniques, fertilisation
methods, and land use in order to maintain food security amidst the challenges posed by
climate change [9].

A key factor in water balance is rainfall and crop evapotranspiration (ETc), which
eventually determine the irrigation amount for a healthy crop condition. Crop water
requirements (CWR) and ETc are related as they both refer to the same amount of water.
However, crop evapotranspiration represents water losses through the process of evap-
otranspiration, while crop water requirement indicates the quantity of water needed to
compensate for these losses during the growing period. Therefore, it is vital to compute
crop evapotranspiration to prevent crop failure. It has been studied that climatic variables
such as rainfall and temperature influence water availability for irrigation, and a decline
in the rainfall amount and rise in temperature can influence the evapotranspiration rate,
leading to a higher crop water requirement [10,11].

The most widely used approach to determining irrigation water requirements and
crop water requirements is through the water balance model. Decision Support System
for Agrotechnology Transfer (DSSAT v4.8.2) software and AQUACROP version 7.1 (a
crop growth model developed by the Food and Agriculture Organisation) typically need
other inputs, such as genetic traits and fertiliser management, to estimate the irrigation
water requirement (IWR). Acquiring genomic data over an extended period is challenging.
Alternatively, WEAP can simulate the IWR using only meteorological, soil, and irrigation
data. This approach eliminates the need for costly and time-consuming field observations.
The practical use and availability of scenario analysis have led to the wide use of WEAP
for water resource management and planning [12]. A number of studies on the WEAP
application look at how to simulate the environmental flow essential for maintaining the
health and functionality of rivers, wet land, and other aquatic ecosystems [13], as well
as how climate change affects water resources by considering factors such as land use,
climate, and irrigation [14], and how to improve planning and decision making for water
resources by evaluating water supply management and strategies [15]. For studies related
to agriculture, many researchers have used the built-in MABIA method in WEAP [12–16],
a water balance model that simulates the inflow and outflow of water in the root zone,
whereby the important components involved are effective rainfall, irrigation, surface runoff,
percolation, evapotranspiration, and capillary rise. WEAP-MABIA has been applied in
various studies, such as computing irrigation water requirements, assessing the spatial
temporal variation in a soil water budget [16], analysing the impact of climate change
on water resources, water irrigation management, crop production [17], and adopting
irrigation strategy management [18]. The WEAP-MABIA approach was utilised to estimate
the anticipated crop and irrigation water needs in a study undertaken by Allani et al., and
they discovered a mean rise in yearly evapotranspiration (ETo) by 6.1% and a decline in
annual precipitation by 11.4%, resulting in a 24% reduction in inflow for cereals under
future climate scenarios [19]. In another study, the MABIA module was used to determine
the crop water requirements and irrigation water requirements in the Indian state of
Chhattisgarh [20]. Moreover, a study used WEAP to assess the effects of alternate wetting
and drying (AWD) on the water use and resources in irrigated rice production in the
Philippines. AWD is a water-saving technique that involves periodically drying the rice
fields between irrigation events. They reported that the simulated AWD implementation
during the dry season reduces water requirements while also increasing water availability
in the irrigation system [18]. The studies by Olabanji et al. applied WEAP-MABIA to assess
the potential increase in water demands in the Olifants catchment of South Africa based on
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climate change projections from the CORDEX regional climate models driven by six global
climate models (GCMs) for two CMIP5 emission scenarios [17].

This study aims to build on this by integrating downscaled CMIP6 data, which have
higher spatial and temporal resolution compared to CMIP5. Additionally, this integrated
approach using the latest climate and socio-economic data based on CMIP6 may help
capture the socio-economic influences on climate projections [21], providing a more holistic
view of future water demand. Furthermore, this study includes the variation of two
growing seasons across future periods, enhancing the temporal specificity and predictive
accuracy of the assessment by considering both growing seasons to understand how
different parts of the year may be affected by climate change.

This study represents a pioneering effort in understanding the irrigation water and
crop water requirements of paddies in Brunei, as no previous studies have focused on this
topic. This study utilises output from an ensemble of Coupled Model Intercomparison
Project 6 (CMIP6) to depict climate change scenarios and their influence on crop water
needs and irrigation water requirements (IWR) through the implementation of the MABIA
module embedded in WEAP. CMIP6 is a project that coordinates climate model simulations
of past, current, and future climates, which includes experiments and standards to help
understand and predict climate changes [22]. This paper would like to address the following
research questions: how do changes in temperature affect crop water requirements, and
how does rainfall contribute to the fluctuations in irrigation water requirements for paddies?
Additionally, this study seeks to gain some insights on implementing appropriate irrigation
strategies based on the research outcomes.

2. Materials and Methods
2.1. Study Area

The climate in Brunei Darussalam is hot and humid, receiving an average rainfall
of 3000 mm annually with a mean annual temperature of 28.7 ◦C. There are two distinct
rainy periods that typically occur between the months of October and January, which
are influenced by the northeast monsoon, and between May and July as a result of the
southwest monsoon. These wet periods often coincide with the occurrence of two planting
seasons for paddies.

