
Citation: Pulla, S.T.; Yasarer, H.;

Yarbrough, L.D. Transforming

Hydrology Python Packages into Web

Application Programming Interfaces:

A Comprehensive Workflow Using

Modern Web Technologies. Water

2024, 16, 2609. https://doi.org/

10.3390/w16182609

Academic Editor: Giuseppe

Pezzinga

Received: 19 July 2024

Revised: 7 September 2024

Accepted: 13 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Transforming Hydrology Python Packages into Web Application
Programming Interfaces: A Comprehensive Workflow Using
Modern Web Technologies
Sarva T. Pulla 1 , Hakan Yasarer 1 and Lance D. Yarbrough 2,*

1 Department of Civil Engineering, The University of Mississippi, University, MS 38677, USA
2 Department of Geology & Geological Engineering, The University of Mississippi, University, MS 38677, USA
* Correspondence: ldyarbro@olemiss.edu

Abstract: The accessibility and deployment of complex hydrological models remain significant chal-
lenges in water resource management and research. This study presents a comprehensive workflow
for converting Python-based hydrological models into web APIs, addressing the need for more
accessible and interoperable modeling tools. The workflow leverages modern web technologies
and containerization to streamline the deployment process. The workflow was applied to three
distinct models: a GRACE downscaling model, a synthetic time series generator, and a MODFLOW
groundwater model. The implementation process for each model was completed in approximately
15 min with a reliable internet connection, demonstrating the efficiency of the approach. The resulting
APIs provide standardized interfaces for model execution, progress tracking, and result retrieval,
facilitating integration with various applications. This workflow significantly reduces barriers to
model deployment and usage, potentially broadening the user base for sophisticated hydrological
tools. The approach aligns hydrological modeling with contemporary software development prac-
tices, opening new avenues for collaboration and innovation. While challenges such as performance
scaling and security considerations remain, this work provides a blueprint for making complex
hydrological models more accessible and operational, paving the way for enhanced research and
practical applications in hydrology.

Keywords: hydrological modeling; web-based hydrology tools; MODFLOW; GRACE; model
interoperability

1. Introduction

Hydrological modeling has been instrumental in simulating, forecasting, and manag-
ing water resources [1–3]. These models enable researchers to predict water availability,
assess the impacts of land use and climate change, and devise strategies for sustainable
water management. Popular hydrological models include the Soil and Water Assessment
Tool (SWAT) [4], which evaluates the effects of land management practices on water, sedi-
ment, and agricultural chemical yields in large complex watersheds. Another widely used
model is the Hydrological Simulation Program—FORTRAN (HSPF) [5], which simulates
the hydrological processes of watershed systems to predict water quality and quantity.
MODFLOW [6], developed by the US Geological Survey, is a key groundwater model that
simulates groundwater flow and addresses issues such as water supply and contamination.
These models are crucial for modern water resource management, enabling more effective
and informed decision-making processes.

Advancements in remote sensing, geographic information systems (GISs), and ma-
chine learning have significantly transformed hydrological and groundwater modeling.
Remote sensing technologies, such as satellite imagery and aerial sensors, provide high-
resolution spatial and temporal data on critical variables like precipitation, land cover,
soil moisture, and evapotranspiration [7]. These technologies enhance model accuracy

Water 2024, 16, 2609. https://doi.org/10.3390/w16182609 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16182609
https://doi.org/10.3390/w16182609
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-2342-0975
https://orcid.org/0000-0002-8121-3184
https://doi.org/10.3390/w16182609
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16182609?type=check_update&version=1

Water 2024, 16, 2609 2 of 22

by offering detailed and continuous observations over large and often inaccessible ar-
eas [8]. GIS technology further elevates hydrological modeling by integrating, analyzing,
and visualizing spatial data, enabling researchers to develop comprehensive models that
incorporate diverse datasets and complex spatial relationships [9].

The synergy of remote sensing and GIS technologies facilitates the creation of so-
phisticated hydrological models that are more robust and reliable [10]. These models
can simulate various hydrological processes with greater precision, assess the impacts of
land use and climate changes, and improve water resource management strategies. For
instance, integrating remote sensing data into hydrological models has improved flood
forecasting [11] and drought monitoring [12], enabling more timely and effective responses
to these events. Similarly, GIS-based models have been crucial in mapping groundwater
recharge areas and contamination risks, supporting sustainable groundwater management
practices [13].

Machine learning has revolutionized hydrological and groundwater modeling by en-
abling the analysis of vast amounts of data and the identification of complex patterns that
traditional methods might miss. Machine learning algorithms can improve model predic-
tions by learning from historical data and adapting to new information [14]. For example,
machine learning techniques have been employed to enhance flood prediction models [15],
optimize water resource management, and assess the impacts of climate variability on water
availability [16]. Integrating machine learning with remote sensing and GIS technologies
results in more adaptive and accurate models, providing valuable insights for managing
water resources in a changing environment [17].

The usefulness of advanced hydrological models depends on their successful de-
ployment and integration into operational systems. The FastAPI-Celery-Redis-RabbitMQ
(FCRR) stack provides a robust Python-based solution for managing the computational
demands of these models. It efficiently handles a continuous stream of requests by passing
them into a queue for processing. This architecture facilitates asynchronous task processing,
allowing long-running tasks, such as complex simulations or extensive data processing, to
be handled in the background. This allows web services to remain responsive and scalable
even under heavy computational loads.

Asynchronous processing is essential across various domains. For example, in image
processing, it enables resource-intensive tasks like rendering to proceed without affecting
overall system responsiveness. Similarly, in data analysis, it supports the efficient manage-
ment of large-scale information processing, ensuring that complex computations do not
hinder the performance of other tasks.

This asynchronous process approach is relevant to the domain-specific cases discussed
earlier. Whether integrating remote sensing data, managing machine learning algorithms,
or using large-scale GIS data, the FCRR stack ensures seamless deployment and operation
of these tools. This method enhances the accessibility and practical use of advanced
hydrological models, improving their usefulness in water resource management.

1.1. Study Objective

Despite significant advancements, many open-source hydrology Python packages
with robust modeling capabilities remain inaccessible as web-based applications. This study
aims to develop a comprehensive workflow for converting hydrology Python packages
into web APIs using modern web technologies. By enhancing the accessibility and usability
of these tools for researchers and practitioners, this approach bridges the gap between
advanced hydrological models and practical applications. This workflow ensures that
these models can be easily deployed and utilized for effective water resource management.
Furthermore, the workflow aspires to provide a playbook for the scientific community to
deploy their workflows more broadly, democratizing access to advanced modeling and
machine learning tools.

By transforming hydrology Python packages into user-friendly web application pro-
gramming interfaces (APIs), this study not only opens new avenues for research but also

Water 2024, 16, 2609 3 of 22

provides practical solutions for water resource management. This integration facilitates
broader access and more effective application of advanced hydrological models, ultimately
supporting more informed decision-making in water resource management. This inno-
vative approach enhances the practical utility of existing models, empowering a wider
range of users to leverage cutting-edge technologies to address critical water management
challenges. The significance of this study lies in its potential to transform how hydrologi-
cal research is conducted and applied, paving the way for more efficient, accessible, and
impactful water resource management practices.

1.2. Overview of Existing Web-Based Hydrology Frameworks

The development of web-based frameworks for hydrological modeling has become
increasingly important due to the need for accessible and scalable tools. In this literature
review, we examine several prominent web-based hydrology frameworks, focusing on their
core functionalities, strengths, and limitations. This analysis will provide valuable insights
into the current state of web-based hydrological tools and identify areas where improve-
ments are necessary to make open-source hydrology Python packages more accessible and
user-friendly as web APIs.

1.2.1. Tethys Platform

The Tethys Platform is an open-source framework designed for developing and de-
ploying web-based environmental applications [18]. Built on the Django web framework,
Tethys integrates hydrological models, GIS data, and various other data sources. It supports
compute-intensive workflows using Dask [19] and HTCondor [20], facilitating parallel
processing and distributed computing for large-scale hydrological simulations. While Dask
has revolutionized distributed computing, its implementation within the Tethys production
environment can be complex. This complexity of setting up and configuring HTCondor
and Dask within Tethys limits its accessibility and usability for users lacking extensive
technical expertise [21].

1.2.2. HydroShare

HydroShare, developed by the Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI), Arlington, MA, USA, is a collaborative platform for
sharing hydrological data and models [22]. It integrates with the CUAHSI Hydrologic
Information System (HIS), supporting a range of hydrological models. While HydroShare
excels in data management and collaboration, its primary focus on data sharing rather than
seamless deployment of modeling workflows as web APIs can limit its effectiveness for
running hydrological models directly through a web interface.

1.2.3. HydroServer

HydroServer, also part of the CUAHSI HIS, is an open-source server designed to
manage and share time series hydrological data [23]. It provides tools for storing, visu-
alizing, and analyzing hydrological data, facilitating interoperability and data sharing
among researchers and institutions. However, HydroServer lacks comprehensive workflow
management and API deployment capabilities, making it more suited for data management
rather than providing a complete solution for web-based hydrological modeling.

1.2.4. HydroLang

HydroLang is an open-source, web-based programming framework for hydrological
sciences [24]. Implemented in JavaScript, it allows users to run hydrological simulations
and analyses directly in web browsers. HydroLang integrates various hydrological models
and data processing tools, providing an accessible platform for data retrieval, manipulation,
and visualization. The primary advantage of HydroLang is its emphasis on usability,
reducing the complexity of setting up and running hydrological models. It offers pre-built
modules and an intuitive interface, enabling quick simulation setups and result analyses.

Water 2024, 16, 2609 4 of 22

However, being JavaScript-based, it may be less familiar to hydrologists who typically use
languages like Python or Fortran.

