Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt
Abstract
:1. Introduction
1.1. Study Area
1.2. Geological and Hydrogeological Setting
2. Methodology
2.1. Water Sampling and Analysis
2.2. Aquifer (Pumping) Test
3. Results and Discussion
3.1. Groundwater Flow Dynamics
3.2. Geochemistry of Groundwater
3.3. Main Hydrochemical Processes
3.4. Aquifer Hydraulic Parameters
3.5. Groundwater Well Performance Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldscheider, N.; Madl-Szonyi, J.; Eross, A.; Schill, E. Review: Thermal water resources in carbonate rock aquifers. Hydrogeol. J. 2010, 18, 1303–1318. [Google Scholar] [CrossRef]
- Goldscheideret, N. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Fryar, A. Groundwater of carbonate aquifers. In Global Groundwater: Source, Scarcity, Sustainability, Security and Solutions; Elsevier: Amsterdam, The Netherlands, 2021; pp. 23–34. [Google Scholar]
- Ford, D.; Williams, P.W. Karst Geomorphology and Hydrology; Hyman: Boston, MA, USA, 1989. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Stevanović, Z. Global distribution and use of water from karst aquifers. Geol. Soc. Lond. Spec. Publ. 2018, 466, 217–236. [Google Scholar] [CrossRef]
- Stevanović, Z. Karst waters in potable water supply: A global scale overview. Environ. Earth Sci. 2019, 78, 662. [Google Scholar] [CrossRef]
- Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barberá, J.A.; Brielmann, H.; Bouchaou, L.; Charlier, J.B.; Darling, W.G.; et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024492118. [Google Scholar] [CrossRef] [PubMed]
- Geriesh, M.H.; Abouelmagd, A.; Mansour, B.M.H. Major Groundwater Reservoirs of Egypt. In The Phanerozoic Geology and Natural Resources of Egypt; Advances in Science, Technology & Innovation; Hamimi, Z., Khozyem, H., Adatte, T., Nader, F.H., Oboh-Ikuenobe, F., Zobaa, M.K., El Atfy, H., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Ahmed, M.; Chen, Y.; Khalil, M.M. Isotopic composition of groundwater resources in arid environments. J. Hydrol. 2022, 609, 127773. [Google Scholar] [CrossRef]
- Khalil, M.M.; Abotalib, Z.A.; Mohamed, H.F.; Mostafa, R.; Ahmed, A.A.; Thomas, P. Poor drainage-induced waterlogging in Saharan groundwater-irrigated lands: Integration of geospatial, geophysical, and hydrogeological techniques. Catena 2021, 207, 105615. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; King-Okumu, C. Groundwater Exploitation in Mega Projects: Egypt’s 1.5 Million Feddan Project. In Groundwater in Egypt’s Deserts; Springer Water; Negm, A., Elkhouly, A., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ahmad, A.Y.; Al-Ghouti, M.A. Approaches to achieve sustainable use and management of groundwater resources in Qatar: A review. Groundw. Sustain. Dev. 2020, 11, 100367. [Google Scholar] [CrossRef]
- Said, I.; Salman, S.A. Salinization of groundwater under desert reclamation stress at Qena region, Egypt. J. Afr. Earth Sci. 2021, 181, 104250. [Google Scholar] [CrossRef]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 50, 6507–6521. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundwater Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Back, W.; Cherry, R.N.; Hanshaw, B.B. Chemical equilibrium between the water and minerals of carbonate aquifer. Bull. Nat. Speleo. Soc. 1966, 28, 119–126. [Google Scholar]