Figure 1 shows the paddy cultivation areas in the Brunei Muara district, comprising
Panchor Murai, Batong, Bebuloh, Wasan A and B, Junjongan, and Limau-Manis, are collec-
tively located at an approximate latitude of 4.78◦ N and a longitude of 114.71◦ E. Among
these, Wasan, situated at approximately 4.80◦ N latitude and 114.65◦ E longitude, is the
largest paddy field. Two storage tanks, each with a capacity of 5000 cubic metres, store
10,000 cubic metres of water from the Imang Dam, which is then discharged and piped
to Wasan and other paddy fields [8]. The water requirement for paddies is estimated at
10 mm/day, and the daily demand is estimated at about 515.1 L/s (after a 50% reduction
factor is applied to allow for natural rainfall and non-production areas). The farmers
encounter difficulties with inefficient irrigation systems, causing uneven water distribution
across paddy fields, particularly those situated far from water sources. Additionally, inade-
quate irrigation practices during dry seasons and the effects of climate change exacerbate
water scarcity, hindering crop growth and yield.
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Figure 1. Paddy fields in Brunei Muara (Source: Google Earth).

2.2. Statistical Downscaling with Quantile Delta Mapping

The selection of the CMIP6 models in Table 1 was based on their availability under the
r1i1p1f1 initial conditions at a daily time step, as well as their performance in a previous
study on downscaling precipitation in Brunei by Rhymee et al. [2]. These models were
chosen based on several criteria, including the inclusion of various parameters such as
precipitation, maximum and minimum temperatures, availability at a daily time step, and
the presence of both historical runs and future scenarios. These factors were considered
essential for this research as a sub-model of climate change prediction [2]. In the case of
Brunei, there was an absence of solar radiation data, and the CMIP6 General Circulation
Models (GCMs) lack daily near-surface relative humidity, with previous studies commonly
relying on the monthly dataset of relative humidity derived from CMIP6 [23,24]. Conse-
quently, the objective of this investigation revolved around utilising daily rainfall and the
maximum and minimum temperatures to downscale these climatic predictors. Multiple lin-
ear regression was employed by taking into account the relationship between the predictors
from seven GCMs and the observed climatic parameters. Further information regarding
the procedures and statistical equations developed for the calibration and validation of the
statistical downscaling model can be found in Rhymee et al. [2]. The shared socioeconomic
pathways (SSPs) SSP245, SSP370, and SSP585 were the CMIP6 scenarios selected for the
MME, which are available online at https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
(accessed on 20 May 2022). The differences between these scenarios are primarily driven
by their socioeconomic assumptions. These assumptions result in different amounts of
greenhouse gas emissions and subsequent global warming. SSP245 and SSP370 anticipate a
moderate implementation of climate protection measures, whereas SSP585 assumes a lack
of strong climate protection measures. These differences in socioeconomic assumptions
lead to different levels of global warming and other climate effects [21,25].

https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/
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Table 1. The model names, modelling centre, and resolutions of seven CMIP6 global climate models.

Model Names Modelling Centres Resolutions

ACCESS-CM2 Australian Community Climate and Earth System Simulator, Hobart, Australia 1.25◦ × 1.875◦

AWI-CM-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research,
Bremerhaven, Germany 0.94◦ × 0.94◦

INM-CM5-0 Institute for Numerical Mathematics, Moscow, Russia 2.0◦ × 1.5◦

MIROC6 University of Tokyo, National Institute for Environmental Studies and Japan
Agency for Marine-Earth Science and Technology, Tokyo, Japan 1.41◦ × 1.41◦

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Hamburg, Germany 1.875◦ × 1.875◦

MRI-ESM2-0 Meteorological Research Institute, Tsukuba, Japan 1.125◦ × 1.125◦

NorESM2-MM Norwegian Climate Centre, Oslo, Norway 1.25◦ × 0.9375◦

Climate models provide information about the changes in precipitation and maximum
and minimum temperatures; however, their simulation exhibits a bias from the observed
values. The downscaled data frequently display overestimations and underestimations
in relation to the observed data. These errors originate from the bias present in the daily
data of downscaled GCM data due to the reduced resolution of GCM data. Therefore, it is
important to bias correct the climate models prior to applying them to impact studies. In
this study, the bias correction of the MME of temperature and rainfall was conducted by
applying quantile delta mapping (QDM). The implementation of QDM was performed in
R-programming using R-package MBC (version 0.10-6) (https://cran.r-project.org/web/
packages/MBC/index.html, accessed on 20 May 2022) [26]. QDM is a method in the field
of quantile mapping (QM), which corrects the biases in climate model simulations by
adjusting the distribution of model-simulated variables to match the observed distribution.
QDM focuses on preserving the differences in quantiles between observed and projected
data to accurately represent climate change signals [26,27]. In contrast, QM aims to match
the distributions of historical and future data. Despite the effectiveness of QM in reducing
bias, it has been noted to impact the projected trends of future models; therefore, Cannon
et al. introduced the quantile delta mapping technique to address this issue [26]. In
Canada, QDM has shown to be more precise in simulating daily maximum and minimum
temperatures using CMIP6 models, as indicated by a lower Root Mean Square Error (RMSE)
value of 0.5 compared to the Scaled Distribution Mapping (SDM) results [28].

