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Abstract: Shallow groundwater is an important resource, especially in low- and middle-income
countries; however, shallow groundwater is particularly vulnerable to point sources of pollution such
as latrines or unlined waste disposal ponds. The objective of this paper is to derive a quantitative
criterion for siting an extraction well and an upgradient point source of pollution to ensure that they
are hydraulically disconnected, i.e., that no water flows from the point source to the well. To achieve
this objective, we modeled the flow of shallow groundwater considering uniform regional flow, a
single point source of pollution, and a single extraction well. For any set of flow rates and upgradient
point source distance, we sought the minimum “off-center distance” ymin (i.e., the distance in the
direction perpendicular to regional flow) that ensures the well and the point source are hydraulically
disconnected. For constituencies with access to computing resources and coding expertise, we used a
computer-based method for determining ymin that is exact to within the accuracy of a root-finding
algorithm; this approach is recommended when computer access is available. For constituencies
lacking these resources, we determined a simple, closed-form, approximate solution for ymin that
has an average error of less than 3% for the conditions we tested. For a subset of scenarios in which
the point source is sufficiently far upgradient of the well (n = 77), the root mean square relative
error of the approximate solution is only 0.52%. We found that ymin depends on a length parameter
(Qw + Qps)/QR, where Qw is the extraction rate of the well, Qps is the injection rate of the point source,
and QR is the regional groundwater flow rate per unit of perpendicular length. Either the exact
solution or the closed-form approximation can help to site wells near point sources of pollution, or to
site point sources near wells, in a manner that protects the health of the well user. The approximate
solution is valuable because many constituencies that rely on shallow wells for water supply and
latrines for sanitation also lack access to the computer resources necessary to apply the exact solution.

Keywords: groundwater contamination; injection–extraction well pair; latrine; self-supply; well
protection

1. Introduction

As the population of the world grows, more and more people, communities, and
countries are relying on groundwater as a reliable source of potable water [1]. In low- and
middle-income countries (LMICs), principles such as self-supply and use of appropriate
technologies (e.g., suction handpumps) are applied to access shallow groundwater up
to 10 m deep [2–5]. However, shallow groundwater in LMICs is also highly susceptible
to contamination from point sources of pollution [6,7]. For example, common sanita-
tion technologies in LMICs are latrines or pit toilets for single-family or multiple-family
use [8]. Latrines are designed primarily to physically separate humans from their waste
but do not actually destroy or remove microbial and chemical pollutants [9], so a latrine
can act as a point source of pollution into the nearby groundwater. Thus, the siting of
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a shallow groundwater well in the vicinity of a latrine (or the siting of a latrine in the
vicinity of a well) threatens the chemical and biological quality of water extracted from
the well and thereby threatens the health of people using the well. Other examples of
point sources of contamination in shallow groundwater could include waste-disposal
injection wells [10,11], infiltration from mine tailing piles [12], cesspools [13], or small
unlined ponds/lagoons [14,15]. Therefore, harmful agents introduced into the ground-
water by point sources could include bacteria, viruses, nitrate, toxic metals, or other
hazardous chemicals.

One way to minimize health risks from these contamination sources is to make sure
there is adequate separation distance between a shallow well and any upgradient point
source of pollution. For the particular case of latrines, several governmental and non-
governmental organizations have developed guidelines for how far a latrine should be
placed from a downgradient well or water receptor. However, Nenninger et al. [16] de-
termined these one-size-fits-all distances need re-evaluation due to the varying transport
properties of different pathogen classes that are found in human excrement and due to the
limited number of field studies that have supported the recommended guidelines for a
“safe” distance.

Another approach to this problem of co-locating water supply and waste-disposal
technologies near each other is to account for the groundwater flow hydraulics, ensuring
that water from the upgradient point source does not flow to the well. That is, we want to
ensure that the latrine or other point source lies outside the capture zone of the extraction
well. Equivalently, we want to ensure that the extraction well lies outside the zone of
influence of the point source. Put yet another way, we want to ensure that the point
source and the extraction well are not hydraulically connected. This could be accomplished
using a numerical model such as MODFLOW, but here we instead seek an analytical
mathematical equation or criterion that can be applied quickly and easily to a proposed
scenario without reliance on specialized computational resources. The advantages of using
an analytical solution have been pointed out by Shan [17] and Haitjema [18], among others.
Some examples of these advantages are direct and explicit calculations [17] and improved
conceptual understanding as compared to more complicated model designs [18].