1.2.5. HydroDS

HydroDS is a web-based platform that offers comprehensive data services to support
physically based distributed hydrological models [25]. The primary focus of HydroDS is
to facilitate access to and processing of the extensive datasets required for hydrological
modeling. By providing tools for data retrieval, preprocessing, and visualization, Hy-
droDS streamlines the preparation of model input data, thereby reducing the time and
effort needed for these tasks. HydroDS integrates a variety of hydrological and geospatial
datasets, automating common preprocessing steps such as watershed delineation, terrain
analysis, and climate data extraction. This automation ensures that data are readily avail-
able and formatted correctly for use in hydrological models. Since HydroDS itself does not
execute hydrological models, it requires additional tooling and setup.

1.2.6. HydroCompute

HydroCompute is a high-performance computational library designed for web-based
hydrological and environmental science applications [26]. Utilizing advanced web tech-
nologies, HydroCompute supports both sequential and parallel simulations, enhancing
computational efficiency through multithreading with web workers. It leverages engines
like WebGPU, Web Assembly, and native JavaScript and facilitates local data transfers
via peer-to-peer communication with WebRTC. The open-source and flexible architecture
allows users to incorporate their own code, promoting effective data management and
decision-making. The complexity of setup and configuration can be a barrier for users
without significant technical expertise. Its reliance on client-side computation limits its scal-
ability for large-scale simulations, as performance may be constrained by the capabilities of
the user’s device. Additionally, the learning curve for integrating and utilizing its diverse
features can be steep for those unfamiliar with web-based scientific computing.

1.2.7. PyWPS

PyWPS is an implementation of the Open Geospatial Consortium (OGC) Web Pro-
cessing Service (WPS) standard, designed to facilitate geospatial processing services on
the web [27]. PyWPS serves as an intermediary that allows users to define geospatial
processes in Python and expose them as web services. The primary function of PyWPS is
to expose the schema for inputs and outputs in the WPS format, effectively functioning as
an empty shell without inherent processing capabilities. This means that PyWPS itself does
not perform any geospatial processing but enables the integration of external processing
services through a standardized interface. The flexibility and standards compliance offered
by PyWPS make it a versatile tool for deploying geospatial processes in a web environment.
However, the lack of built-in processing capabilities means that users must rely on external
tools and services to perform the actual computations. This design necessitates significant
technical expertise to configure and deploy effectively, which can be a barrier for users
seeking a more straightforward and user-friendly solution.

To conclude this section, while several web-based hydrology frameworks offer ro-
bust and capable tools, they often present significant challenges in terms of deployment,
maintenance, and operationalization. Platforms like Tethys and HydroCompute provide
powerful features but require extensive technical expertise to set up and manage. Similarly,
frameworks such as HydroShare and HydroServer excel in data management but lack
comprehensive workflow management and API deployment capabilities. The complexity
and technical demands of these existing tools highlight the need for a simple, lightweight
workflow that can be easily adopted by users, including those with limited technical back-
grounds. The objective is to create a system that enables even novices to quickly deploy
and utilize hydrology Python packages as web APIs, thereby enhancing the accessibility
and usability of advanced hydrological models.

Water 2024, 16, 2609 5 of 22

2. Materials and Methods
2.1. Web Technologies and Frameworks

The development of a workflow to transform hydrology Python packages into web
APIs requires the use of modern web technologies and frameworks. These technologies
ensure the resulting web APIs are robust, scalable, and user-friendly. Given the complexity
and computational demands of hydrological models, it is essential to employ tools that
streamline the development and deployment process. Simplicity and ease of use are crucial,
especially for users who may not have extensive technical expertise. Additionally, some
newer frameworks offer significant advantages in performance and usability but have not
yet been widely adopted in the scientific community. Utilizing open-source technologies
is particularly advantageous as it promotes collaboration, transparency, and continuous
improvement. This section outlines the key web technologies and frameworks employed
in this study, highlighting their roles and the rationale for their selection (Figure 1).

Water 2024, 16, x FOR PEER REVIEW 5 of 23

lack comprehensive workflow management and API deployment capabilities. The com-
plexity and technical demands of these existing tools highlight the need for a simple, light-
weight workflow that can be easily adopted by users, including those with limited tech-
nical backgrounds. The objective is to create a system that enables even novices to quickly
deploy and utilize hydrology Python packages as web APIs, thereby enhancing the acces-
sibility and usability of advanced hydrological models.

2. Materials and Methods
2.1. Web Technologies and Frameworks

The development of a workflow to transform hydrology Python packages into web
APIs requires the use of modern web technologies and frameworks. These technologies
ensure the resulting web APIs are robust, scalable, and user-friendly. Given the complex-
ity and computational demands of hydrological models, it is essential to employ tools that
streamline the development and deployment process. Simplicity and ease of use are cru-
cial, especially for users who may not have extensive technical expertise. Additionally,
some newer frameworks offer significant advantages in performance and usability but
have not yet been widely adopted in the scientific community. Utilizing open-source tech-
nologies is particularly advantageous as it promotes collaboration, transparency, and con-
tinuous improvement. This section outlines the key web technologies and frameworks
employed in this study, highlighting their roles and the rationale for their selection (Figure
1).

Figure 1. Architectural diagram of the workflow.

2.1.1. FastAPI
FastAPI was selected for its asynchronous capabilities, which are essential for han-

dling the computationally intensive tasks associated with hydrological models [28]. Asyn-
chronous processing, which is non-blocking, allows the application to handle multiple
tasks concurrently, thereby improving efficiency and responsiveness. Built on standard
Python type hints, FastAPI promotes efficient and intuitive coding practices. Leveraging
the asyncio library, FastAPI can handle thousands of simultaneous connections, which
significantly reduces latency and enhances throughput. This makes it particularly advan-
tageous for real-time applications. Additionally, FastAPI’s automatic generation of Open-
API and JSON Schema documentation boosts developer productivity and improves API
usability, which is critical for collaborative research environments.

2.1.2. Docker and Docker Compose
Docker ensures consistent environments across different stages of development and

deployment, which is crucial for reproducibility in scientific research [29]. Docker con-
tainerizes applications by packaging the code along with all its dependencies, such as li-
braries and environment variables, into a single unit that can run reliably across different
computing environments. This eliminates issues related to environmental discrepancies,

Figure 1. Architectural diagram of the workflow.

2.1.1. FastAPI

FastAPI was selected for its asynchronous capabilities, which are essential for han-
dling the computationally intensive tasks associated with hydrological models [28]. Asyn-
chronous processing, which is non-blocking, allows the application to handle multiple tasks
concurrently, thereby improving efficiency and responsiveness. Built on standard Python
type hints, FastAPI promotes efficient and intuitive coding practices. Leveraging the asyn-
cio library, FastAPI can handle thousands of simultaneous connections, which significantly
reduces latency and enhances throughput. This makes it particularly advantageous for
real-time applications. Additionally, FastAPI’s automatic generation of OpenAPI and JSON
Schema documentation boosts developer productivity and improves API usability, which
is critical for collaborative research environments.

2.1.2. Docker and Docker Compose

Docker ensures consistent environments across different stages of development and
deployment, which is crucial for reproducibility in scientific research [29]. Docker con-
tainerizes applications by packaging the code along with all its dependencies, such as
libraries and environment variables, into a single unit that can run reliably across different
computing environments. This eliminates issues related to environmental discrepancies, en-
suring consistent performance and interoperability across different systems and effectively
addressing the common challenges associated with diverse localized testing environments.
Docker Compose simplifies the orchestration of multi-container applications by allowing
users to define and manage all containers and their interactions in a single YAML file [30].
This tool is particularly beneficial for setting up complex environments that involve mul-
tiple interconnected services, as it enables seamless management of dependencies and
services with minimal manual intervention.

Water 2024, 16, 2609 6 of 22

2.1.3. Celery and RabbitMQ

Celery was chosen for its robust task management capabilities, enabling asynchronous
processing of long-running computations. Hydrological models often involve extensive
data processing and computations that can be time-consuming. Celery allows these tasks
to be executed in the background, ensuring that the main application remains responsive
and available to handle new requests [31]. RabbitMQ acts as a reliable message broker,
facilitating communication between different components by effectively queuing and
distributing tasks [32]. This combination ensures that the application can efficiently manage
and execute long-running processes without being bogged down, maintaining overall
system performance and reliability.

2.1.4. Redis

Redis is employed for its high performance and scalability, making it ideal for real-
time data storage, caching, and session management [33]. As an in-memory data store,
Redis provides rapid access to data, which is crucial for applications requiring low-latency
responses. Redis supports various data structures, such as strings, hashes, lists, and sets,
enabling efficient handling of different types of data. This flexibility is particularly useful
for session management, where quick access to user sessions is required, and for caching
frequently accessed data, which can significantly reduce the load on primary databases and
improve application performance. Redis’s ability to handle high-throughput operations
with minimal latency makes it a vital component in ensuring the responsiveness and
efficiency of web APIs. Furthermore, Redis is used as the backend for Celery to store
the state of tasks, track progress, and manage results, ensuring reliable task execution
and monitoring.

2.2. Workflow Implementation

The process of transforming hydrology Python packages into web APIs involves
a series of interconnected steps, each crucial for ensuring the resulting web application
maintains the integrity and functionality of the original package while leveraging the
advantages of web-based deployment. This workflow includes the following:

1. Analysis of package structure and dependencies.
2. API design and endpoint mapping.
3. Implementation of the FastAPI application.
4. Integration of asynchronous task processing.
5. Containerization and deployment configuration.
6. Comprehensive testing and validation.
7. Documentation generation.

This modular approach allows for flexibility in addressing the diverse requirements of
various hydrological models while maintaining a consistent and reproducible conversion
process. The following sections will explore each of these phases in detail.

The subsequent sections integrate conceptual explanations with practical examples to
provide a comprehensive understanding of the framework. The linked GitHub repositories
contain the code for the case studies, while key code snippets and configuration examples
within the narrative demonstrate how theoretical principles directly inform implementation.
This integrated approach is designed to cater to a diverse readership, ranging from those
seeking conceptual understanding to those looking for practical guidance.