2.3. WEAP-MABIA

The MABIA module is embedded in WEAP and is used to simulate daily irrigation
requirements, crop growth, evaporation, and transpiration. The crop evapotranspiration
(ETc), or simply crop water requirements, is calculated based on the dual crop coefficient
approach in Equation (1). The dual crop coefficient consists of Ke, which accounts for
evaporation from the surface beneath the crop canopy and considers both dry and wet soil
surface conditions. On the other hand, the basal crop coefficient, Kcb, is used to calculate
ETc when the soil surface is dry but still retains enough moisture for transpiration.

ETc = (Ke + Kcb)ETo. (1)

Reference evapotranspiration (ETo) represents the amount of water that evaporates
from a reference surface. This reference surface is a theoretical grass reference crop, and it
closely resembles a vast expanse of green, well-watered grass with a consistent height. It
actively develops and gives total shade to the ground [29]. Estimating the ETo in WEAP
necessitates the use of climatic factors including temperature, humidity, wind velocity,
and solar radiation using the Penman–Monteith equation based on Allen et al.’s Crop
evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation
and Drainage Paper 56 [29]. However, given the limited data available, particularly the
absence of solar radiation measurements, the Hargreaves method can be used to calculate
the ETo using the minimum necessary data: the minimum and maximum temperature [30].

https://cran.r-project.org/web/packages/MBC/index.html
https://cran.r-project.org/web/packages/MBC/index.html
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WEAP-MABIA enables the computation of ETo using different sets of data availability. This
ranges from a limited dataset consisting solely of maximum and minimum temperatures
to a comprehensive dataset that includes temperature, relative humidity, solar radiation,
and wind speed. In this study, the use of downscaled projections of the minimum and
maximum temperature was the minimum input requirement for estimating ETo. Other
important inputs include daily rainfall, as well as crop characteristics, soil, and irrigation,
which are required in WEAP-MABIA to quantify the irrigation water requirement based
on the water balance in the soil. Figure 2 summarises the sequential steps involved in
computing the ETc and IWR under climate change.
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2.3.1. Climate

Daily historical and future climate data (i.e., rainfall and maximum and minimum
temperatures) were used as the input to the WEAP model, in which the maximum and
minimum temperatures were used for computing daily reference evapotranspiration (ETo)
and rainfall was used for evaluating irrigation water needs. Historical climate data from
2004–2019 were obtained from the Brunei Meteorological Department, and the statistically
downscaled climate data were driven by the CMIP6 outputs (2020–2100) under the three
SSPs. The following future climate scenarios were considered in this study: the near
future period (2020–2046), the mid future period (2047–2073), and the far future period
(2074–2100).

2.3.2. Crop

Considering Brunei Wawasan 2035’s vision of self-reliance in food production, the
crop of interest in this study is the nation’s staple food: paddy. The transplanting of rice
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is practiced, and it takes about 120 days to cultivate paddy rice in Brunei. The planting
months are taken as November–January for the main season and May–August for the off
season. Paddy yield records in Brunei Muara for both the main and off seasons spanning
from 2005 to 2019 were obtained from the Department of Agriculture and Agrifood (DoAA).
Other relevant crop parameters for rice were based on Allen et al. [29], which was built into
the “crop library”. Table 2 provides the crop parameters specific to tropical rice that were
used for this study.

Table 2. Database of the crop parameters used in WEAP-MABIA.

Parameters Value (s)

Kcb initial 1.00
Kcb mid-season 1.15
Kcb end-season 1.15

Depletion factor initial 0.2
Depletion factor mid 0.2
Depletion factor end 0.2

Minimum rooting depth (m) 0.15
Maximum rooting depth (m) 1.0

The basal crop coefficients correspond to the initial, mid-stage, and end-stage as Kcb
initial, Kcb mid-stage, and Kcb end-stage, respectively. These Kcb values are fundamental
for calculating crop evapotranspiration.

The depletion factor refers to the portion of the total available water that can be drained
from the root zone before moisture stress is triggered. The variation in crop sensitivity to
water shortages differs across each crop stage.

The rooting depth is the depth of the roots in the soil profile. During early crop growth,
roots maintain a constant depth, which indicates the minimum rooting depth. The root
zone expands linearly until it reaches maximum depth.

2.3.3. Soil

As an alternative to entering data on water holding capacity values at field capacity
and wilt point, water holding capacity refers to the ability of the soil to store water that is
available for plant use. The MABIA method in WEAP allows for taking an average over
multiple soil profiles (sampling sites) and soil horizons (layers) using the pedotransfer
function (PTF). In this study, the average water holding capacity was based on two soil
profiles with four soil horizons. Wasan possesses primarily clay soil that crackles, and it is
characterised by its inherent low permeability and vulnerability to structural harm. This
attribute proves advantageous for the growth of rice as it aids in diminishing drainage and
upholding flood conditions [31,32]. And, in this study, a pedotransfer function based on
particle size distribution was applied to determine the average soil capacity.