There are several examples of relevant analytical modeling in previous well-hydraulics
literature, but apparently none have addressed the specific question asked here. For
example, Javandel and Tsang [19] derived equations for delineating the capture zones of
one, two, or three extraction wells in a regional flow field. This work was later expanded
by Grubb [20], Shan [17], and Christ and Goltz [21], all of whom overcame some of the
limitations of the work by Javandel and Tsang [19]. However, none of those authors
considered the presence of a point source, which affects the groundwater hydraulics if the
rate of water loading from the point source is appreciable. Cunningham and Reinhard [22]
and Cunningham et al. [23] derived analytical equations for the hydraulics of an extraction
well near a point source (in the form of an injection well), including the condition under
which the wells are hydraulically disconnected; however, those analyses were limited to
situations in which the pumping rates of the two wells were equal and the well pair was
oriented perpendicular to the regional groundwater flow. Recently, Zhang and Wang [24]
overcame the latter of these two limitations, but not the former.

Accordingly, the overall objective of this paper is to quantify the conditions under
which an upgradient point source is hydraulically disconnected from a downgradient
extraction well. Specifically, we seek (1) an approach or methodology that can exactly
determine a minimum offset distance required to ensure that the point source is outside
the capture zone of the extraction well, and (2) a convenient, easy-to-use approximate
analytical solution or equation that agrees closely with the exact solution but does not
require a computer. To advance the work of previous researchers, the solutions derived
herein are able to consider the situation in which the hydraulic loading rate of the point
source differs from the pumping rate of the extraction well, as well as the situation in which
the well and the point source are oriented arbitrarily relative to the regional groundwater
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flow. Application of the criteria developed herein for siting a well near a point source will
protect the quality of the water extracted by the well and hence will protect the health of
the users of the well.

The second of our two specific objectives is necessary because 2.9 billion people still
live offline, with 96% of those residing in LMICs [25]. In the 46 UN-designated least
developed countries (LDCs), 76% of the population is covered by a mobile broadband
signal, but only 25% are using the Internet [25]. Furthermore, there is a significant overlap
between the 2.9 billion people living offline, the 3.5 billion people lacking access to safely
managed sanitation services, and the 2.2 billion people lacking access to safely managed
water services [26–28]. Water and sanitation solutions that require computer resources
may be of limited value to such constituencies, indicating the need for simple but accurate
pencil-and-paper solutions such as those presented herein.

2. Materials and Methods
2.1. Conceptual Framework

We consider a situation in which a point source of pollution is located upgradient of an
extraction well. Regional groundwater flow is assumed to be steady and uniform. Without
loss of generality, we can assign the −x direction as the direction of regional groundwater
flow, and we can assign the location of the origin (0, 0) to the extraction well (cf. [19]). The
point source is thus located at a location (xps, yps) for which xps > 0. The y-location of
the point source, yps, could be either positive or negative, but here we consider only the
situation in which yps > 0. This conceptual model is illustrated in Figure 1.
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Figure 1. Conceptual model of the scenario considered in this paper and the key question requiring
resolution. Note that Figure 1 is provided as a plan view or “birds-eye view” of the area of interest,
not an elevation view. The x- and y-directions represent orthogonal horizontal directions (e.g., east
and north). Regional groundwater flow is in the −x direction (e.g., flow to the west).

Important approximations or simplifications that we adopt are the following:

1. Regional flow is steady, e.g., the direction and the magnitude of the regional flow do
not vary seasonally or with precipitation;

2. The shallow aquifer is homogeneous and isotropic in the x- and y-directions;
3. Flow can be considered as two-dimensional (depth-integrated);
4. The extraction rate of the well is constant over time;
5. The rate at which the point source introduces water into the aquifer (which we will

hereafter call the hydraulic loading rate) is constant over time.

In most real situations, the extraction rate of the well and the hydraulic loading rate of
the point source are not likely to be constant over time; e.g., a latrine introduces water into
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the aquifer intermittently depending on the usage patterns and flushing mechanism of the
latrine. However, to ensure a conservative siting of the well and the point source that is
most protective of health, we can assume in the ensuing development that the well and the
point source are always operating at their maximum flow rates.

From Figure 1, it is obvious that if the point source is directly upgradient of the well
(i.e., if yps = 0), then contaminated water from the point source will always flow into the
extraction well. Thus, to create a situation in which the well is protected from the point
source, we require that |yps| > 0. We therefore pose the key question as follows: for a given
set of conditions, what is the minimum value of yps that ensures that the well and the point
source are hydraulically disconnected, i.e., that no water from the point source reaches the
well? We call this minimum separation distance ymin. If yps < ymin, then the well and the
point source are hydraulically connected, and at least some of the water from the point
source will reach the well. However, if yps > ymin, they are hydraulically disconnected,
and the well is “safe” from contamination from the point source. These two situations are
illustrated graphically in Figure 2.
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Figure 2. Streamlines of the groundwater flow in the vicinity of a point source (denoted “ps”)
and a downgradient extraction well (denoted “w”): (a) Well and point source are hydraulically
connected (as evidenced by the connecting streamline) because yps < ymin; (b) Well and point source
are hydraulically disconnected (as evidenced by the dividing streamline) because yps > ymin.