2.2.1. Analysis of Package Structure and Dependencies

The initial step in transforming a hydrology Python package into a web API involves a
comprehensive analysis of the package structure and its dependencies. This analysis forms
the foundation for all subsequent stages of the API development process.

1. Package Structure Analysis. The analysis begins with an in-depth examination of the
overall structure of the Python package:

Water 2024, 16, 2609 7 of 22

• Module Organization: The package is mapped out into its modules and submod-
ules to understand the logical separation of functionalities within the package.

• Class and Function Hierarchy: The main classes and functions are identified,
along with their relationships and dependencies, which informs the API design
and helps decide which elements should be exposed as endpoints.

• Data Flow: The flow of data from input to output is traced, which is crucial
for designing efficient API endpoints and determining where asynchronous
processing might be beneficial.

• Configuration and Settings: Any configuration files or environment-specific
settings the package relies on are identified, as these may need to be translated
into API parameters or environment variables in the containerized setup.

2. Dependency Analysis. A thorough analysis of the package’s dependencies is con-
ducted as follows:

• Direct Dependencies: The requirements.txt or setup.py file is examined to list all
direct dependencies. Each dependency is evaluated for the following:

o Compatibility with the target Python version.
o Potential conflicts with other required libraries.
o Availability of recent updates or known security issues.

• Indirect Dependencies: Tools like pipdeptree are used to visualize the full de-
pendency tree, including indirect dependencies, to identify potential conflicts or
redundancies in the dependency chain.

• System-Level Dependencies: Any system-level libraries or tools the package
relies on are identified, and plans are made for their inclusion in the containerized
environment.

• Dependency Licensing: The licenses of all dependencies are reviewed to ensure
compliance with the project’s licensing requirements and to avoid any potential
legal issues.

3. Computational Resource Assessment. The computational requirements of the package
are assessed as follows:

• CPU Usage: The package is profiled to understand its CPU intensity, identifying
functions that may benefit from asynchronous processing or parallelization in
the API.

• Memory Usage: The memory footprint of typical operations is analyzed to inform
server specifications and potential memory optimization in the API.

• I/O Operations: The package’s file I/O and database interactions are examined
to design efficient data handling strategies in the API.

4. Identifying API Conversion Challenges. Based on the analysis, the following potential
challenges in the API conversion process are identified:

• Stateful Operations: Operations that maintain state between calls are noted, as
these may require special handling in a stateless API environment.

• Long-Running Processes: Processes that may exceed typical web request timeouts
are identified, with plans for asynchronous processing solutions.

• Data Volume: The typical volume of input and output data is assessed to inform
choices for data transfer methods and storage solutions.

• Package-Specific Quirks: Any unique behaviors or requirements of the package
that may need special consideration in the API design are documented.

5. Documentation Review. A thorough review of the existing package documentation is
conducted as follows:

• User Guides: User guides are examined to understand the intended use cases
and typical workflows of the package.

• Examples and Tutorials: Examples and tutorials are collected, which will be
valuable for creating sample API calls and usage guidelines.

Water 2024, 16, 2609 8 of 22

By conducting this comprehensive analysis, a solid understanding of the package
being converted is established. This knowledge directly informs API design choices, helps
anticipate and mitigate potential issues, and ensures that the resulting web API faithfully
represents the functionality of the original Python package.

2.2.2. API Design and Endpoint Mapping

The design of the API structure is a critical step in ensuring the usability and effective-
ness of the converted hydrological models. Essentially, this process establishes a blueprint
for user interaction with the hydrological models via the web.

A RESTful (Representational State Transfer) architecture was adopted for the API
design. REST is a set of architectural principles that leverage web standards such as HTTP
and URIs [34]. The key principles adhered to are as follows:

• Statelessness: Each client request to the server must contain all the necessary informa-
tion to understand and process the request. The server does not store any client state
between requests.

• Client–Server: The client and server are independent, allowing each to evolve separately.
• Uniform Interface: Standard HTTP methods (GET, POST, PUT, DELETE) are used for

different operations:

o GET: Retrieve data (e.g., obtain simulation results).
o POST: Create new resources (e.g., start a new simulation).
o PUT: Update existing resources (e.g., modify simulation parameters).
o DELETE: Remove resources (e.g., cancel a running simulation).

• Resource-Based: The API is structured around resources such as models, simulations,
datasets, and results.

When mapping Python functions to API endpoints, the following guidelines are followed:

• Core Model Functionalities: These are exposed as primary endpoints, such as the
following:

o /models/{model_id}/run: Initiates a model simulation.
o /models/{model_id}/calibrate: Starts the model calibration process.

• Auxiliary Functions: These are mapped to secondary endpoints or incorporated as
query parameters as follows:

o /models/{model_id}/parameters: Retrieves or updates model parameters.
o /simulations/{simulation_id}?include_metadata=true: Retrieves simulation

results with an option to include metadata.

• Complex Workflows: These are decomposed into sequences of API calls. For instance,
a complete modeling process might involve the following:

o Uploading input data: POST/datasets.
o Setting model parameters: PUT/models/{model_id}/parameters.
o Running the simulation: POST/models/{model_id}/run.
o Retrieving results: GET/simulations/{simulation_id}.

Handling input parameters and output formats is crucial for ensuring the API is both
flexible and easy to use.

• Input Parameters: These are handled through a combination of the following:

o Path variables: For identifying specific resources (e.g., {model_id} in/models
/{model_id}/run).

o Query parameters: For optional or filter-like parameters (e.g., ?start_date=
2023-01-01).

o Request bodies: For complex or large inputs, typically sent as JSON.

• Output Formats: JSON is standardized format for structured data due to its widespread
use and ease of parsing. For large datasets, binary formats may be used, and content
negotiation is implemented to support multiple response formats.

Water 2024, 16, 2609 9 of 22

API versioning is crucial for maintaining backward compatibility as the API evolves.
Versioning is implemented in the URL path:/api/v1/models/{model_id}/run.

This allows for the introduction of breaking changes in new versions (e.g., /api/v2/. . .)
while still supporting older versions.

2.2.3. FastAPI Implementation

FastAPI is the chosen framework for implementing the API due to its high performance
and use of standard Python type hints.

Application Structure. The FastAPI application is structured into modular components
as follows:

• main.py: The entry point of the application, where the FastAPI instance is created and
routers are included.

• routers/: A directory containing route handlers for different parts of the API (e.g., mod-
els.py, simulations.py).

• models/: Pydantic models defining the structure of request and response data.
• services/: Business logic and interactions with the underlying hydrological models.
• utils/: Utility functions and helpers.

A simplified example of main.py is shown in Figure 2:

Water 2024, 16, x FOR PEER REVIEW 9 of 23

o Setting model parameters: PUT/models/{model_id}/parameters.
o Running the simulation: POST/models/{model_id}/run.
o Retrieving results: GET/simulations/{simulation_id}.
Handling input parameters and output formats is crucial for ensuring the API is both

flexible and easy to use.
• Input Parameters: These are handled through a combination of the following:

o Path variables: For identifying specific resources (e.g., {model_id} in/mod-
els/{model_id}/run).

o Query parameters: For optional or filter-like parameters (e.g., ?start_date=2023-
01-01).

o Request bodies: For complex or large inputs, typically sent as JSON.
• Output Formats: JSON is standardized format for structured data due to its wide-

spread use and ease of parsing. For large datasets, binary formats may be used, and
content negotiation is implemented to support multiple response formats.
API versioning is crucial for maintaining backward compatibility as the API evolves.

Versioning is implemented in the URL path:/api/v1/models/{model_id}/run.
This allows for the introduction of breaking changes in new versions (e.g., /api/v2/…)

while still supporting older versions.

2.2.3. FastAPI Implementation
FastAPI is the chosen framework for implementing the API due to its high perfor-

mance and use of standard Python type hints.
Application Structure. The FastAPI application is structured into modular compo-

nents as follows:
• main.py: The entry point of the application, where the FastAPI instance is created

and routers are included.
• routers/: A directory containing route handlers for different parts of the API (e.g.,

models.py, simulations.py).
• models/: Pydantic models defining the structure of request and response data.
• services/: Business logic and interactions with the underlying hydrological models.
• utils/: Utility functions and helpers.

A simplified example of main.py is shown in Figure 2:

Figure 2. A sample main.py file setup.

Route Handlers: Route handlers are the core of the API implementation. Route han-
dlers define the API’s response to various HTTP requests. Figure 3 demonstrates a route
handler for running a model simulation:

Figure 2. A sample main.py file setup.

Route Handlers: Route handlers are the core of the API implementation. Route han-
dlers define the API’s response to various HTTP requests. Figure 3 demonstrates a route
handler for running a model simulation:

Water 2024, 16, x FOR PEER REVIEW 10 of 23

Figure 3. A sample route handler for running a model simulation.

This handler receives a model ID and simulation input data, uses a ModelService to
run the simulation, and returns a response with the simulation ID. Errors are managed by
raising HTTP exceptions.

Data Models: Pydantic models define the structure of request and response data,
providing automatic validation and clear documentation (Figure 4).

Figure 4. A pydantic data model to set up input and output format classes.

2.2.4. Asynchronous Task Processing
Hydrological simulations can be computationally intensive and time-consuming. To

prevent these long-running tasks from blocking API responses and user interfaces, asyn-
chronous task processing was implemented using Celery, a distributed task queue that is
integrated with FastAPI and RabbitMQ as the message broker.

RabbitMQ serves as the message broker, facilitating communication between the
FastAPI application and Celery workers. It ensures reliable message delivery and helps in
distributing tasks across multiple worker processes.

The core of this implementation involves configuring Celery with RabbitMQ and de-
fining tasks for time-consuming operations (Figure 5).