2.3.4. Irrigation

The irrigation practice in Brunei is surface irrigation, which requires continuous
flooding throughout most of the growing period of 120 days. Rice is extremely sensitive
to water shortages, particularly during the flowering stage, and it is essential to maintain
flooding up until 7–10 days before harvest. The flooding is discontinued during this period
to avoid increased disease risk, reduced air circulation, and potential damage to the ripe
grains [33]. In WEAP-MABIA, the ponding depth can only occur if the soil root zone is
fully saturated, and irrigation is only triggered when the ponding depth is below the target
depth. As recommended by the International Rice Research Institute (IRRI) [33], standing
water between 50 and 100 mm should be maintained, especially during the development
stage. Once the ponding depth reaches the target depth, it will exceed its capacity, and any
excess rainfall or irrigation will be discharged as runoff. Therefore, the irrigation water
requirement (IWR) is estimated based on the decrease in surface storage.
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3. Results
3.1. Projection of Climate Models

The statistically downscaled CMIP6 rainfall and temperature data were adjusted using
quantile delta mapping. Figure 3 displays the bias-correction result, indicating that the
ensemble monthly historical CMIP6, after bias adjustment, generally matched the observed
precipitation and temperatures. Table 3 compares the overall performance of the raw and
bias-corrected climate models relative to the observed time series during the validation
period. The metrics used for assessing the models were the standard deviation (SD), mean,
percent bias (PBias), and coefficient of determination (R2).
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Figure 3. Comparison of the CMIP6 climate models with the observed results during the validation
period (2010–2019). The blue line represents the observed data, the orange line represents the
bias-corrected model output, and the grey line represents the raw, uncorrected model output.

The SSP245 model demonstrates the best overall performance among the rainfall
models, with an R2 value of 0.6, indicating a relatively strong ability to explain the variance
in observed data. Its mean rainfall prediction of 289.5 mm is closest to the observed mean
of 272.75 mm, and its PBias of +6.1% suggests a slight overestimation. However, an SD of
139.33 indicates that it overestimates the variability compared to the observed SD of 80.45.
On the other hand, the raw SSP models show poor performance in terms of SD (around 13),
which is significantly lower than the observed SD, reflecting their inability to capture the
variability in rainfall data accurately. These models also have lower R2 values (0.4–0.44)
and higher negative PBias (around −11.5%), indicating consistent underestimation.

For maximum temperature, the raw SSP models (SSP245, SSP370, and SSP585) exhibited
excellent performance with R2 values of 0.97 to 0.98, indicating high accuracy in explaining
the variance in observed data. These models have very low PBias (−0.005%), suggesting
negligible bias, and their means (32.29 ◦C) are close to the observed mean (32.12 ◦C).
However, their SDs in the raw model (around 0.43–0.45) were lower than the observed SD
(0.63), indicating an underestimation of variability. The adjusted SSP models have higher
SDs (around 1.09–1.13), which overestimate the observed variability but maintain the same
high R2 and low PBias values, indicating accurate central tendency predictions.
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Table 3. Summary of the overall performance of the raw and bias-corrected climate models during
the validation period.

Rainfall

SD Mean R-Squared PBias

Observed 80.45 272.75
Raw SSP245 12.75 241.53 0.44 −11.5
Raw SSP370 13.56 241.4 0.44 −11.5
Raw SSP585 13.9 241.02 0.40 −11.6

SSP245 139.33 289.5 0.60 6.1
SSP370 142.87 265.77 0.52 −2.6
SSP585 145.93 262.31 0.42 −3.8

Maximum Temperature

SD Mean R-Squared PBias

Observed 0.63 32.12
Raw SSP245 0.43 32.29 0.98 −0.005
Raw SSP370 0.45 32.29 0.97 −0.005
Raw SSP585 0.45 32.29 0.98 −0.005

SSP245 1.09 32.29 0.97 −0.005
SSP370 1.13 32.29 0.97 −0.005
SSP585 1.12 32.29 0.98 −0.005

Minimum Temperature

SD Mean R-Squared PBias

Observed 0.31 24.2
Raw SSP245 0.03 23.6 −0.12 2.48
Raw SSP370 0.03 23.6 −0.20 2.54
Raw SSP585 0.03 23.6 −0.03 2.5

SSP245 0.29 23.6 −0.12 2.49
SSP370 0.32 23.6 −0.19 2.55
SSP585 0.28 23.6 −0.02 2.51

The minimum temperature models generally perform poorly in terms of R2, with
values ranging from −0.03 to −0.20, indicating a weak ability to explain the variance in the
observed data. All models consistently underestimated the mean minimum temperature,
with predicted means of 23.6 ◦C compared to the observed mean of 24.2 ◦C. The raw SSP
models (SSP245, SSP370, and SSP585) have very low SDs (0.03), failing to capture the
observed variability (SD = 0.31). Among the adjusted models, SSP245 and SSP585 had SDs
of 0.29 and 0.28, respectively, which were closer to the observed SD, making them slightly
better in terms of capturing variability. However, the PBias for all models was around
+2.5%, indicating a consistent positive bias and overestimation.

Overall, the bias-corrected rainfall model improved compared to the raw model
indicated by their R2 values and mean. There was a legible PBias for both the raw and
adjusted maximum temperature, with both models exhibiting high R2. Although the
minimum temperature of the raw and bias-corrected models generally performed poorly,
the bias-corrected models showed closer SDs to the observed values. On the other hand, the
raw models for minimum temperature lacked the ability to capture the observed variability
based on their SD.