2.2. Mathematical Model and Non-Dimensionalization

To model this situation quantitatively, we employ the analytic element method [29–31].
This method relies on the specification of a potential function Φ(x, y) and a stream function
Ψ(x, y) that describe the flow of the groundwater. Groundwater flows from regions of high
Φ to regions of low Φ; the path of the groundwater is along streamlines (see Figure 2),
which are curves along which Ψ is constant. The functions Φ and Ψ can be specified
through the superposition of the “analytic elements” pertaining to the situation being
modeled; for this paper, the relevant elements are a point source, an extraction well, and
regional groundwater flow. The functions Φ and Ψ are known for these elements [29–31]
and can therefore be employed here without derivation.

Specifically, for the situation illustrated in Figure 1, the potential function Φ(x, y) and
the stream function Ψ(x, y) are given by the following:

Φ(x, y) = QRx +
Qw
2π

ln
√

x2 + y2 −
Qps

2π
ln

√(
x − xps

)2
+
(

y − yps

)2
+ Φ0 (1)
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Ψ(x, y) = QRy +
Qw
2π

tan−1
(y

x

)
−

Qps

2π
tan−1

(y − yps

x − xps

)
(2)

in which QR is the regional volumetric groundwater flow rate (per unit width in the
perpendicular direction) (L2 T−1); Qw is the extraction rate of the well (L3 T−1); Qps is the
hydraulic loading rate from the point source into the groundwater (L3 T−1); and Φ0 is an
arbitrary constant (L3 T−1) that allows Φ to be set to a desired value at a particular location.
For a confined aquifer, QR is equivalent to the product B U of Javandel and Tsang [19],
i.e., the product of the vertical aquifer thickness and the specific discharge rate. Curves
along a constant value of Ψ are streamlines, i.e., the pathlines of the flowing water; curves
along a constant value of Φ are equipotentials; the equipotentials and the streamlines are
orthogonal [30]. Strictly speaking, Equation (1) is not mathematically valid because it is
not allowable to take the logarithm of a quantity with units; however, we can consider that
Φ0 contains the necessary constant terms that combine with the logarithms shown in the
equation, making the arguments dimensionless and thus making Equation (1) valid for
practical purposes.

Equations (1) and (2) contain five parameters: QR, Qw, Qps, xps, and yps. To reduce the
number of parameters, we can non-dimensionalize Equations (1) and (2). Following the non-
dimensionalization of Javandel and Tsang [19], we define the following non-dimensional
terms as:

Φ̂ =
Φ

Qw
Ψ̂ =

Ψ
Qw

x̂ =
QRx
Qw

ŷ =
QRy
Qw

α =
Qps

Qw
. (3)

This allows Equations (1) and (2) to be rewritten as the following:

Φ̂(x̂, ŷ) = x̂ +
1

2π
ln
√

x̂2 + ŷ2 − α

2π
ln

√(
x̂ − x̂ps

)2
+
(

ŷ − ŷps

)2
+ Φ̂0 (4)

Ψ̂(x̂, ŷ) = ŷ +
1

2π
tan−1

(
ŷ
x̂

)
− α

2π
tan−1

(
ŷ − ŷps

x̂ − x̂ps

)
. (5)

Whereas Equations (1) and (2) depended on five parameters, Equations (4) and (5) de-
pend on only three: x̂ps, ŷps, and α. The parameters x̂ps and ŷps are the non-dimensionalized
coordinates of the point source. The parameter α is the ratio of the hydraulic loading rate
of the point source to the extraction rate of the well. In terms of the dimensionless variables,
the key question is now: for any given values of x̂ps and α, what is the minimum value
of ŷps that ensures the point source and the well are hydraulically disconnected? We use
the notation ŷmin to denote this minimum acceptable value of ŷps. In the sub-sections
that follow, we describe two methods for determining ŷmin; the first of these makes use
of the analytic element method but requires the use of a computer; the second can be
implemented simply with nothing more than pencil and paper.

2.3. Exact Determination of ŷmin for Specified Values of α and x̂ps

To ensure that the point source and the well are hydraulically disconnected, we must
determine ŷmin for the applicable values of x̂ps and α. For constituencies that have access
to computers and sufficient coding expertise, the value of ŷmin can be determined exactly
(to within machine accuracy) via the following method.