Figure 3. A sample route handler for running a model simulation.

Water 2024, 16, 2609 10 of 22

This handler receives a model ID and simulation input data, uses a ModelService to
run the simulation, and returns a response with the simulation ID. Errors are managed by
raising HTTP exceptions.

Data Models: Pydantic models define the structure of request and response data,
providing automatic validation and clear documentation (Figure 4).

Water 2024, 16, x FOR PEER REVIEW 10 of 23

Figure 3. A sample route handler for running a model simulation.

This handler receives a model ID and simulation input data, uses a ModelService to
run the simulation, and returns a response with the simulation ID. Errors are managed by
raising HTTP exceptions.

Data Models: Pydantic models define the structure of request and response data,
providing automatic validation and clear documentation (Figure 4).

Figure 4. A pydantic data model to set up input and output format classes.

2.2.4. Asynchronous Task Processing
Hydrological simulations can be computationally intensive and time-consuming. To

prevent these long-running tasks from blocking API responses and user interfaces, asyn-
chronous task processing was implemented using Celery, a distributed task queue that is
integrated with FastAPI and RabbitMQ as the message broker.

RabbitMQ serves as the message broker, facilitating communication between the
FastAPI application and Celery workers. It ensures reliable message delivery and helps in
distributing tasks across multiple worker processes.

The core of this implementation involves configuring Celery with RabbitMQ and de-
fining tasks for time-consuming operations (Figure 5).

Figure 4. A pydantic data model to set up input and output format classes.

2.2.4. Asynchronous Task Processing

Hydrological simulations can be computationally intensive and time-consuming.
To prevent these long-running tasks from blocking API responses and user interfaces,
asynchronous task processing was implemented using Celery, a distributed task queue that
is integrated with FastAPI and RabbitMQ as the message broker.

RabbitMQ serves as the message broker, facilitating communication between the
FastAPI application and Celery workers. It ensures reliable message delivery and helps in
distributing tasks across multiple worker processes.

The core of this implementation involves configuring Celery with RabbitMQ and
defining tasks for time-consuming operations (Figure 5).

Water 2024, 16, x FOR PEER REVIEW 11 of 23

Figure 5. Setting up Celery and RabbitMQ to handle asynchronous tasks.

These tasks are then initiated from API endpoints, returning task IDs for subsequent
status checks (Figure 6).

Figure 6. Function for retrieving model run results.

Progress monitoring and result retrieval are implemented through additional end-
points that query the task status and fetch completed results from the Celery backend
(Figure 7).

Figure 7. Tracking and retrieving results from celery backend.

Figure 5. Setting up Celery and RabbitMQ to handle asynchronous tasks.

These tasks are then initiated from API endpoints, returning task IDs for subsequent
status checks (Figure 6).

Water 2024, 16, 2609 11 of 22

Water 2024, 16, x FOR PEER REVIEW 11 of 23

Figure 5. Setting up Celery and RabbitMQ to handle asynchronous tasks.

These tasks are then initiated from API endpoints, returning task IDs for subsequent
status checks (Figure 6).

Figure 6. Function for retrieving model run results.

Progress monitoring and result retrieval are implemented through additional end-
points that query the task status and fetch completed results from the Celery backend
(Figure 7).

Figure 7. Tracking and retrieving results from celery backend.

Figure 6. Function for retrieving model run results.

Progress monitoring and result retrieval are implemented through additional end-
points that query the task status and fetch completed results from the Celery backend
(Figure 7).

Water 2024, 16, x FOR PEER REVIEW 11 of 23

Figure 5. Setting up Celery and RabbitMQ to handle asynchronous tasks.

These tasks are then initiated from API endpoints, returning task IDs for subsequent
status checks (Figure 6).

Figure 6. Function for retrieving model run results.

Progress monitoring and result retrieval are implemented through additional end-
points that query the task status and fetch completed results from the Celery backend
(Figure 7).

Figure 7. Tracking and retrieving results from celery backend. Figure 7. Tracking and retrieving results from celery backend.

This architecture, combining FastAPI, Celery, and RabbitMQ, allows the API to han-
dle multiple simultaneous requests efficiently, improving overall system responsiveness
and scalability for complex hydrological simulations. It also provides a mechanism for
monitoring the progress of long-running tasks, enhancing the user experience for time-
intensive operations.

2.2.5. Containerization and Deployment

The containerization and deployment phase ensures consistent environments across
different stages of development and deployment, which is crucial for reproducibility in
scientific research. This phase employs Docker for containerization, packaging the application
and its dependencies into containers that run reliably across different computing environments.

The process begins with the creation of a Dockerfile, which defines how the application
should be containerized (Figure 8).

Water 2024, 16, 2609 12 of 22

Water 2024, 16, x FOR PEER REVIEW 12 of 23

This architecture, combining FastAPI, Celery, and RabbitMQ, allows the API to han-
dle multiple simultaneous requests efficiently, improving overall system responsiveness
and scalability for complex hydrological simulations. It also provides a mechanism for
monitoring the progress of long-running tasks, enhancing the user experience for time-
intensive operations.

2.2.5. Containerization and Deployment
The containerization and deployment phase ensures consistent environments across

different stages of development and deployment, which is crucial for reproducibility in
scientific research. This phase employs Docker for containerization, packaging the appli-
cation and its dependencies into containers that run reliably across different computing
environments.

The process begins with the creation of a Dockerfile, which defines how the applica-
tion should be containerized (Figure 8).

Figure 8. A sample Dockerfile setup.

This Dockerfile specifies a base Python image, sets up the working directory, installs
dependencies, copies the application code, and defines the command to run the FastAPI
application using the Uvicorn server.

For orchestrating multiple containers, Docker Compose is utilized. A typical Docker
Compose configuration for this workflow is shown in Figure 9.

Figure 8. A sample Dockerfile setup.

This Dockerfile specifies a base Python image, sets up the working directory, installs
dependencies, copies the application code, and defines the command to run the FastAPI
application using the Uvicorn server.

For orchestrating multiple containers, Docker Compose is utilized. A typical Docker
Compose configuration for this workflow is shown in Figure 9.

Water 2024, 16, x FOR PEER REVIEW 12 of 23

This architecture, combining FastAPI, Celery, and RabbitMQ, allows the API to han-
dle multiple simultaneous requests efficiently, improving overall system responsiveness
and scalability for complex hydrological simulations. It also provides a mechanism for
monitoring the progress of long-running tasks, enhancing the user experience for time-
intensive operations.

2.2.5. Containerization and Deployment
The containerization and deployment phase ensures consistent environments across

different stages of development and deployment, which is crucial for reproducibility in
scientific research. This phase employs Docker for containerization, packaging the appli-
cation and its dependencies into containers that run reliably across different computing
environments.

The process begins with the creation of a Dockerfile, which defines how the applica-
tion should be containerized (Figure 8).

Figure 8. A sample Dockerfile setup.

This Dockerfile specifies a base Python image, sets up the working directory, installs
dependencies, copies the application code, and defines the command to run the FastAPI
application using the Uvicorn server.

For orchestrating multiple containers, Docker Compose is utilized. A typical Docker
Compose configuration for this workflow is shown in Figure 9.

Figure 9. Setting up Docker Compose to handle multiple services.

This configuration defines services for the web API, Celery worker, PostgreSQL
database, Redis (for caching), and RabbitMQ (as a message broker for Celery).

• Web Service: Builds the FastAPI application, exposes port 8000, and sets environ-
ment variables for the database connection. It depends on the database, Redis, and
RabbitMQ services.

• Worker Service: Builds the application, runs the Celery worker with appropriate
logging, and depends on RabbitMQ and Redis.

• Database Service: Uses a PostgreSQL image with specified environmental variables
for the database name, user, and password.

• Redis Service: Utilizes a Redis image for caching.
• RabbitMQ Service: Uses a RabbitMQ management image for message brokering.

Water 2024, 16, 2609 13 of 22

The deployment process involves building the Docker image and starting the services
defined in the Docker Compose file. This can be achieved with the following commands:

• docker-compose build.
• docker-compose up-d.

These commands build the necessary images and start all services in detached mode,
allowing them to run in the background.

Environment-specific configurations are managed through environment variables and
Docker Compose override files. For instance, a production-specific configuration might be
defined in a docker-compose.prod.yml file (Figure 10).

Water 2024, 16, x FOR PEER REVIEW 13 of 23

Figure 9. Setting up Docker Compose to handle multiple services.

This configuration defines services for the web API, Celery worker, PostgreSQL da-
tabase, Redis (for caching), and RabbitMQ (as a message broker for Celery).
• Web Service: Builds the FastAPI application, exposes port 8000, and sets environment

variables for the database connection. It depends on the database, Redis, and Rab-
bitMQ services.

• Worker Service: Builds the application, runs the Celery worker with appropriate log-
ging, and depends on RabbitMQ and Redis.

• Database Service: Uses a PostgreSQL image with specified environmental variables
for the database name, user, and password.

• Redis Service: Utilizes a Redis image for caching.
• RabbitMQ Service: Uses a RabbitMQ management image for message brokering.

The deployment process involves building the Docker image and starting the ser-
vices defined in the Docker Compose file. This can be achieved with the following com-
mands:
• docker-compose build.
• docker-compose up-d.

These commands build the necessary images and start all services in detached mode,
allowing them to run in the background.

Environment-specific configurations are managed through environment variables
and Docker Compose override files. For instance, a production-specific configuration
might be defined in a docker-compose.prod.yml file (Figure 10).

Figure 10. A docker-compose file configured for production setup.

This production configuration disables debug mode, sets services to restart automat-
ically, and configures persistent storage for the database.