The projections of climate models (2020–2100) relative to the observed (1979–2019)
are shown in Figure 4a–c. It can be seen in Figure 4a that significant changes in rainfall
patterns can be found in the middle of the year, starting from July to November, where
heavier rainfall is expected in the future. In contrast, the current wet month, January, might
experience a decline in precipitation. A rising future maximum temperature is observed
relative to the historical temperature (Figure 4b), with the average maximum temperature
reaching 34 ◦C, especially between April and September, which overlaps with the off
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season. As in Figure 4c, the average minimum temperature will have more significant
changes, where an increase in the average minimum temperature between 0.4 ◦C and 0.6 ◦C
is seen starting from July to October under all scenarios, while the rest of the months it
remains closer to that which was observed. Overall, a rise in both the average minimum
and maximum temperatures is anticipated in the off season.
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3.2. Annual Climate Scenarios for Main Season and off Season

The projected climate models were categorised into three future periods: near future
(2020–2046), mid future (2047–2073), and far future (2074–20100). In Table 4, the main season
receives average rainfall between 780 mm and 909 mm annually during the near future
period, while the off season receives between 790 mm and 875 mm of rainfall per year. In the
mid future period, the main season’s mean annual rainfall increases between 898 mm/year
and 1031 mm/year, and the off season between 903 mm/year and 986 mm/year. The mean
rainfall of the main season within the far future period is around 1000 mm/year on average
under all SSPs, and the mean rainfall further increases up to 1439 mm/year, especially
under SSP370 and SSP585, in the off season.

Table 4. The average annual precipitation for the main and off season of the three future periods.

Main Off

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

Near 909 780 818 875 863 790
Mid 1031 1058 897 903 921 986
Far 1072 1024 1145 1036 1309 1439

Table 5 shows that the mean annual maximum temperature during the near future
period under the three scenarios is 30.9 ◦C, 20.8 ◦C, and 30.9 ◦C for SSP245, SSP370, and
SSP585, respectively. In contrast, the off season has a mean annual temperature of 32.9 ◦C
(SSP245) and 32.7 ◦C (SSP370 and SSP585). The mean annual temperature increases further
by 1.0 ◦C, 1.4 ◦C, and 1.7 ◦C for the main season under SSP245, SSP370, and SSP585,
respectively, and 1.1 ◦C, 1.2 ◦C, and 1.4 ◦C for the off season under SSP245, SSP370, and
SSP585, respectively. In the far future period, the main season’s annual mean temperature
increases by 0.7 ◦C (SSP245) to 1.8 ◦C (SSP585). The highest mean annual maximum
temperature of the off season is predicted to increase by 2 ◦C under SSP585 in the mid
future period, reaching up to 36.1 ◦C. Overall, these findings suggest that the main season
will experience more pronounced temperature increases compared to the off season, with
SSP585 showing the highest rise in both seasons.

Table 5. The average annual maximum temperature for the main and the off season of the three
future periods.

Main Off

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

Near 30.9 30.8 30.9 32.9 32.7 32.7
Mid 31.9 32.3 32.5 34.0 34.0 34.2
Far 32.6 33.7 34.3 34.8 35.7 36.1

Table 6 provides the average value of the annual minimum temperature expected
during the near future time frame under three distinct scenarios, namely SSP245, SSP370,
and SSP585. These scenarios yield mean temperatures of 22.8 ◦C, 22.7 ◦C, and 22.6 ◦C,
respectively. Conversely, during the off season, the mean annual temperature amounts to
23.1 ◦C for SSP245 and 23.0 ◦C for SSP370 and SSP585. Furthermore, for the main season,
the mean annual temperature rises by 0.9 ◦C, 0.9 ◦C, and 1.0 ◦C under SSP245, SSP370, and
SSP585, respectively. Similarly, for the off season, the mean annual temperature increases by
1.0 ◦C, 0.9 ◦C, and 1.0 ◦C under SSP245, SSP370, and SSP585, respectively. In the far future
period, the main season will experience an increase in the annual minimum temperatures,
ranging from 24.2 ◦C (SSP245) to 24.7 ◦C (SSP585). Notably, the highest mean annual
minimum temperature during the off season is projected to escalate by 1.2 ◦C under SSP585,
commencing in the mid future period and ultimately reaching a maximum value of 26.7 ◦C.
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Table 6. The average annual minimum temperature for the main and off seasons of the three future periods.

Main Off

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

Near 22.8 22.7 22.6 23.1 23.0 23.0
Mid 23.7 23.6 23.6 24.1 23.9 23.9
Far 24.2 24.5 24.7 24.6 25.0 25.1

3.3. Reference Evapotranspiration and Temperatures

Table 7 below shows the changes in the average reference evapotranspiration (ETo)
for the three future periods for both growing periods. The off season has a higher ETo
compared to the main season. The difference in ETo values between the two seasons is
attributed to their minimum and maximum temperatures, where both temperatures in the
off season are greater than the temperatures in the main season. In general, both the main
and off season are showing an increasing trend in average ETo along with an increasing
pattern in maximum and minimum temperatures over time. Based on this finding, it is
anticipated that future crop water requirements will rise in response to an increase in ETc.

Table 7. The average reference evapotranspiration relative to the changes in average minimum and
maximum temperatures during the off season and off season.