Building on the functions Φ(x, y) and Ψ(x, y) as specified above, we now make use
of the (dimensionless) complex location ẑ = x̂ + iŷ and the complex potential function
Ω̂(ẑ) = Φ̂ + iΨ̂, as presented by Strack [29,30]. Switching from the real domain (x̂, ŷ,
Φ̂, and Ψ̂) to the complex domain (ẑ and Ω̂) facilitates the algebra in the mathematical
derivation that follows. We denote the yet-to-be-determined location of the point source as
ẑps = x̂ps + iŷps. Equations (4) and (5) can then be rewritten as a single equation in complex

notation as follows, making use of known functions Ω̂ derived elsewhere [29–31]:

Ω̂(ẑ) = ẑ +
1

2π
ln ẑ − α

2π
ln
(
ẑ − ẑps

)
+ Ω̂0. (6)
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Stagnation points in the flow field are located where the complex discharge function
Ŵ(ẑ) = −dΩ̂/dẑ equals 0 [32]. Differentiating Equation (6) and equating to 0 yields the
following equation for the location of the stagnation points:

2π
(
ẑstag pt)2

+
(
1 − α− 2πẑps

)
ẑstag pt − ẑps = 0. (7)

Solving the quadratic Equation (7) provides the locations of two stagnation points in the
flow field, ẑstag pt

1 and ẑstag pt
2 .

When the point source is located at its critical value, i.e., when ŷps = ŷmin, the two

stagnation points ẑstag pt
1 and ẑstag pt

2 both lie on the bounding streamline [32]. This means
that the value of the streamfunction Ψ̂ must be equal at ẑstag pt

1 and ẑstag pt
2 (Because of

the “branch cut” and the fact that the inverse tangent function is not single-valued, the
value of Ψ̂ can actually differ by a value of exactly 1 at the two stagnation points). The
streamfunction Ψ̂ is the imaginary part of the complex function Ω̂, which can be evaluated
at the two stagnation points using Equation (6). Thus, the problem of finding ŷmin for given
values of x̂ps and α can be reframed as finding the location ŷps that enables the following
condition to be met:

∆Ψ̂ = Ψ̂
(

ẑstag pt
1

)
− Ψ̂

(
ẑstag pt

2

)
= 0. (8)

A root-finding algorithm can be employed to find the value of ŷps that enables
Equation (8) to be satisfied. This yields ŷmin for the given values of x̂ps and α. We wrote
short functions in MATLAB® (version 2023a) to compute ẑstag pt

1 , ẑstag pt
2 , and ∆Ψ̂, then used

the “fzero” root-finding function in MATLAB® to find ŷmin. This yields a value of ŷmin that
is exact to within the tolerance of the root-finding algorithm employed. Our MATLAB®

codes are provided in Appendix A. To execute the MATLAB® functions to obtain the
exact value of ŷmin, the three functions from Appendix A should be saved in the same
file directory; then, at the MATLAB® command prompt, type “MAIN_find_y_min(x_ps,
alpha),” inserting the desired numerical values for x_ps and alpha.

As will be seen later, a point of particular interest is α = 1.0, x̂ps = 0. For this partic-
ular combination, we determined that ŷmin = 0.5792. The relevance of this value will be
discussed subsequently.

2.4. Development of Approximate Analytical Equations ŷmin = f (x̂ps) and ymin = f (xps)

The sub-section immediately preceding describes a method to determine ŷmin exactly
for any given combination of x̂ps and α. We recommend application of that method when
the user has the necessary computer access and coding expertise to implement it. However,
it is also an objective of this paper to find a convenient, easy-to-use, approximate analytical
equation for ŷmin that agrees closely with the exact solution but does not require a computer
for the following reasons:

1. A simple-but-accurate approximate analytical solution will be deployable by con-
stituencies that do not have adequate computer access to implement the exact solution;

2. A suitably simple analytical equation explicitly articulates the dependence of ŷmin
on x̂ps and α, whereas the “exact” procedure does not. Thus, the analytical equation
may yield insights into the physics of the problem and/or may enable estimation of
important conditions or criteria;

3. As will be seen subsequently, an analytical equation for ŷmin can be applied to a
well-known problem in groundwater hydraulics, enabling a closed-form solution to a
problem that previously relied on the solution of a transcendental equation.