Security considerations in the containerization and deployment phase include the
following:
1. Using official base images to reduce the risk of vulnerabilities.
2. Minimizing the attack surface by only installing necessary packages.
3. Implementing proper secret management for sensitive data like database passwords.
4. Regularly updating all images and dependencies to patch known vulnerabilities.
5. Utilizing Docker’s network features to isolate services that do not need to communi-

cate with each other.
By following these containerization and deployment practices, the converted hydrol-

ogy Python packages can be reliably and securely deployed in various environments,
from local development setups to large-scale cloud deployments. This approach not only
simplifies the deployment process but also enhances the reproducibility and scalability of
hydrological modeling workflows.

Figure 10. A docker-compose file configured for production setup.

This production configuration disables debug mode, sets services to restart automati-
cally, and configures persistent storage for the database.

Security considerations in the containerization and deployment phase include
the following:

1. Using official base images to reduce the risk of vulnerabilities.
2. Minimizing the attack surface by only installing necessary packages.
3. Implementing proper secret management for sensitive data like database passwords.
4. Regularly updating all images and dependencies to patch known vulnerabilities.
5. Utilizing Docker’s network features to isolate services that do not need to communi-

cate with each other.

By following these containerization and deployment practices, the converted hydrol-
ogy Python packages can be reliably and securely deployed in various environments,
from local development setups to large-scale cloud deployments. This approach not only
simplifies the deployment process but also enhances the reproducibility and scalability of
hydrological modeling workflows.

2.2.6. Testing and Validation

The testing and validation phase is crucial for ensuring the reliability, accuracy, and
performance of the converted web APIs. This phase encompasses functional testing,
performance testing, and validation against the original Python package.

Functional testing verifies that the API behaves correctly and produces expected
results. This includes unit tests for individual components and integration tests for system-
wide functionality. Unit tests focus on validating specific functions or classes in isolation.
For instance, a unit test might verify the correct parsing of simulation input parameters
(Figure 11).

Water 2024, 16, 2609 14 of 22

Water 2024, 16, x FOR PEER REVIEW 14 of 23

2.2.6. Testing and Validation
The testing and validation phase is crucial for ensuring the reliability, accuracy, and

performance of the converted web APIs. This phase encompasses functional testing, per-
formance testing, and validation against the original Python package.

Functional testing verifies that the API behaves correctly and produces expected re-
sults. This includes unit tests for individual components and integration tests for system-
wide functionality. Unit tests focus on validating specific functions or classes in isolation.
For instance, a unit test might verify the correct parsing of simulation input parameters
(Figure 11).

Figure 11. An example of a unit test to validate a function is working as intended.

Integration tests, on the other hand, ensure that different components of the system
interact correctly. These tests typically cover entire workflows, from initiating a simula-
tion to retrieving results (Figure 12).

Figure 12. An example of an integration test running the workflow from start to end.

Performance testing is essential to ensure the API can handle expected loads and re-
spond within acceptable timeframes. This includes load testing, which simulates multiple
concurrent users, and response time testing for various types of requests. Tools such as
Locust or Apache JMeter are employed for these tests.

A critical aspect of the testing phase was the validation of the web API against the
original Python package. This ensured that the conversion process did not introduce er-
rors or inconsistencies. The validation tests compared the results obtained from the web
API with those from the original package (Figure 13).

Figure 11. An example of a unit test to validate a function is working as intended.

Integration tests, on the other hand, ensure that different components of the system
interact correctly. These tests typically cover entire workflows, from initiating a simulation
to retrieving results (Figure 12).

Water 2024, 16, x FOR PEER REVIEW 14 of 23

2.2.6. Testing and Validation
The testing and validation phase is crucial for ensuring the reliability, accuracy, and

performance of the converted web APIs. This phase encompasses functional testing, per-
formance testing, and validation against the original Python package.

Functional testing verifies that the API behaves correctly and produces expected re-
sults. This includes unit tests for individual components and integration tests for system-
wide functionality. Unit tests focus on validating specific functions or classes in isolation.
For instance, a unit test might verify the correct parsing of simulation input parameters
(Figure 11).

Figure 11. An example of a unit test to validate a function is working as intended.

Integration tests, on the other hand, ensure that different components of the system
interact correctly. These tests typically cover entire workflows, from initiating a simula-
tion to retrieving results (Figure 12).

Figure 12. An example of an integration test running the workflow from start to end.

Performance testing is essential to ensure the API can handle expected loads and re-
spond within acceptable timeframes. This includes load testing, which simulates multiple
concurrent users, and response time testing for various types of requests. Tools such as
Locust or Apache JMeter are employed for these tests.

A critical aspect of the testing phase was the validation of the web API against the
original Python package. This ensured that the conversion process did not introduce er-
rors or inconsistencies. The validation tests compared the results obtained from the web
API with those from the original package (Figure 13).

Figure 12. An example of an integration test running the workflow from start to end.

Performance testing is essential to ensure the API can handle expected loads and
respond within acceptable timeframes. This includes load testing, which simulates multiple
concurrent users, and response time testing for various types of requests. Tools such as
Locust or Apache JMeter are employed for these tests.

A critical aspect of the testing phase was the validation of the web API against the
original Python package. This ensured that the conversion process did not introduce errors
or inconsistencies. The validation tests compared the results obtained from the web API
with those from the original package (Figure 13).

Water 2024, 16, x FOR PEER REVIEW 15 of 23

Figure 13. An example validation test to compare the original workflow against the new functions.

These validation tests ensured that the results from the web API match those from
the original Python package within an acceptable margin of error, typically using
numpy’s allclose function for numerical comparisons.

The testing and validation phase was iterative, with tests run continuously through-
out the development process. This approach allows for early detection and correction of
issues, ensuring the final web API is robust, reliable, and faithful to the original Python
package’s functionality.

2.2.7. Documentation Generation
The final phase of the workflow implementation leverages FastAPI’s built-in docu-

mentation capabilities to generate comprehensive API documentation. FastAPI automat-
ically creates interactive API documentation using the OpenAPI (formerly Swagger) and
ReDoc standards.

This documentation is generated from the Python code and type hints, requiring
minimal additional effort (Figure 14).

Figure 14. An example of documentation strings within a function.

In the code snippet, FastAPI uses the function’s docstring, parameter types, and re-
sponse model to generate detailed API documentation. The resulting documentation in-
cludes endpoint descriptions, request/response schemas, and example usage, ensuring
that it remains synchronized with the actual API implementation.

The generated documentation provides a user-friendly interface for exploring and
testing the API, facilitating easier adoption and usage of the converted hydrological mod-
els.

3. Results
The workflow for converting hydrology Python packages into web APIs was applied

to two machine learning-based models: a GRACE downscaling model [35] and a synthetic
groundwater time series generation model [36]. This section presents the outcomes of im-
plementing the workflow, focusing on the resulting user interfaces, deployment pro-
cesses, and practical applications. Additionally, a second case study involving the

Figure 13. An example validation test to compare the original workflow against the new functions.

These validation tests ensured that the results from the web API match those from the
original Python package within an acceptable margin of error, typically using numpy’s
allclose function for numerical comparisons.

Water 2024, 16, 2609 15 of 22

The testing and validation phase was iterative, with tests run continuously through-
out the development process. This approach allows for early detection and correction of
issues, ensuring the final web API is robust, reliable, and faithful to the original Python
package’s functionality.

2.2.7. Documentation Generation

The final phase of the workflow implementation leverages FastAPI’s built-in documen-
tation capabilities to generate comprehensive API documentation. FastAPI automatically
creates interactive API documentation using the OpenAPI (formerly Swagger) and Re-
Doc standards.

This documentation is generated from the Python code and type hints, requiring
minimal additional effort (Figure 14).

Water 2024, 16, x FOR PEER REVIEW 15 of 23

Figure 13. An example validation test to compare the original workflow against the new functions.

These validation tests ensured that the results from the web API match those from
the original Python package within an acceptable margin of error, typically using
numpy’s allclose function for numerical comparisons.

The testing and validation phase was iterative, with tests run continuously through-
out the development process. This approach allows for early detection and correction of
issues, ensuring the final web API is robust, reliable, and faithful to the original Python
package’s functionality.

2.2.7. Documentation Generation
The final phase of the workflow implementation leverages FastAPI’s built-in docu-

mentation capabilities to generate comprehensive API documentation. FastAPI automat-
ically creates interactive API documentation using the OpenAPI (formerly Swagger) and
ReDoc standards.

This documentation is generated from the Python code and type hints, requiring
minimal additional effort (Figure 14).

Figure 14. An example of documentation strings within a function.

In the code snippet, FastAPI uses the function’s docstring, parameter types, and re-
sponse model to generate detailed API documentation. The resulting documentation in-
cludes endpoint descriptions, request/response schemas, and example usage, ensuring
that it remains synchronized with the actual API implementation.

The generated documentation provides a user-friendly interface for exploring and
testing the API, facilitating easier adoption and usage of the converted hydrological mod-
els.

3. Results
The workflow for converting hydrology Python packages into web APIs was applied

to two machine learning-based models: a GRACE downscaling model [35] and a synthetic
groundwater time series generation model [36]. This section presents the outcomes of im-
plementing the workflow, focusing on the resulting user interfaces, deployment pro-
cesses, and practical applications. Additionally, a second case study involving the

Figure 14. An example of documentation strings within a function.

In the code snippet, FastAPI uses the function’s docstring, parameter types, and
response model to generate detailed API documentation. The resulting documentation
includes endpoint descriptions, request/response schemas, and example usage, ensuring
that it remains synchronized with the actual API implementation.

The generated documentation provides a user-friendly interface for exploring and
testing the API, facilitating easier adoption and usage of the converted hydrological models.

3. Results

The workflow for converting hydrology Python packages into web APIs was applied
to two machine learning-based models: a GRACE downscaling model [35] and a synthetic
groundwater time series generation model [36]. This section presents the outcomes of im-
plementing the workflow, focusing on the resulting user interfaces, deployment processes,
and practical applications. Additionally, a second case study involving the conversion
of a simple MODFLOW model into a web API is discussed as well, demonstrating the
workflow’s versatility across different types of models.