- Linda, D.; Vallejos, A.; Corbella, M.; Molina, L.; Pulido, B.A. Hydrogeochemistry and geochemical simulations to assess water rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain). Appl. Geochem. 2013, 29, 43–54. [Google Scholar]
- Baalousha, H.M. Groundwater vulnerability mapping of Qatar aquifers. J. Afr. Earth Sci. 2016, 124, 75–93. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall Inc.: Englewood Cliff, NJ, USA, 1979; Volume 7632, 604p. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley: New York, NY, USA, 1990; 824p. [Google Scholar]
- Naderi, M.; Gupta, H.V. On the reliability of variable-rate pumping test results: Sensitivity to information content of the recorded data. Water Resour. Res. 2020, 56, e2019WR026961. [Google Scholar] [CrossRef]
- Çimen, M. Effective procedure for determination of aquifer parameters from late time-drawdown data. J. Hydrol. Eng. 2009, 14, 446–452. [Google Scholar] [CrossRef]
- Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Abotalib, A.Z.; Heggy, E.; El Bastawesy, M.; Ismail, E.; Gad, A.; Attwa, M. Groundwater mounding: A diagnostic feature for mapping aquifer connectivity in hyper-arid deserts. Sci. Total Environ. 2021, 801, 149760. [Google Scholar] [CrossRef]
- Klitzsch, E.L.; Pohlmann, G. Geological Map of Egypt; Conoco Coral and Egyptian General Petroleum Company: Cairo, Egypt, 1987; Scale 1:500000, NH 36 SW-BeniSuef sheet. [Google Scholar]
- Salem, A.A. Hydrogeological studies on the shallow aquifers in the area west Samalot, El-Minia Governorate, Egypt. Egy. J. Pure Appl. Sci. 2015, 53, 49–60. [Google Scholar]
- Yousif, M.; Sabet, H.; Ghoubachi, S.; Aziz, A. Utilizing the geological data and remote sensing applications for investigation of groundwater occurrences, West El Minia, Western Desert of Egypt. NRIAG J. Astron. Geophys. 2018, 7, 318–333. [Google Scholar] [CrossRef]
- Ibrahem, S.M.M.; Elalfy, M.; Hagras, M.A. Groundwater potentials of Eocene limestone aquifer in West-West El-Minya area. Egypt. J. Desert Res. 2020, 70, 59–82. [Google Scholar] [CrossRef]
- Rorabaugh, M.I. Graphical and theoretical analysis of step-drawdown test of artesian wells. Proc. ASCE 1953, 79, 362. [Google Scholar]
- Cooper, H.H., Jr.; Jacob, C.E. A generalized graphical method for evaluating formation constants and summarizing well field history. Eos Trans. Am. Geophys. Union 1946, 27, 526–534. [Google Scholar]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Jacob, C.E. Drawdown test to determine effective radius of artesian well. Trans. Am. Soc. Civil Eng. 1947, 112, 1047–1064. [Google Scholar] [CrossRef]
- Bierschenk, W.H. Determining well efficiency by multiple step-drawdown tests. Int. Assoc. Sci. Hydrol. 1963, 64, 493–507. [Google Scholar]
- Kresic, N. Hydrogeology and Groundwater Modeling, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Abotalib, A.Z.; Sultan, M.; Elkadiri, R. Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments. Earth-Sci. Rev. 2016, 156, 108–136. [Google Scholar] [CrossRef]