ETo Minimum Temperature Maximum Temperature

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

Main
Near 570 569 569 22.8 22.7 22.6 30.9 30.8 30.9
Mid 586 589 592 23.6 23.6 23.6 31.9 32.3 32.5
Far 597 610 619 24.2 24.5 24.7 32.6 33.7 34.3

Off
Near 619 617 616 23.1 23.0 22.9 32.9 32.7 32.7
Mid 639 636 638 24.1 23.9 23.9 34.0 34.0 34.1
Far 650 663 669 24.6 25.0 25.1 34.8 35.6 36.1

3.4. Crop Water Requirements and Excess Rainfall

Table 8 (Table S1, Supplementary Materials) displays the crop water requirement as
crop evapotranspiration (ETc) values. Overall, the average ETc in the off season is greater
in comparison to the main season for all future periods. The highest seasonal crop water
requirement is found during the off season of the far-future period, ranging from 773 mm to
798 mm under SSP245 and SSP585, respectively. This is due to the higher ETc values. These
higher ETc values during the off season of the far-future period can be attributed to the
increased temperatures occurring between May and August, leading to higher evaporation
rates and greater water demand by the crops. Additionally, the higher temperatures during
this period may also result in increased crop stress and a greater need for irrigation to meet
the water requirements. Similarly, a study being implemented in the Tanjung Karang Rice
Irrigation Project in Malaysia also found that the ETc is lower in the wet main season than
in the dry off season due to future rising temperatures [34]. Another finding in Indonesia
revealed that the ETc for paddy rice is expected to increase due to the higher temperatures;
consequently, crop water requirements will increase in the future [11].

Table 8. The average ETc (mm) for the main and off season under various climate scenarios.

Main-Season ETc (in mm) Off-Season ETc (in mm)

Period SSP245 SSP370 SSP585 Period SSP245 SSP370 SSP585

Near 674 676 661 Near 739 717 694
Mid 702 699 688 Mid 738 737 748
Far 713 730 742 Far 773 783 798
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Figure 5 shows the total crop water requirement annually for (a) the main season
and (b) the off season. The lowest total crop water requirement for the main season is
513 mm/year in 2032 under SSP245, 426 mm/year under SSP370, as well as 379 mm/year,
433 mm/year, and 513 mm/year in the 2040, 2048, and 2059, respectively, under SSP585.
As for the off season, the total crop water requirement shows more frequent variation than
the main season. The total crop water requirement of the off season has more variation
than the main season, especially during the mid future period under SSP245 and SSP370.
This variation is mostly a reduction in the crop water requirements, reaching a minimum
of below 600 mm/year (as low as 392 mm/year in the near future).
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Figure 5. The projected annual total crop water requirement for (a) the main season and (b) the off
season under the three future periods of SSP245, SSP370, and SSP585.

The percentage of excess rainfall compared to average rainfall is presented in Table 9
(Table S2, Supplementary Materials). This ratio explains the portion of rainfall falling on
paddy fields that is unavailable for crop production in terms of ETc consumption, as it will
be part of the runoff and other losses. For both the main and off seasons, the excess rainfall
of the near future period has a smaller ratio, ranging from 13% to 26% (main season) and
from 12% to 17% (off season). The smaller ratio indicates that more rainfall is consumed to
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meet ETc, thus lowering the irrigation requirement. An increase in the ratio change for the
mid and far future periods was seen, with a maximum ratio that reaches up to 35% and
45% for the main season and off season, respectively.

Table 9. Percentage excess rainfall relative to the average rainfall for the main and off seasons.

Main Season Off Season

Period SSP245 SSP370 SSP585 Period SSP245 SSP370 SSP585

Near 26% 13% 19% Near 16% 17% 12%
Mid 32% 34% 23% Mid 18% 20% 24%
Far 33% 29% 35% Far 25% 40% 45%

3.5. Irrigation Water Requirements under Climate Scenarios

The average irrigation water requirement for both the main and off seasons is sum-
marised in Table 10 (Table S3, Supplementary Materials). A lower average ETc combined
with heavier rainfall during the main season (Figure 4a) may have led to a higher excess
rainfall ratio, which is consequently reflected in the lower IWR for the main season in
Table 10. The average IWR increases across the three future periods under SSP370 and
SSP585, except for SSP245, where the IWR will decrease slightly towards the far future.
Lower rainfall and higher temperatures in the early growing stage (May to June) of the
off season, as seen in Figure 4b, cause the higher IWR amount in the off season. This
finding coincides with the study by Rowshan et al., in which they revealed that the IWR in
Malaysia is higher during the off season (January–June) but less during the main season
(July–December) due to the major contribution from the rainfall in the main season [34].

Table 10. Average irrigation water requirement (mm) for the main and off seasons, with percentage
changes in the future irrigation water requirement relative to the baseline period of 2010–2019
(in parentheses).