There might also be additional advantages beyond these that we have not yet considered.
Thus, to find an approximate analytical equation for ŷmin, we proceeded as follows:

We applied the procedure described in Section 2.3 to find the exact value of ŷmin for
101 different combinations of x̂ps and α. We considered eight values of α: 0, 0.1, 0.2, 0.5,
1.0, 2.0, 5.0, and 10.0. For each of these values of α, we considered eleven values of x̂ps: 0,
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0.25, 0.5, 1.0, 1.5, 2, 3, 4, 5, 7, and 10. In addition, we considered the pair of values α = 1.0,
x̂ps = 15. Finally, for each of the three largest values of α (2.0, 5.0, and 10.0), we also
considered x̂ps values of 15, 20, 25, and 30. After obtaining the exact values of ŷmin for these
101 sets of conditions, we graphed ŷminvs.x̂ps for each of the eight values of α considered.
Each of the resultant eight graphs contained between 11 and 15 data points. Each graph
exhibited the same general shape, but the particular values on the graph vary with α, i.e.,
values of ŷmin are generally higher for a higher value of α. We considered different functions
that matched the general shape of the ŷminvs.x̂ps graphs until identifying a function that
matched the data closely for all eight values of α. For the dimensionless variables, the
function ŷmin = f (x̂ps) contains one parameter, namely, α. Then, we converted all variables
back to their dimensional forms to determine the function ymin = f (xps); this function
contains the three parameters QR, Qw, and Qps.

3. Results
3.1. Exact Values of ŷmin for Specified Values of α and x̂ps

In Section 2.3, we presented a methodology for determining the (dimensionless)
minimum required off-center distance, ŷmin, exactly (to within the accuracy of a root-
finding algorithm). To verify the validity of the method, we applied it to 101 different
combinations of x̂ps and α. For each set of x̂ps and α, we determined ŷmin using the method
described, and we verified graphically that the determined value of ŷmin is the minimum
required off-center distance. That is, we graphically verified that setting ŷps < ŷmin leads
to hydraulic connection between the point source and the well, but setting ŷps > ŷmin leads
to hydraulic disconnection between the point source and the well, as illustrated in Figure 2.

We therefore conclude that the method described in Section 2.3 is valid for determining
ŷmin. Because this procedure is exact to within the accuracy of the root-finding algorithm
employed, we recommend this route for determining ŷmin when the user has access to the
computer tools necessary to implement the described procedure.

3.2. Closed-Form Approximation for ŷmin

For constituencies that lack the computer resources or access required to find ŷmin
exactly, we determined the following approximate analytical solution, which can be applied
easily using only pencil and paper:

ŷmin = 0.25(1 + α)

(
1 +

x̂ps

x̂ps + 0.32(1 + α)

)
(9)

To demonstrate the suitability of this equation, Figure 3 compares the predictions of
Equation (9) to the exact values of ŷmin. For clarity of presentation, Figure 3 shows the
results for only four of the eight values of α considered; thus, Figure 3 contains only 47
of the 101 overall cases considered. However, the agreement between the approximation
and the exact values was similar for all eight values of α, including those values not
shown in Figure 3. As evidence of that fact, Appendix B provides the estimates of ŷmin
from both the computer-based method and the approximate analytical solution for all
101 cases considered.

From Figure 3, it is clear that Equation (9) is, overall, in excellent agreement with the
exact values, particularly when x̂ps is relatively large and/or when α is relatively small.
For larger values of α and smaller values of x̂ps, the approximate analytical solution under-
predicts the exact value. For instance, for the particular condition that α = 1.0, x̂ps = 0, the
exact value of ŷmin is 0.5792, but Equation (9) predicts ŷmin = 0.500, a relative error of about
14%. This is important because siting the point source too close to the well could threaten
the quality of the extracted water. We therefore recommend including some margin of
safety if using Equation (9) to site the point source or the well, but including some margin
of safety is good practice in any case. If we consider all 101 combinations of x̂ps and α, the
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average relative error is only 1.3%, and the root mean square relative error (RMSRE) is
2.9%. The RMSRE is calculated as follows:

RMSRE =

√
1
n

n

∑
i=1

(∆ŷi)
2 ∆ŷi =

ŷobserved
i − ŷmodeled

i

ŷobserved
i

(10)

Furthermore, for values of x̂ps ≥ 1.0, the RMSRE is only 0.52% (n = 77; see Appendix B).
This shows that Equation (9) is nearly perfect except when x̂ps is small, a conclusion that
agrees with visual inspection of Figure 3.
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3.3. Dimensional Form of the Approximate Analytical Equation

Using Equation (3) to convert Equation (9) back to dimensional variables, we derive the
following approximate analytical equation for ymin, the dimensional form of the minimum
required off-center distance:

ymin =
L
4

(
1 +

xps

xps + 0.32 L

)
(11)

in which the parameter L has dimensions of length and is given by the following:

L =
Qw + Qps

QR
. (12)

Equations (11) and (12) are interesting because, in theory, the function ymin = f (xps)
could depend upon three parameters: QR, Qw, and Qps. However, these three parameters
appear only as the group L = (Qw + Qps)/QR. Thus, the function ymin = f (xps) depends
only on one parameter, L, making Equation (11) quite simple. In fact, Equation (11) has
exactly the same functional form as Equation (9), with (1 + α) in Equation (9) replaced by L
in Equation (11).
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From Equation (11) we can see that, as xps increases (the point source is moved farther
upgradient from the well), ymin approaches an asymptotic value of L/2. This gives us a sim-
ple way to ensure that a well and a point source are not hydraulically connected: if the “off-
center” distance between the well and the point source is at least L/2 = (Qw + Qps)/(2 QR),
then they will necessarily be hydraulically disconnected, regardless of the upgradient
distance between them.

It is not surprising that the required off-center distance, ymin, scales with the group
(Qw + Qps)/QR. This means that if either the extraction rate of the well is high or the
hydraulic loading rate of the point source is high—or both—then a large off-center distance
is required to ensure that the well and the point source are hydraulically disconnected. That
result is rather intuitive. However, despite the unsurprising qualitative nature of the result,
Equations (11) and (12) are useful because they present the specific dependence of ymin
upon the relevant hydraulic rates. Furthermore, Equations (11) and (12) are simple and
easy to apply if the relevant hydraulic rates and groundwater flow rate can be estimated
reliably. This is important because our objective was to determine an analytical equation
that is simple and easy to apply but still sufficiently accurate.

4. Discussion

Having developed both exact and approximate methods for determining the minimum
required off-center distance to ensure hydraulic disconnection, it is worthwhile to consider
how the results of this paper are related to the results from relevant prior publications, as
well as any limitations that might apply to the results herein.

4.1. Application to the Results of Javandel and Tsang [19]

In their classic paper, Javandel and Tsang [19] derived an analytical equation for the
capture zone of a single extraction well in regional flow. Using the notation system of this
current paper, Equation (2) of Javandel and Tsang would be written as follows:

ŷ = ±1
2
− 1

2π
tan−1

(
ŷ
x̂

)
(13)

This is the dimensionless form of the equation for the boundary of the capture zone.
Notably, Equation (13) is a transcendental equation rather than a closed-form expression;
that is, ŷ appears on both the left- and right-hand sides of the equation. The solution of
the equation for a particular value of x̂ therefore requires iteration or another numerical
solution technique. (It is possible to solve directly for x̂ given a specified value of ŷ, but it is
not possible to solve directly for ŷ given a specified value of x̂.)

However, we can realize that the situation considered by Javandel and Tsang [19]—a
single extraction well in uniform regional flow—is a special case of the situation considered
in this paper. Specifically, as the dimensionless parameter α = Qps/Qw approaches zero,
the scenario modeled in this paper becomes the same as that considered by Javandel and
Tsang [19]; we want to know if the location of a point source (with a negligible hydraulic
loading rate, such that the groundwater hydraulics are not affected) lies inside the capture
zone of the extraction well. Therefore, if we set α = 0, Equation (9) in this paper should
provide a closed-form approximation to the equation derived by Javandel and Tsang [19].
The boundary of the capture zone of a single extraction well in regional flow can therefore
be approximated by the following closed-form equation (in dimensionless form):

ŷ = 0.25
(

1 +
x̂

x̂ + 0.32

)
for x̂ ≥ −0.16. (14)

To demonstrate the validity of Equation (14), Figure 4 compares the analytical result of
Javandel and Tsang [19] to the approximation of Equation (14). From Figure 4, it is clear that
the closed-form Equation (14) is a suitable approximation. The x-intercept of the analytical
solution is −1/2π ≈ −0.159, and the x-intercept of the approximation is −0.16. For nearly
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all values of x̂, the difference between the analytical solution and the approximation is
less than 1%. We therefore contend that Equation (14) is valuable as an easily applicable
closed-form approximation to the classic result of Javandel and Tsang [19]. To the best of
our knowledge, this is the first time that a closed-form approximation to Equation (2) of
Javandel and Tsang [19] has been presented.
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4.2. Comparison with the Results of Cunningham and Reinhard [22]

Cunningham and Reinhard [22] and Cunningham et al. [23] considered an injection–
extraction well pair in uniform regional flow, which is a situation similar to that considered
in this current paper. Cunningham and Reinhard [22] found that the injection well and
the extraction well are hydraulically connected only if a dimensionless group that they
called ξ is greater than 1.1. Converting from the notation system of Cunningham and
Reinhard [22] to the notation system of the current paper, this result would imply that the
injection well and the extraction well are hydraulically connected only if ŷps < 2/(1.1π),
which is equivalent to saying that ŷmin ≈ 0.579.