- Sultan, M.; Yan, E.; Sturchio, N.; Wagdy, A.; Gelil, K.A.; Becker, R.; Manocha, N.; Milewski, A. Natural discharge: A key to sustainable utilization of fossil groundwater. J. Hydrol. 2007, 335, 25–36. [Google Scholar] [CrossRef]
- Kanagaraj, G.; Elango, L. Hydrogeochemical processes and impact of tanning industries on groundwater quality in Ambur, Vellore district, Tamil Nadu, India Environ. Sci. Pollut. Res. 2016, 23, 24364–24383. [Google Scholar] [CrossRef]
- Ismail, E.; Abdelhalim, A.; Ali, A.; Ahmed, M.S.; Scholger, R.; Khalil, M.M. Isotopic, Geophysical, and Hydrogeochemical Investigations of Groundwater in West Middle Upper Egypt. ACS Omega 2022, 7, 44000–44011. [Google Scholar] [CrossRef]
- Mayo, A.L.; Loucks, M.D. Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J. Hydrol. 1995, 172, 31–59. [Google Scholar] [CrossRef]
- Cronin, A.A.; Elliot, T.; Kalin, R.M. Geochemical modelling and isotope studies in the Sherwood Sandstone aquifer, Lagan Valley, Northern Ireland. In Tracers and Modelling in Hydrogeology; IAHS Publication: Wallingford, UK, 2000; pp. 425–431. [Google Scholar]
- Wu, P.; Tang, C.; Zhu, L.; Liu, C.; Cha, X.; Tao, X. Hydrogeochemical characteristics of surface water and groundwater in the karst basin, southwest China. Hydrol. Process 2009, 23, 2012–2022. [Google Scholar] [CrossRef]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon, the influence of geology and weathering environment on the dissolved load. J. Geophys. Res. 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Datta, P.S.; Tyagi, S.K. Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. J. Geol. Soc. India 1996, 47, 179–188. [Google Scholar]
- Srinivasamoorthy, K.; Gopinath, M.; Chidambaram, S.; Vasanthavigar, M.; Sarma, V.S. Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J. King Saud Univ. Sci. 2014, 26, 37–52. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Nazzal, Y.; Jafri, M.K. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environ. Monit. Assess. 2015, 187, 607. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Al-Bassam, A.M.; Kassem, O.M.K. Factors influencing the major ion chemistry in the Tihama coastal plain of southern Saudi Arabia: Evidences from hydrochemicalfacies analyses and ionic relationships. Environ. Earth Sci. 2017, 76, 472. [Google Scholar] [CrossRef]
- Raju, N.J.; Patel, P.; Reddy, B.R.; Suresh, U.; Reddy, T.K. Identifying source and evaluation of hydrogeochemical processes in the hard rock aquifer system: Geostatistical analysis and geochemical modeling techniques. Environ. Earth Sci. 2016, 75, 1157. [Google Scholar] [CrossRef]
- Luo, W.; Gao, X.; Zhang, X. Geochemical processs controlling the groundwater chemistry and flouride contamination in the Yuncheg Basin, China—An area with complex hydrogeochemical conditions. PLoS ONE 2018, 13, e0199082. [Google Scholar] [CrossRef] [PubMed]
- Risser, D.W. Factors Affecting Specific-Capacity Tests and Their Application—A Study of Six Low-Yielding Wells in Fractured-Bedrock Aquifers in Pennsylvania; Scientific Investigations Report 2010–5212; U.S. Geological Survey: Reston, VA, USA, 2010; 44p. [Google Scholar]