Main-Season IWR (in mm) Off-Season IWR (in mm)

Period SSP245 SSP370 SSP585 Period SSP245 SSP370 SSP585

Near 275 (43) 263 (37) 251 (31) Near 411 (18) 386 (11) 397 (14)
Mid 263 (37) 263 (37) 268 (40) Mid 383 (10) 365 (5) 372 (7)
Far 264 (37) 289 (51) 278 (45) Far 363 (5) 319 (−8) 328 (−5)

Despite the higher amount of IWR for the off season, a declining trend was observed
in the changes in the future IWR over the baseline period (in the parentheses) presented in
Table 10. A potential rise in the future IWR during the main season is anticipated at 43%,
37%, and 31% for the near future period under SSP245, SSP370, and SSP585, respectively.
On the other hand, the off season’s future IWR has a much smaller difference with the
baseline IWR, and there will be a reduction in future IWR by 8% and 5% in the far future
under SS370 and SSP585, respectively. This reduction might be attributed to the abundance
of rainfall at the end of the 21st century.

Figure 6a,b presents the annual trend of the predicted mean irrigation water require-
ment for the main season throughout the near future, mid future, and far future periods.
Under the SSP245 scenario, an upward yearly trend is observed for the near and mid future
periods, but the annual mean IWR has a declining trend within the far future period. The
mean annual IWR under SSP370 started off with a steady trend during the near future
period, and the annual trend of IWR increases in the mid future but decreases towards
the end of the century. The annual mean IWR of the main season under SSP585 shows
an increasing trend under SSP245 and SSP370. A steady trend in IWR during the far
future period is observed, possibly due to the higher average rainfall under SSP585 and
the therefore more excess rainfall to compensate for evapotranspiration. This could lead to
potential waterlogging and increased runoff.
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Figure 6. The projected mean annual irrigation water requirement for the main season under
(a) SSP245, (b) SSP370, and (c) SSP585.
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Most of the mean annual irrigation water requirements of the off season, as shown
in Figure 7a,b, show a declining trend under all scenarios in comparison to the main
season. The mean annual IWR during the mid-future period under SSP245 expects an
increasing trend.
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Figure 7. The projected mean annual irrigation water requirement for the off season under (a) SSP245,
(b) SSP370, and (c) SSP585.

4. Discussion

A range of potential future impacts on the IWR across different SSPs can be seen
for the main and off seasons. Under SSP245, Brunei experiences moderate temperature
increases and significant rainfall increases, leading to a moderate 37% increase in the main-
season IWR and a substantial off-season IWR decrease by 5% due to the more effective
rainfall. SSP370 shows higher temperature rises, with main-season maximum temperatures
reaching 33.7 ◦C and increased rainfall. This results in a 51% main-season IWR increase
that is driven by higher evapotranspiration, while the off-season IWR decreases by 8%
owing to substantial rainfall. SSP585 presents the highest temperature increases (up to 34.3
◦C for the main season) and significantly elevated rainfall, leading to a 50% increase in the
main-season IWR and a 5% decrease in the off-season IWR.

Moreover, a similar study was conducted in the Bhadra and Tungabhadra (TB) com-
mand areas, where it focused on estimating the CWR and IWR for using CROPWAT based
on climate scenarios (SSP245 and SSP585) [35]. In the Bhadra and TB areas, the irrigation
water requirement (IWR) exhibits varying trends, with some months experiencing decreases
while others show increases. In contrast, Brunei consistently experiences increases in the
main-season IWR across all SSPs. Additionally, the Bhadra and TB study revealed that the
average monthly irrigation requirements under SSP245 are higher than those under SSP585,
and this was attributed to the higher precipitation projections associated with SSP585 [35].
Conversely, the results for Brunei indicate the opposite trend, where the IWR increases
under SSP585 are significant. These differences underscore the importance of conducting
regional-level assessments as they highlight the sensitivity of IWR projections to specific
climate models, scenarios, and geographic contexts.

Overall, this study revealed that higher temperatures elevate the evapotranspiration
and water demands in Brunei, especially during the off season. However, the increased
rainfall during the off season mitigates the irrigation needs over time across all SSPs,
despite the increasing temperature. Zhu et al. found an estimated IWR in the Lower
Mekong River Basin (LMRB) under two climate scenarios, SSP126 and SSP585, using
climate projections for 2031–2060 and 2061–2090 [36]. While the SSP126 scenario shows a
slight decrease in the IWR for rice crops due to a balance between increased rainfall and
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moderate temperature rise, the SSP585 scenario results in a significant increase in the IWR
due to higher temperatures that outweigh the benefits of increased rainfall [36]. On the
other hand, Boonwichai et al. assessed the future IWR for rice crops in the Songkhram
River Basin, Thailand, using DSSAT crop simulation [37]. Their study indicates that
both maximum and minimum temperatures are expected to increase, which will enhance
evapotranspiration rates and, consequently, the IWR for rice crops [37]. The increase in
rainfall could potentially mitigate some of the increased IWR due to higher temperatures,
but it is not expected to fully stabilise the IWR. This study’s findings suggest that, despite
the projected increase in rainfall in the 2080s, the future IWR will continue to rise due to the
significant impact of higher temperatures on ET rates under the higher emission scenario
(the RCP8.5 scenario).