3.1. Case Study 1: Web APIs for GRACE Downscaling and Synthetic Time Series Models

The workflow was successfully applied to two machine learning-based models: a
GRACE downscaling model and a synthetic hydrological time series generation model.
Both models were converted into web APIs with minimal modifications to their core
functionalities, demonstrating the workflow’s adaptability to different types of machine
learning models in hydrology.

3.1.1. Implementation and Deployment

The deployment process, following the workflow’s containerization guidelines, proved
efficient and straightforward:

1. Both machine learning models were containerized using a single Dockerfile, simplify-
ing the deployment process.

Water 2024, 16, 2609 16 of 22

2. With a reliable internet connection, the entire process of provisioning an instance and
deploying the models was accomplished in less than 15 min.

3. The rapid deployment showcases the workflow’s efficiency in making complex ma-
chine learning-based hydrological models accessible as web services.

This quick turnaround from local development to deployed web service demonstrates
the workflow’s potential to significantly reduce the time and effort required to make
hydrological models operational.

3.1.2. User Interface and Functionality

The resulting web interface, generated automatically by FastAPI, provides intuitive
access to both machine learning models. Key features include the following:

• Interactive API documentation with OpenAPI (Swagger) UI.
• Clear separation of endpoints for each model.
• User-friendly forms for input parameter submission.

Figure 15 shows the landing page of the API documentation. Users can easily input
parameters, upload necessary files, and receive results through this interface.

Water 2024, 16, x FOR PEER REVIEW 16 of 23

conversion of a simple MODFLOW model into a web API is discussed as well, demon-
strating the workflow’s versatility across different types of models.

3.1. Case Study 1: Web APIs for GRACE Downscaling and Synthetic Time Series Models
The workflow was successfully applied to two machine learning-based models: a

GRACE downscaling model and a synthetic hydrological time series generation model.
Both models were converted into web APIs with minimal modifications to their core func-
tionalities, demonstrating the workflow’s adaptability to different types of machine learn-
ing models in hydrology.

3.1.1. Implementation and Deployment
The deployment process, following the workflow’s containerization guidelines,

proved efficient and straightforward:
1. Both machine learning models were containerized using a single Dockerfile, simpli-

fying the deployment process.
2. With a reliable internet connection, the entire process of provisioning an instance and

deploying the models was accomplished in less than 15 min.
3. The rapid deployment showcases the workflow’s efficiency in making complex ma-

chine learning-based hydrological models accessible as web services.
This quick turnaround from local development to deployed web service demon-

strates the workflow’s potential to significantly reduce the time and effort required to
make hydrological models operational.

3.1.2. User Interface and Functionality
The resulting web interface, generated automatically by FastAPI, provides intuitive

access to both machine learning models. Key features include the following:
• Interactive API documentation with OpenAPI (Swagger) UI.
• Clear separation of endpoints for each model.
• User-friendly forms for input parameter submission.

Figure 15 shows the landing page of the API documentation. Users can easily input
parameters, upload necessary files, and receive results through this interface.

Figure 15. Screenshot of the API documentation landing page.

3.1.3. API Integration Examples
Figure 16 demonstrates how to interact with the deployed machine learning model

APIs.

Figure 15. Screenshot of the API documentation landing page.

3.1.3. API Integration Examples

Figure 16 demonstrates how to interact with the deployed machine learning model APIs.
Water 2024, 16, x FOR PEER REVIEW 17 of 23

Figure 16. A sample Python script to query time series using the synthetic time series model.

Figure 17 demonstrates how to generate synthetic well data using a machine learning
model with a provided shapefile.

Figure 17. A sample Python script to generate downscaled GRACE values.

The script shows how to make predictions using the GRACE downscaling machine
learning model with a provided parquet file.

3.1.4. Integration with Developer Applications
The web APIs created through this workflow provide a flexible foundation for devel-

opers to incorporate advanced hydrological modeling capabilities into their own applica-
tions. Developers can leverage the API endpoints to retrieve model predictions, generate
synthetic data, and build web or mobile applications that offer on-demand access to hy-
drological insights.

For example, a developer could create a web application that allows users to upload
shapefiles and generate synthetic well data, then visualize the results on an interactive
map. Here is a basic example of how this might be implemented using Python and a plot-
ting library (Figure 18).

Figure 16. A sample Python script to query time series using the synthetic time series model.

Water 2024, 16, 2609 17 of 22

Figure 17 demonstrates how to generate synthetic well data using a machine learning
model with a provided shapefile.

Water 2024, 16, x FOR PEER REVIEW 17 of 23

Figure 16. A sample Python script to query time series using the synthetic time series model.

Figure 17 demonstrates how to generate synthetic well data using a machine learning
model with a provided shapefile.

Figure 17. A sample Python script to generate downscaled GRACE values.

The script shows how to make predictions using the GRACE downscaling machine
learning model with a provided parquet file.

3.1.4. Integration with Developer Applications
The web APIs created through this workflow provide a flexible foundation for devel-

opers to incorporate advanced hydrological modeling capabilities into their own applica-
tions. Developers can leverage the API endpoints to retrieve model predictions, generate
synthetic data, and build web or mobile applications that offer on-demand access to hy-
drological insights.

For example, a developer could create a web application that allows users to upload
shapefiles and generate synthetic well data, then visualize the results on an interactive
map. Here is a basic example of how this might be implemented using Python and a plot-
ting library (Figure 18).

Figure 17. A sample Python script to generate downscaled GRACE values.

The script shows how to make predictions using the GRACE downscaling machine
learning model with a provided parquet file.

3.1.4. Integration with Developer Applications

The web APIs created through this workflow provide a flexible foundation for develop-
ers to incorporate advanced hydrological modeling capabilities into their own applications.
Developers can leverage the API endpoints to retrieve model predictions, generate synthetic
data, and build web or mobile applications that offer on-demand access to hydrological insights.

For example, a developer could create a web application that allows users to upload
shapefiles and generate synthetic well data, then visualize the results on an interactive map.
Here is a basic example of how this might be implemented using Python and a plotting
library (Figure 18).

Water 2024, 16, x FOR PEER REVIEW 18 of 23

Figure 18. Sample code for generating plots from synthetic time series model results.

This example demonstrates how developers can easily incorporate the API’s func-
tionality into their own data processing and visualization workflows. By providing these
APIs, the workflow enables developers to create custom applications that leverage sophis-
ticated hydrological models without needing to implement the underlying machine learn-
ing algorithms themselves.

For a more comprehensive view of the implementation and additional examples,
readers are encouraged to visit the GitHub repository at
https://github.com/IGWM/streamML (accessed on 13 September 2024).

3.2. Case Study 2: Web API for MODFLOW Groundwater Model
The workflow was successfully applied to convert a simple MODFLOW groundwa-

ter model into a web API, demonstrating its adaptability to physics-based numerical mod-
els alongside machine learning applications.

3.2.1. Implementation and Deployment
The deployment process for the MODFLOW model was efficient:

1. The MODFLOW model was containerized using a single Dockerfile, with FloPy
[37,38] handling interactions with MODFLOW, streamlining the setup process.

2. Deployment time was comparable to the machine learning models in Case Study 1,
taking approximately 15 min.

3. This rapid deployment showcases the workflow’s effectiveness in making complex
numerical hydrological models accessible as web services.
One challenge encountered during implementation was ensuring proper error han-

dling for various MODFLOW input scenarios, which was addressed through comprehen-
sive input validation in the API layer.

3.2.2. API Structure and Functionality
The MODFLOW API provides a streamlined interface for groundwater simulations:

• A run_model endpoint that accepts parameters such as recharge rate and hydraulic
conductivity.

• An endpoint to track the progress of model runs.
• A results retrieval endpoint for accessing simulation outputs.

Figure 18. Sample code for generating plots from synthetic time series model results.

This example demonstrates how developers can easily incorporate the API’s func-
tionality into their own data processing and visualization workflows. By providing these
APIs, the workflow enables developers to create custom applications that leverage sophisti-
cated hydrological models without needing to implement the underlying machine learning
algorithms themselves.

Water 2024, 16, 2609 18 of 22

For a more comprehensive view of the implementation and additional examples,
readers are encouraged to visit the GitHub repository at https://github.com/IGWM/
streamML (accessed on 13 September 2024).

3.2. Case Study 2: Web API for MODFLOW Groundwater Model

The workflow was successfully applied to convert a simple MODFLOW groundwater
model into a web API, demonstrating its adaptability to physics-based numerical models
alongside machine learning applications.

3.2.1. Implementation and Deployment

The deployment process for the MODFLOW model was efficient:

1. The MODFLOW model was containerized using a single Dockerfile, with FloPy [37,38]
handling interactions with MODFLOW, streamlining the setup process.

2. Deployment time was comparable to the machine learning models in Case Study 1,
taking approximately 15 min.

3. This rapid deployment showcases the workflow’s effectiveness in making complex
numerical hydrological models accessible as web services.

One challenge encountered during implementation was ensuring proper error han-
dling for various MODFLOW input scenarios, which was addressed through comprehen-
sive input validation in the API layer.

3.2.2. API Structure and Functionality

The MODFLOW API provides a streamlined interface for groundwater simulations:

• A run_model endpoint that accepts parameters such as recharge rate and hydraulic
conductivity.

• An endpoint to track the progress of model runs.
• A results retrieval endpoint for accessing simulation outputs.

The API documentation landing page is like that from Case Study 1, providing clear,
interactive documentation for all endpoints.

Figure 19 demonstrates the interaction with the MODFLOW model API using a sample
Python code snippet. It includes running a MODFLOW simulation and retrieving results
through the API.

Water 2024, 16, x FOR PEER REVIEW 19 of 23

The API documentation landing page is like that from Case Study 1, providing clear,
interactive documentation for all endpoints.