- El Osta, M.; Masoud, M.; Alqarawy, A. Utilizing of aquifer hydraulic parameters to assess the groundwater sustainability in the new reclamation area of Moghra Oasis: Western Desert—Egypt. Appl. Water Sci. 2023, 13, 238. [Google Scholar] [CrossRef]
- Abotalib, A.Z.; Heggy, E.; Scabbia, G. Groundwater dynamics in fossil fractured carbonate aquifers in Eastern Arabian Peninsula: A preliminary investigation. J. Hydrol. 2019, 571, 460–470. [Google Scholar] [CrossRef]
- Gheorghe, A. Processing and Synthesis of Hydrogeological Data; Abacus Press: London, UK, 1979; 390p. [Google Scholar]
- Abdalla, F.; Moubark, K. Assessment of well performance criteria and aquifer characteristics using step-drawdown tests and hydrogeochemical data, west of Qena area. Egypt. J. Afr. Earth Sci. 2018, 138, 336–347. [Google Scholar] [CrossRef]
Well ID | Well Depth (m) | pH | T (°C) | TDS (mg/L) | Cations (mg/L) | Anions (mg/L) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | |||||
1 | 750 | 7.73 | 34.8 | 2387.2 | 153 | 47.3 | 508.5 | 28 | 288 | 901 | 186 |
3 | 566 | 7.72 | 35.7 | 2342 | 135.55 | 57.74 | 494.5 | 22 | 254 | 875.75 | 185.55 |
5 | 550 | 7.73 | 33.7 | 2310.4 | 153.02 | 47.3 | 508.5 | 28 | 288 | 901 | 186 |
15 | 600 | 7.1 | 31 | 2471 | 97.63 | 17.41 | 602 | 22 | 249 | 843.53 | 231.71 |
21 | 550 | 7.68 | 32.8 | 2272 | 179 | 48.89 | 510.5 | 21 | 302 | 834.27 | 298.06 |
23 | 450 | 7.27 | 36.4 | 2316.8 | 148.4 | 58.2 | 539.5 | 24 | 195 | 908 | 355 |
24 | 500 | 7.2 | 36.4 | 2432 | 174 | 18.29 | 810 | 19 | 258 | 1109 | 403.07 |
25 | 600 | 7.22 | 36.1 | 2278.4 | 152.7 | 38.05 | 678.5 | 22 | 226 | 1007 | 364 |
27 | 500 | 7.26 | 31.5 | 2355.2 | 86.45 | 27.7 | 674.5 | 23 | 278 | 959.01 | 201.71 |
28 | 600 | 7.25 | 33.6 | 2368 | 99 | 27.89 | 648.5 | 22 | 288 | 916.88 | 233.68 |
29 | 600 | 7.16 | 35.8 | 2912 | 157 | 17.9 | 786.5 | 20 | 257 | 1104.9 | 373.23 |
31 | 450 | 7.26 | 34 | 2470.4 | 88 | 28 | 649.5 | 23 | 289 | 917 | 235 |
34 | 600 | 7.71 | 31 | 2182.4 | 199.37 | 37.81 | 438.5 | 27 | 288 | 794 | 261 |
36 | 450 | 7.79 | 31 | 2304 | 151.57 | 40.92 | 464.5 | 25 | 276 | 753 | 245 |
37 | 450 | 7.59 | 32 | 2368 | 140.48 | 35.66 | 532.5 | 24 | 246 | 868 | 221 |
38 | 500 | 7.64 | 32.5 | 2176 | 144.36 | 45.31 | 469.5 | 24 | 298 | 759 | 258 |
40 | 450 | 7.76 | 31.8 | 2304 | 179.97 | 36.14 | 436.5 | 25 | 293 | 773 | 228 |
41 | 630 | 7.76 | 32 | 2284.8 | 171.94 | 34.4 | 449.5 | 24 | 295 | 748 | 219 |
45 | 450 | 7.62 | 33.4 | 2470.4 | 143.76 | 40 | 550.5 | 25 | 258 | 879 | 229 |
47 | 500 | 7.4 | 32.7 | 2304 | 169.46 | 64.34 | 449.5 | 24 | 385.4 | 749 | 249 |
51 | 550 | 7.45 | 35 | 2355 | 140.35 | 37.08 | 537.5 | 25 | 236 | 895.5 | 215 |
52 | 450 | 7.54 | 34 | 2412.8 | 141.34 | 33.89 | 518.5 | 21 | 222 | 884 | 193 |
53 | 500 | 7.64 | 32.9 | 2265.6 | 133.13 | 30.71 | 509.5 | 16.1 | 207.4 | 871.8 | 171 |
59 | 450 | 7.75 | 34.2 | 2272 | 149.98 | 53.95 | 415.5 | 22 | 284 | 729 | 239 |
60 | 510 | 7.71 | 35.5 | 2400 | 170.18 | 45.39 | 444.5 | 26 | 234 | 807 | 261 |
63 | 700 | 7.54 | 35.5 | 2355 | 145.56 | 35.71 | 481.5 | 24 | 224 | 833 | 200 |