Adib et al. utilised a stochastic rainfall generator to analyse the potential future impacts
of climate change on rainfall patterns and the IWR in the Kerian rice irrigation scheme
in Malaysia [38]. Both Zhu et al. and Adib et al. projected future climate impacts using
ensembles of global climate models (GCMs) and various shared socioeconomic pathways
(SSPs), providing a comprehensive analysis of how climate change will influence rainfall
patterns and irrigation needs. However, Adib et al. shared a common focus on the critical
role of seasonal variations in the IWR under changing climate conditions, which is also a
key aspect of the current study on the Wasan rice scheme in Brunei. In Adib’s study, the
findings show that, during the dry season, increased future rainfall will potentially reduce
the need for additional irrigation water for rice crops. Similarly, during the wet season,
the expected significant increase in rainfall will help meet the water requirements for rice
cultivation, stabilising the IWR despite rising temperatures. These projections align closely
with the current study’s findings, highlighting the importance of understanding seasonal
IWR variations to develop effective adaptive water management strategies for sustainable
rice cultivation amidst climate change.

It is evident in this study that, as temperatures rise, crops require more water to
maintain their growth. Additionally, an increase in rainfall can lead to excess runoff, further
impacting irrigation needs and potentially causing crop failures or waterlogging issues.
Irrigation methods to account for the possible changes in temperature and rainfall patterns
caused by climate change are essential for maintaining sustainable and effective water
usage in agriculture. One of the adaptive methods used by the Department of Agriculture
and Agrifood (DoAA) to increase productivity and reduce crop failure risks is researching
drought-tolerant varieties. Some of the adaptive measures to address these changes are
discussed in this section.

Implement a flexible water allocation plan that gives priority to distributing water
according to seasonal demand between the main and off seasons. Assign higher quantities
of water during the off season when irrigation water requirements are typically higher and
reduce the water allocation during the main season when crop water needs are lower. This
method can aid in optimising water utilisation and effective irrigation techniques, thus
contributing to the sustainable management of water in paddy farming.

In cases of heavy rainfall, prolonged waterlogging could be an issue. However,
excessive rainfall can lead to waterlogging. Therefore, maintaining a balance between
optimal rainfall levels and drainage is crucial for successful rice cultivation. To prevent
waterlogging, proper drainage systems should be implemented. Surface drainage in
paddy fields can be minimised by taking into account anticipated future precipitation.
Furthermore, AWD can be used to save water, resulting in more efficient use of rainfall and
reduced water use in both irrigation and drainage systems. Regulating drainage amounts
based on projected rainfall can be useful for boosting irrigation utilisation efficiency [39].

A higher effective rainfall during the rainy season makes up for the high demand
for water during the dry season [40]. This highlights the importance of monitoring and
managing temperature levels during rice cultivation. Additionally, farmers may need to
consider implementing irrigation systems to guarantee sufficient water supply during the
arid season and mitigate water stress on rice. This can be conducted by implementing
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rainwater harvesting, and the rainwater can be stored in small dams or ponds within the
vicinity of the field, which can be abstracted through gravity-fed pipelines or pumps [41]. A
previous study aimed at climate change adaptation in Brunei proposed a solution to address
water scarcity by constructing sand and other storage facilities for rainwater harvesting [42].
This approach is designed to mitigate the effects of drought and ensure water availability
during dry spells, and sand dams are used to also reduce evaporation, allowing for more
water to be available for crops [42].

5. Conclusions

This paper attempted to investigate the effect of climate change on the crop water
requirement and irrigation water requirement in Brunei Muara District for paddy cultiva-
tion using WEAP-MABIA. Statistically downscaled GCMs based on CMIP6 scenarios were
bias-corrected using quantile delta mapping (QDM) for three future periods: near future,
mid future, and far future.

The off season had a higher average ETo compared to the main season due to higher
minimum and maximum temperatures. Both seasons showed an increasing trend in the
average ETo and pattern over time, indicating future crop water requirements will rise due
to increased ETc. The anticipated changes in the demand for irrigation water within the
paddy fields can be attributed to the fluctuations observed in rainfall patterns and crop
evapotranspiration. The IWR in the off season was found to be higher in comparison to the
main season due to the lower rainfall at the beginning of the growing season during the off
season and the higher temperature, which causes an increase in the crop water requirement.
Although the simulated IWR for the off season started off with a higher amount for the
near future period, the IWR decreased in the far future scenario, following different trends
for the three CMIP6 scenarios. On average, the IWR in the main season showed a slight
increasing trend.

Further investigation on the prediction of yield under climate change is required by
incorporating a crop growth model or crop prediction model. The drawback of the model
is that it can only estimate the effect of climate conditions on the current potential crop
yield, and it does not include crop yield prediction, which is as important as irrigation
water requirements for developing mitigation strategies. Moreover, since the study’s model
uses constant crop coefficient (Kc) values throughout the simulation periods, it might not
accurately portray the effect of crop water demand and irrigation water requirement. The
Kc values may not be the same in the future; therefore, further investigation on the future
changes of Kc in response to climate change is required to improve the simulation of water
demand and crop yield. In addition to enhancing the calculation of ETc, the availability
of solar radiation data in the future would significantly improve the accuracy of crop
water requirement estimates. Studies have shown that models incorporating accurate
solar radiation measurements yield more precise ETo estimates [43–45]. Nonetheless, the
outcome of this study can be a useful guide for farmers and water resource managers to
adopt irrigation techniques to mitigate the impact of climate change on water resources.
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