Figure 19 demonstrates the interaction with the MODFLOW model API using a
sample Python code snippet. It includes running a MODFLOW simulation and retriev-
ing results through the API.

Figure 19. Sample code for running mudflow simulation and retrieving results.

3.2.3. Integration with Developer Applications
The MODFLOW API provides a flexible foundation for developers to incorporate

groundwater modeling capabilities into their own applications. Developers can leverage
the API endpoints to run simulations, track progress, and retrieve results, enabling the
creation of web or mobile applications that offer on-demand access to groundwater in-
sights.

For example, developers could create applications that allow users to explore the im-
pacts of different recharge rates and hydraulic conductivity values on groundwater levels.
The API’s ability to run MODFLOW executables on-demand through requests signifi-
cantly reduces the barrier to entry for using MODFLOW in diverse applications.

This case study represents an approach to deploying MODFLOW models as APIs,
expanding the possibilities for integrating sophisticated groundwater modeling into web-
based applications. The workflow enables developers to create custom applications that
leverage complex groundwater models without needing to implement MODFLOW di-
rectly.

For more details on implementation and additional examples, readers are encour-
aged to visit the GitHub repository at https://github.com/IGWM/modflow-web (accessed
on 13 September 2024).

4. Discussion
The framework presented in this paper offers a significant advancement in the acces-

sibility and deployment of complex hydrological models. By transforming Python-based
models into web APIs, it addresses a critical need in the hydrological modeling commu-
nity for more interoperable and readily deployable tools. While previous approaches such
as Tethys, HydroDS, and HydroShare have made strides in improving model accessibility,
they often involve complex setups or primarily focus on data sharing rather than model

Figure 19. Sample code for running mudflow simulation and retrieving results.

https://github.com/IGWM/streamML
https://github.com/IGWM/streamML

Water 2024, 16, 2609 19 of 22

3.2.3. Integration with Developer Applications

The MODFLOW API provides a flexible foundation for developers to incorporate
groundwater modeling capabilities into their own applications. Developers can leverage
the API endpoints to run simulations, track progress, and retrieve results, enabling the
creation of web or mobile applications that offer on-demand access to groundwater insights.

For example, developers could create applications that allow users to explore the
impacts of different recharge rates and hydraulic conductivity values on groundwater
levels. The API’s ability to run MODFLOW executables on-demand through requests
significantly reduces the barrier to entry for using MODFLOW in diverse applications.

This case study represents an approach to deploying MODFLOW models as APIs,
expanding the possibilities for integrating sophisticated groundwater modeling into web-
based applications. The workflow enables developers to create custom applications that
leverage complex groundwater models without needing to implement MODFLOW directly.

For more details on implementation and additional examples, readers are encouraged
to visit the GitHub repository at https://github.com/IGWM/modflow-web (accessed on
13 September 2024).

4. Discussion

The framework presented in this paper offers a significant advancement in the accessi-
bility and deployment of complex hydrological models. By transforming Python-based
models into web APIs, it addresses a critical need in the hydrological modeling community
for more interoperable and readily deployable tools. While previous approaches such as
Tethys, HydroDS, and HydroShare have made strides in improving model accessibility,
they often involve complex setups or primarily focus on data sharing rather than model
execution. This framework builds upon these efforts by providing a more streamlined
approach to model deployment, requiring minimal modifications to existing Python-based
models and leveraging containerization for consistent deployment across environments.

The successful application of this framework to both machine learning-based models
(GRACE downscaling and synthetic time series generation) and physics-based models
(MODFLOW) demonstrates its versatility across diverse hydrological applications. The
rapid deployment achieved in the case studies, with models converted to web APIs in
less than 15 min, represents a substantial improvement in the operational efficiency of
sophisticated hydrological tools. This efficiency is particularly noteworthy given the
complexity typically associated with deploying such models.

The resulting standardized RESTful API interface aligns hydrological modeling with
contemporary software development practices, opening new avenues for integration and
innovation. This alignment enables developers to incorporate advanced hydrological
models into a wide array of applications, from web-based visualization tools to decision
support systems. For instance, the GRACE downscaling model API could be leveraged to
create dynamic mapping applications that visualize groundwater changes over time, while
the synthetic time series generator could be integrated into risk assessment tools for water
resource management.

By providing a consistent interface for model execution, the framework allows de-
velopers to create modular, flexible applications that can easily switch between different
hydrological models or combine outputs from multiple models. This interoperability could
lead to more comprehensive water management solutions that integrate surface water,
groundwater, and climate models seamlessly. The ability to run model executables on-
demand through API requests, as demonstrated in the MODFLOW case study, represents
a particularly significant advancement in making complex models more accessible and
operationally efficient.

The ease of deployment and standardized access also opens possibilities for educa-
tional applications, allowing students and researchers to interact with complex models
through user-friendly interfaces without the need for extensive setup or computational re-

https://github.com/IGWM/modflow-web

Water 2024, 16, 2609 20 of 22

sources. This democratization of access to sophisticated hydrological tools has the potential
to accelerate learning and innovation in the field.

The integration of these web APIs enables comprehensive water assessment workflows.
For instance, in a region of interest, the GRACE downscaling API could provide high-
resolution groundwater storage change estimates. The synthetic well time series API could
generate data for testing interpolation algorithms for groundwater storage maps. These
outputs could then feed into the MODFLOW API for groundwater simulations. As web
APIs, these tools could be combined in a single web application, allowing stakeholders
to access the entire workflow through a unified interface. This approach streamlines
complex hydrological processes, making sophisticated tools more accessible for water
resource applications.

While the initial Docker configuration may require some trial and error, especially
for models with external files or dependencies, the framework provides a comprehen-
sive blueprint that significantly streamlines this process. This approach reduces barriers
to model deployment and usage, potentially broadening the user base for sophisticated
hydrological tools and accelerating both research and practical applications in water re-
source management.

Transitioning from a development to a production environment involves addressing
several critical aspects. Scalability can be achieved through container orchestration plat-
forms like Kubernetes or commercial cloud-based solutions. Kubernetes offers benefits
such as flexible scaling and efficient resource utilization but adds complexity to deployment
and maintenance. Cloud-based solutions may simplify management but can come with
reduced control and potentially higher costs.

Performance optimization is crucial for large-scale simulations and real-time applica-
tions. Distributed computing frameworks like Dask or Ray enable parallel processing with
minimal overhead, while GPU acceleration can enhance performance for computationally
intensive tasks. Implementing caching mechanisms and optimizing database queries are
essential for maintaining real-time responsiveness.

Security is a major concern due to the sensitive nature of hydrologic data. While
FastAPI has some built-in tools to help with authentication, integrating with additional tools
like OAuth2 or OpenID Connect is recommended for robust access control. Additionally,
tools from the FastAPI community, such as fastapi-limiter, can help with rate limiting
and setting resource quotas to prevent API abuse and manage computational resources
effectively. Addressing these concerns is essential for deploying scalable, high-performance,
and secure hydrological modeling APIs in production.

In conclusion, this framework for converting hydrological models to web APIs rep-
resents a significant step towards more accessible, flexible, and integrated hydrological
modeling. By bridging the gap between complex models and modern web technologies,
it not only enhances research and practical applications in hydrology and water resource
management but also opens new possibilities for the creative and innovative use of these
models across various domains. The potential for developers to build upon these APIs
and create novel applications underscores the transformative impact this framework could
have on the field of hydrology and beyond.

Author Contributions: Conceptualization, H.Y. and S.T.P.; methodology, S.T.P.; software, S.T.P.;
validation, S.T.P. and L.D.Y.; formal analysis, S.T.P.; data curation, S.T.P.; writing—original draft
preparation, S.T.P.; writing—review and editing, H.Y. and L.D.Y.; project administration, H.Y. and
L.D.Y.; funding acquisition, H.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by a research grant awarded by the National Science Foundation
(Award No.: OIA 2019561).

Data Availability Statement: Data are contained within the article.

Water 2024, 16, 2609 21 of 22

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Zehe, E.; Sivapalan, M. Towards a New Generation of Hydrological Process Models for the Meso-Scale: An Introduction.

Hydrol. Earth Syst. Sci. 2007, 10, 981–996. [CrossRef]
2. Asgari, M.; Yang, W.; Lindsay, J.; Tolson, B.; Dehnavi, M.M. A Review of Parallel Computing Applications in Calibrating

Watershed Hydrologic Models. Environ. Model. Softw. 2022, 151, 105370. [CrossRef]
3. Singh, V.P. Hydrologic Modeling: Progress and Future Directions. Geosci. Lett. 2018, 5, 15. [CrossRef]
4. SWAT: Model Use, Calibration, and Validation. Available online: https://digitalcommons.unl.edu/biosysengfacpub/406/

(accessed on 8 July 2024).
5. Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological Modeling of the Iroquois River Watershed Using Hspf and Swat1.

JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [CrossRef]
6. Harbaugh, A.W.; McDonald, M.G. User’s Documentation for MODFLOW-96, an Update to the U.S. Geological Survey Modular

Finite-Difference Ground-Water Flow Model; U.S. Geological Survey; Branch of Information Services: Reston, VA, USA, 1996.
7. Thakur, J.K.; Singh, S.K.; Ekanthalu, V.S. Integrating Remote Sensing, Geographic Information Systems and Global Positioning

System Techniques with Hydrological Modeling. Appl. Water Sci. 2017, 7, 1595–1608. [CrossRef]
8. Lee, S.; Hyun, Y.; Lee, S.; Lee, M.-J. Groundwater Potential Mapping Using Remote Sensing and GIS-Based Machine Learning

Techniques. Remote Sens. 2020, 12, 1200. [CrossRef]
9. Ashraf, A.; Ahmad, Z.; Ashraf, A.; Ahmad, Z. Integration of Groundwater Flow Modeling and GIS. In Water Resources Management

and Modeling; IntechOpen: London, UK, 2012; ISBN 978-953-51-0246-5.
10. Xu, X.; Li, J.; Tolson, B.A. Progress in Integrating Remote Sensing Data and Hydrologic Modeling. Prog. Phys. Geogr. Earth Environ.