65 | 500 | 7.53 | 34.1 | 2176 | 134.7 | 33.8 | 512.5 | 21 | 233 | 860 | 195 |
72 | 450 | 7.3 | 34.4 | 2342.4 | 164.3 | 50.27 | 439.5 | 24 | 304.9 | 730 | 296 |
73 | 750 | 7.83 | 34.2 | 2310.4 | 117.09 | 34.2 | 539.5 | 24 | 213 | 853.5 | 214.1 |
80 | 750 | 7.67 | 31.3 | 2541 | 154.38 | 30.26 | 513.5 | 14.8 | 224.5 | 890.6 | 180 |
Well No. | Step-Drawdown Test | Cooper–Jacob Method | Theis Recovery Method | |||
---|---|---|---|---|---|---|
Specific Capacity (Sc) 200 m3/h | T 200 m3/h | b | K | T 200 m3/h | K | |
m2/h | m2/d | m | m/d | m2/d | m/d | |
1 | 4.69 | 2376.75 | 225.00 | 10.56 | 2131.55 | 9.47 |
2 | 106.53 | 17,360.00 | 184.45 | 94.12 | 23,430.25 | 127.03 |
3 | 15.11 | 30,951.70 | 166.60 | 185.78 | 4919.99 | 29.53 |
4 | 3.70 | 772.68 | 148.75 | 5.19 | 503.34 | 3.38 |
5 | 15.56 | 1501.11 | 160.11 | 9.38 | 596.20 | 3.72 |
6 | 10.09 | 1019.77 | 160.65 | 6.35 | 583.44 | 3.63 |
7 | 12.08 | 1288.94 | 178.50 | 7.22 | 1703.45 | 9.54 |
8 | 3.42 | 3920.08 | 404.00 | 9.70 | 639.19 | 1.58 |
9 | 7.64 | 791.90 | 347.00 | 2.28 | 544.50 | 1.57 |
10 | 7.95 | 763.17 | 243.89 | 3.13 | 595.81 | 2.44 |
11 | 103.46 | 24,249.52 | 286.00 | 84.79 | 984.57 | 3.44 |
12 | 10.79 | 567.90 | 207.55 | 2.74 | 206.97 | 1.00 |
13 | 7.43 | 3589.77 | 196.02 | 18.31 | 410.26 | 2.09 |
14 | 7.78 | 791.86 | 280.00 | 2.83 | 93,149.52 | 332.68 |
15 | 5.57 | 2023.82 | 270.00 | 7.50 | 1026.65 | 3.80 |
16 | 97.15 | 15,432.45 | 237.20 | 65.06 | 16,046.77 | 67.65 |
17 | 20.98 | 1985.00 | 249.48 | 7.96 | 411.50 | 1.65 |
18 | 4.24 | 1736.28 | 377.00 | 4.61 | 530.95 | 1.41 |
19 | 114.28 | 318,048.84 | 213.84 | 1487.32 | 2606.91 | 12.19 |
20 | 6.19 | 590.72 | 219.41 | 2.69 | 142.06 | 0.65 |
21 | 6.90 | 681.38 | 335.00 | 2.03 | 317.02 | 0.95 |
22 | 312.41 | 604,197.19 | 274.00 | 2205.10 | 174,421.38 | 636.57 |
23 | 5.45 | 1842.12 | 213.48 | 8.63 | 385.69 | 1.81 |
24 | 19.08 | 986.82 | 212.78 | 4.64 | 714.66 | 3.36 |
25 | 7.36 | 874.94 | 385.00 | 2.27 | 135.92 | 0.35 |
26 | 9.99 | 1555.65 | 292.50 | 5.32 | 1890.66 | 6.46 |
27 | 180.59 | 1414.49 | 282.50 | 5.01 | NA | NA |
28 | 7.89 | 1091.18 | 390.00 | 2.80 | NA | NA |
29 | 11.93 | 1211.35 | 375.00 | 3.23 | 182.65 | 0.49 |
30 | 6.11 | 2449.73 | 260.00 | 9.42 | 1010.62 | 3.89 |
31 | 14.99 | 1094.93 | 235.00 | 4.66 | 277.25 | 1.18 |
32 | 11.36 | 1677.33 | 308.36 | 5.44 | 88.49 | 0.29 |
33 | 19.69 | 50,251.72 | 300.00 | 167.51 | 10,819.07 | 36.06 |
34 | 4.55 | 6234.41 | 335.00 | 18.61 | 341.42 | 1.02 |
35 | 34.82 | 11,803.76 | 350.00 | 33.73 | 3177.31 | 9.08 |
36 | 219.41 | 30,799.44 | 275.00 | 112.00 | 6700.23 | 24.36 |
37 | 62.85 | 4192.24 | 280.00 | 14.97 | 1065.61 | 3.81 |
38 | 5.19 | 2685.75 | 337.00 | 7.97 | 344.87 | 1.02 |
39 | 14.65 | 1431.46 | 290.00 | 4.94 | 55,349.72 | 190.86 |
40 | 37.74 | 3468.78 | 318.00 | 10.91 | 677.27 | 2.13 |
41 | 48.87 | 2226.90 | 290.00 | 7.68 | 10,492.12 | 36.18 |
42 | 90.40 | 18,100.14 | 240.00 | 75.42 | 2186.11 | 9.11 |
43 | 89.46 | 69,438.74 | 280.00 | 248.00 | 48,963.21 | 174.87 |
44 | 20.89 | 5683.23 | 260.00 | 21.86 | 21,699.60 | 83.46 |
45 | 6.12 | 1125.92 | 247.00 | 4.56 | 175.47 | 0.71 |