However, Cunningham and Reinhard [22] and Cunningham et al. [23] only considered
the case in which the injection rate and the extraction rate are equal and the well pair is
oriented perpendicular to the regional flow. In the notation of the current paper, the first of
these conditions means that α = 1; the second of these conditions means that x̂ps = 0. In
this paper, for the case of α = 1 and x̂ps = 0, we found that ŷmin = 0.5792. Thus, the results
of Cunningham and Reinhard [22] and the results of the current paper are in near-exact
agreement (ŷmin = 0.579 vs. ŷmin = 0.5792).

4.3. Comparison with the Results of Zhang and Wang [24]

Zhang and Wang [24] also considered an injection–extraction well pair in uniform
regional flow; they termed it their “1e/1i” system. Zhang and Wang [24], like Cunningham
and Reinhard [22], considered the particular case that the injection rate and the extraction
rate are equal, which, in the notation of this current paper, means α = 1. However, Zhang
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and Wang [24] expanded upon the work of Cunningham and Reinhard [22] by allowing the
well pair to be oriented at any angle relative to the regional groundwater flow. Zhang and
Wang [24] determined the conditions under which the wells were hydraulically connected
or hydraulically disconnected; in their notation, a value of η = 0 indicates the boundary
between connected and disconnected conditions. Therefore, we can consider some of the
η = 0 cases of Zhang and Wang [24], and we can see if they agree with this paper’s results
for the case that α = 1.

When the well pair is oriented perpendicular to the regional groundwater flow, the
notation of Zhang and Wang [24] would say that the angle is π/2. Figure 5 of Zhang and
Wang [24] shows that at this angle, η = 0 occurs when their dimensionless group qD is
approximately 1.8. Converting to the notation of this current paper, that would correspond
to the condition that ŷmin = (1.8/π) sin(π/2) ≈ 0.573. As noted above, we found in this
paper that ŷmin = 0.5792 for these conditions. The agreement is within 2%, and it might in
fact be better than that, because the value of 1.8 was estimated from visual inspection of
Figure 5 from Zhang and Wang [24].

When the well pair is oriented at a 45◦ angle to the regional flow (with the injection
well upgradient of the extraction well), the notation of Zhang and Wang [24] would say
that the angle is π/4. For this angle, Figure 5 of Zhang and Wang [24] does not show
what value of qD would produce η = 0. However, we can extrapolate from Figure 5 and
estimate that this condition occurs when their dimensionless group qD is approximately 3.5.
Converting to the notation of this current paper, that would correspond to the condition that
ŷmin = (3.5/π) sin(π/4) ≈ 0.788. In this current paper, an angle of 45◦ means that x̂ps = ŷps.
For the case that α = 1, the condition that ŷmin = x̂ps occurs at ŷmin = 0.7736 (based on
Equation (9)). Therefore, this paper agrees with Zhang and Wang [24] to within 2%. Again,
the actual agreement might be even better than that, because the value of 3.5 was estimated
from extrapolation of Figure 5 from Zhang and Wang [24].

Consideration of additional points from Figure 5 of Zhang and Wang [24] is difficult
because they defined their coordinate system differently from the way it is defined in
Figure 1 of this paper. Also, much of the analysis of Zhang and Wang [24] is for situations
in which the extraction well is upgradient of the injection well (which, in their notation,
means that the angle is greater than π/2); we did not consider such situations in this paper,
limiting ourselves to situations in which the point source is upgradient of the extraction
well. However, based on the two sets of conditions that can be easily compared, it appears
that the results of the current analysis agree with those of Zhang and Wang [24] to within
2%, and perhaps even better than that.

A summary of the comparisons discussed above is provided in Table 1.

Table 1. Comparison of this paper’s results to the corresponding results from Cunningham and
Reinhard [22] or Zhang and Wang [24].