2014, 38, 464–498. [CrossRef]
11. Munawar, H.S.; Hammad, A.W.A.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960.

[CrossRef]
12. Choi, M.; Jacobs, J.M.; Anderson, M.C.; Bosch, D.D. Evaluation of Drought Indices via Remotely Sensed Data with Hydrological

Variables. J. Hydrol. 2013, 476, 265–273. [CrossRef]
13. Nobre, R.C.M.; Rotunno Filho, O.C.; Mansur, W.J.; Nobre, M.M.M.; Cosenza, C.A.N. Groundwater Vulnerability and Risk

Mapping Using GIS, Modeling and a Fuzzy Logic Tool. J. Contam. Hydrol. 2007, 94, 277–292. [CrossRef]
14. Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Bagula, A.; Vaccari, M. Groundwater Prediction Using Machine-Learning Tools.

Algorithms 2020, 13, 300. [CrossRef]
15. Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536.

[CrossRef]
16. Anaraki, M.V.; Farzin, S.; Mousavi, S.-F.; Karami, H. Uncertainty Analysis of Climate Change Impacts on Flood Frequency by

Using Hybrid Machine Learning Methods. Water Resour. Manag. 2021, 35, 199–223. [CrossRef]
17. Alizamir, M.; Kisi, O.; Zounemat-Kermani, M. Modelling Long-Term Groundwater Fluctuations by Extreme Learning Machine

Using Hydro-Climatic Data. Hydrol. Sci. J. 2018, 63, 63–73. [CrossRef]
18. Swain, N.R.; Christensen, S.D.; Snow, A.D.; Dolder, H.; Espinoza-Dávalos, G.; Goharian, E.; Jones, N.L.; Nelson, E.J.; Ames, D.P.;

Burian, S.J. A New Open Source Platform for Lowering the Barrier for Environmental Web App Development. Environ. Model.
Softw. 2016, 85, 11–26. [CrossRef]

19. Rocklin, M. Dask: Parallel Computation with Blocked Algorithms and Task Scheduling. In Proceedings of the Python in Science
Conferences (SciPy 2015), Austin, TX, USA, 6–12 July 2015; pp. 126–132.

20. Erickson, R.A.; Fienen, M.N.; McCalla, S.G.; Weiser, E.L.; Bower, M.L.; Knudson, J.M.; Thain, G. Wrangling Distributed Computing
for High-Throughput Environmental Science: An Introduction to HTCondor. PLoS Comput. Biol. 2018, 14, e1006468. [CrossRef]

21. Christensen, S.D.; Swain, N.R.; Jones, N.L.; Nelson, E.J.; Snow, A.D.; Dolder, H.G. A Comprehensive Python Toolkit for Accessing
High-Throughput Computing to Support Large Hydrologic Modeling Tasks. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 333–343.
[CrossRef]

22. Horsburgh, J.S.; Morsy, M.M.; Castronova, A.M.; Goodall, J.L.; Gan, T.; Yi, H.; Stealey, M.J.; Tarboton, D.G. HydroShare: Sharing
Diverse Environmental Data Types and Models as Social Objects with Application to the Hydrology Domain. JAWRA J. Am.
Water Resour. Assoc. 2016, 52, 873–889. [CrossRef]

23. Horsburgh, J.; Tarboton, D.; Schreuders, K.; Maidment, D.; Zaslavsky, I.; Valentine, D. Hydroserver: A Platform for Publishing
Space-Time Hydrologic Datasets. In Proceedings of the AWRA 2010 Spring Specialty Conference: GIS and Water Resources VI,
Orlando, FL, USA, 29–31 March 2010; pp. 1–6.

24. Erazo Ramirez, C.; Sermet, Y.; Molkenthin, F.; Demir, I. HydroLang: An Open-Source Web-Based Programming Framework for
Hydrological Sciences. Environ. Model. Softw. 2022, 157, 105525. [CrossRef]

25. Gichamo, T.Z.; Sazib, N.S.; Tarboton, D.G.; Dash, P. HydroDS: Data Services in Support of Physically Based, Distributed
Hydrological Models. Environ. Model. Softw. 2020, 125, 104623. [CrossRef]

https://doi.org/10.5194/hess-10-981-2006
https://doi.org/10.1016/j.envsoft.2022.105370
https://doi.org/10.1186/s40562-018-0113-z
https://digitalcommons.unl.edu/biosysengfacpub/406/
https://doi.org/10.1111/j.1752-1688.2005.tb03740.x
https://doi.org/10.1007/s13201-016-0384-5
https://doi.org/10.3390/rs12071200
https://doi.org/10.1177/0309133314536583
https://doi.org/10.3390/s22030960
https://doi.org/10.1016/j.jhydrol.2012.10.042
https://doi.org/10.1016/j.jconhyd.2007.07.008
https://doi.org/10.3390/a13110300
https://doi.org/10.3390/w10111536
https://doi.org/10.1007/s11269-020-02719-w
https://doi.org/10.1080/02626667.2017.1410891
https://doi.org/10.1016/j.envsoft.2016.08.003
https://doi.org/10.1371/journal.pcbi.1006468
https://doi.org/10.1111/1752-1688.12455
https://doi.org/10.1111/1752-1688.12363
https://doi.org/10.1016/j.envsoft.2022.105525
https://doi.org/10.1016/j.envsoft.2020.104623

Water 2024, 16, 2609 22 of 22

26. Ramirez, C.E.; Sermet, Y.; Demir, I. HydroCompute: An Open-Source Web-Based Computational Library for Hydrology and
Environmental Sciences. Environ. Model. Softw. 2024, 175, 106005. [CrossRef]

27. de Sousa, L.M.; de Jesus, J.M.; Čepicky, J.; Kralidis, A.T.; Huard, D.; Ehbrecht, C.; Barreto, S.; Eberle, J. PyWPS: Overview, New
Features in Version 4 and Existing Implementations. Open Geospat. Data Softw. Stand. 2019, 4, 13. [CrossRef]

28. FastAPI. Available online: https://fastapi.tiangolo.com/ (accessed on 21 June 2024).
29. Boettiger, C. An Introduction to Docker for Reproducible Research. SIGOPS Oper. Syst. Rev. 2015, 49, 71–79. [CrossRef]
30. Ibrahim, M.H.; Sayagh, M.; Hassan, A.E. A Study of How Docker Compose Is Used to Compose Multi-Component Systems.

Empir. Softw. Eng. 2021, 26, 128. [CrossRef]
31. Skorpil, V.; Oujezsky, V. Parallel Genetic Algorithms’ Implementation Using a Scalable Concurrent Operation in Python. Sensors

2022, 22, 2389. [CrossRef]
32. Williams, J. RabbitMQ in Action: Distributed Messaging for Everyone; Simon and Schuster: New York City, NY, USA, 2012;

ISBN 978-1-63835-384-3.
33. Silva, M.D.D.; Tavares, H.L. Redis Essentials; Packt Publishing Ltd.: Birmingham, UK, 2015; ISBN 978-1-78439-608-4.
34. Principled Design of the Modern Web Architecture|ACM Transactions on Internet Technology. Available online: https://dl.acm.

org/doi/abs/10.1145/514183.514185 (accessed on 9 July 2024).
35. Pulla, S.T.; Yasarer, H.; Yarbrough, L.D. GRACE Downscaler: A Framework to Develop and Evaluate Downscaling Models for

GRACE. Remote Sens. 2023, 15, 2247. [CrossRef]
36. Pulla, S.T.; Yasarer, H.; Yarbrough, L.D. Synthetic Time Series Data in Groundwater Analytics: Challenges, Insights, and

Applications. Water 2024, 16, 949. [CrossRef]
37. FloPy Workflows for Creating Structured and Unstructured MODFLOW Models—Hughes—2024—Groundwater—Wiley Online

Library. Available online: https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13327 (accessed on 9 July 2024).
38. Bakker, M.; Post, V.; Langevin, C.D.; Hughes, J.D.; White, J.T.; Starn, J.J.; Fienen, M.N. Scripting MODFLOW Model Development

Using Python and FloPy. Groundwater 2016, 54, 733–739. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.envsoft.2024.106005
https://doi.org/10.1186/s40965-019-0072-0
https://fastapi.tiangolo.com/
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1007/s10664-021-10025-1
https://doi.org/10.3390/s22062389
https://dl.acm.org/doi/abs/10.1145/514183.514185
https://dl.acm.org/doi/abs/10.1145/514183.514185
https://doi.org/10.3390/rs15092247
https://doi.org/10.3390/w16070949
https://ngwa.onlinelibrary.wiley.com/doi/10.1111/gwat.13327
https://doi.org/10.1111/gwat.12413

	Introduction
	Study Objective
	Overview of Existing Web-Based Hydrology Frameworks
	Tethys Platform
	HydroShare
	HydroServer
	HydroLang
	HydroDS
	HydroCompute
	PyWPS

	Materials and Methods
	Web Technologies and Frameworks
	FastAPI
	Docker and Docker Compose
	Celery and RabbitMQ
	Redis

	Workflow Implementation
	Analysis of Package Structure and Dependencies
	API Design and Endpoint Mapping
	FastAPI Implementation
	Asynchronous Task Processing
	Containerization and Deployment
	Testing and Validation
	Documentation Generation

	Results
	Case Study 1: Web APIs for GRACE Downscaling and Synthetic Time Series Models
	Implementation and Deployment
	User Interface and Functionality
	API Integration Examples
	Integration with Developer Applications

	Case Study 2: Web API for MODFLOW Groundwater Model
	Implementation and Deployment
	API Structure and Functionality
	Integration with Developer Applications

	Discussion
	References