46 | 18.55 | 6584.71 | 298.00 | 22.10 | 9547.83 | 32.04 |
47 | 50.99 | 181,863.35 | 302.00 | 602.20 | 7192.34 | 23.82 |
48 | 75.05 | 109,118.01 | 305.00 | 357.76 | 1979.85 | 6.49 |
49 | 92.19 | 53,275.08 | 280.00 | 190.27 | 166,049.15 | 593.03 |
50 | 86.03 | 74,884.91 | 272.00 | 275.31 | 5839.65 | 21.47 |
51 | 25.16 | 37,078.94 | 277.00 | 133.86 | 257.70 | 0.93 |
52 | 78.16 | 212,173.91 | 264.00 | 803.69 | 211.15 | 0.80 |
53 | 58.21 | 12,562.93 | 290.00 | 43.32 | 1270.50 | 4.38 |
54 | 85.94 | 4979.31 | 290.00 | 17.17 | 3028.65 | 10.44 |
55 | 102.88 | 4714.98 | 323.00 | 14.60 | 570.87 | 1.77 |
56 | 111.27 | 12,773.01 | 315.00 | 40.55 | 2203.77 | 7.00 |
57 | 8.04 | 960.06 | 333.00 | 2.88 | 134.02 | 0.40 |
58 | 11.67 | 2107.69 | 326.00 | 6.47 | 1130.25 | 3.47 |
59 | 6.29 | 1009.02 | 337.00 | 2.99 | 133.59 | 0.40 |
60 | 3.97 | 3857.71 | 455.00 | 8.48 | 57.32 | 0.13 |
61 | 4.22 | 906.64 | 378.00 | 2.40 | 274.86 | 0.73 |
62 | 5.01 | 1113.59 | 340.00 | 3.28 | 316.24 | 0.93 |
63 | 6.38 | 1872.12 | 315.00 | 5.94 | 370.97 | 1.18 |
64 | 6.26 | 774.67 | 257.00 | 3.01 | 309.99 | 1.21 |
65 | 8.13 | 1813.45 | 288.00 | 6.30 | 319.97 | 1.11 |
66 | 4.16 | 1277.76 | 347.00 | 3.68 | 109.16 | 0.31 |
67 | 3.30 | 552.77 | 393.00 | 1.41 | 520.10 | 1.32 |
68 | 724.01 | 73,444.82 | 195.00 | 376.64 | 27,674.86 | 141.92 |
69 | 55.88 | 11,860.65 | 195.00 | 60.82 | 1099.35 | 5.64 |
70 | 10.77 | 3715.11 | 212.50 | 17.48 | 12,902.47 | 60.72 |
71 | 11.09 | 6281.46 | 300.00 | 20.94 | 32,093.53 | 106.98 |
72 | 9.03 | 717.82 | 230.00 | 3.12 | 214.05 | 0.93 |
73 | 11.23 | 4651.80 | 265.00 | 17.55 | 19,891.30 | 75.06 |
74 | 36.53 | 2515.90 | 300.00 | 8.39 | 18,721.23 | 62.40 |
75 | 1.85 | 713.42 | 292.50 | 2.44 | 100.85 | 0.34 |
76 | 28.16 | 17,763.40 | 290.00 | 61.25 | 21,823.60 | 75.25 |
77 | 4.99 | 1316.94 | 293.00 | 4.49 | NA | NA |
78 | 15.15 | 1692.13 | 343.00 | 4.93 | 224.02 | 0.65 |
79 | 39.60 | 3278.22 | 347.00 | 9.45 | 574.13 | 1.65 |
80 | 5.80 | 733.04 | 300.00 | 2.44 | 62.30 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.M.; Mahmoud, M.; Alexakis, D.E.; Gamvroula, D.E.; Youssef, E.; El-Sayed, E.; Farag, M.H.; Ahmed, M.; Li, P.; Ali, A.; et al. Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt. Water 2024, 16, 2610. https://doi.org/10.3390/w16182610
Khalil MM, Mahmoud M, Alexakis DE, Gamvroula DE, Youssef E, El-Sayed E, Farag MH, Ahmed M, Li P, Ali A, et al. Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt. Water. 2024; 16(18):2610. https://doi.org/10.3390/w16182610
Chicago/Turabian StyleKhalil, Mahmoud M., Mostafa Mahmoud, Dimitrios E. Alexakis, Dimitra E. Gamvroula, Emad Youssef, Esam El-Sayed, Mohamed H. Farag, Mohamed Ahmed, Peiyue Li, Ahmed Ali, and et al. 2024. "Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt" Water 16, no. 18: 2610. https://doi.org/10.3390/w16182610
APA StyleKhalil, M. M., Mahmoud, M., Alexakis, D. E., Gamvroula, D. E., Youssef, E., El-Sayed, E., Farag, M. H., Ahmed, M., Li, P., Ali, A., & Ismail, E. (2024). Hydraulic and Hydrogeochemical Characterization of Carbonate Aquifers in Arid Regions: A Case from the Western Desert, Egypt. Water, 16(18), 2610. https://doi.org/10.3390/w16182610