Conditions
Considered

Value of
^
ymin Found
in

This Paper

Value of
^
ymin Found by

Previous
Researchers

Relative Difference
between This Paper and Previous

Results

α = 1, x̂ps = 0 0.5792 0.579 [22] 0.03%
α = 1, x̂ps = 0 0.5792 0.573 [24] 1.1%
α = 1, x̂ps = ŷps 0.7736 0.788 [24] 1.8%

4.4. Application of the Methodology and Equations Presented Herein

The primary application we envision for the methodology and equations presented
above is the siting of a proposed point source (such as a latrine) near an existing well
or the siting of a proposed well near an existing point source. These equations might be
particularly useful in low- and middle-income countries where shallow groundwater is
an important resource, where latrines are used frequently for sanitation, and where siting
entities might not have ready access to computing resources and coding experience, nor to
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more sophisticated numerical models such as MODFLOW. The method presented here is
also applicable to assess the risk of contamination in the vicinity of a leaking underground
storage tank or a leaking septic tank. Furthermore, in contexts where more advanced
computing resources are available, the methodology and equations presented above could
likely be used as screening tools to decide which possible contamination situations need
more in-depth investigation with MODFLOW or similar computational tools.

4.5. Limitations to This Analysis

The values and equations derived above are based on certain assumptions or simplifi-
cations that can limit their applicability. Specifically, we believe the following are the most
important limitations of the analysis presented here:

1. Application of Equation (9) or Equation (11) requires the user to have reliable estimates
of the magnitude and direction of regional groundwater flow. This knowledge might
not be readily available in some contexts;

2. Equations are derived by assuming that both the magnitude and direction of the
regional flow are steady over time, e.g., any seasonal variations in the regional flow
must be small. In some situations, particularly for shallow unconfined aquifers such
as those considered here, the direction of regional flow can vary significantly over
time. In these situations, Equations (9) and (11) could still be applied to assess the risk
of well contamination, but the equations would need to be applied for each of the
most “extreme” possible flow directions to ensure that the well is protected regardless
of the flow direction;

3. The injection rate of the point source and the extraction rate of the well are assumed
to be steady in time. This is probably not realistic. However, this limitation can be
overcome by assuming that the point source and the well always operate at or near
their maximum flow rates. That will result in a conservative estimate of ymin that is
protective of health;

4. The hydraulic conductivity in the vicinity of the well and the point source are assumed
to be sufficiently homogeneous that heterogeneity has negligible effects on the flow
field. In environments that exhibit high degrees of heterogeneity even at small scales,
the equations derived here might not apply;

5. The aquifer is assumed to be isotropic in the x- and y-directions. This limitation can
be overcome by applying a coordinate transform, as discussed and demonstrated
elsewhere (e.g., Strack [30]; Fienen et al. [33]; Fitts [34]);

6. The equations derived here account only for a single point source, a single extraction
well, and regional groundwater flow. Therefore, any other features that affect the
local flow field (e.g., recharge zones, physical barriers to flow, additional wells) would
have to be sufficiently far away that they do not impact the groundwater flow in the
vicinity of the point source and the extraction well.

Future work could quantify how sensitive the model results are to violations of these
simplifications and assumptions. For instance, how much temporal variability in the
regional flow direction and/or how much heterogeneity of conductivity is allowable?
However, such analyses are beyond the scope of the current paper. Despite the limitations
listed above, we envision the methodology and equations presented here as useful in a
variety of contexts, as discussed in the preceding sub-section. As with all models, results
will be best when the user has access to reliable input data such as the direction and
magnitude of regional flow.

5. Conclusions

The objective of this paper was to quantify the conditions under which an upgradient
point source is hydraulically disconnected from a downgradient extraction well. The
objective was achieved by developing a methodology for determining ymin, the minimum
“off-center” distance required to ensure no hydraulic connection between the well and the
point source. Key findings, results, and conclusions are the following:
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• For constituencies with adequate computer resources, we have presented a computer-
based method capable of finding ymin exactly (to within the tolerance of a computer-
based root-finding algorithm);

• For constituencies lacking reliable access to computing resources, we have presented a
simple approximate closed-form expression for ymin;

• The simple algebraic solution for ymin was shown to provide an excellent approxima-
tion to the exact solution. The average relative error of the approximate solution is
less than 3% for the conditions we considered. For a subset of scenarios in which the
point source is sufficiently far upgradient of the well (n = 77), the root mean square
relative error of the approximate solution is only 0.52%;

• We found that ymin depends on the upgradient separation distance xps between the
point source and the latrine, as well as a length parameter that we call L. The length
parameter L is easily computed from the hydraulic loading rate of the point source,
the extraction rate of the well, and the regional groundwater flow rate, as shown in
Equation (12);

• If ymin > L/2, then the well and the point source are guaranteed to be hydraulically
disconnected regardless of the upgradient separation distance xps;

• Results obtained herein are in good agreement with the corresponding results from
Javandel and Tsang [19], Cunningham and Reinhard [21], and Zhang and Wang [24];

• The methodology and equations presented here enable the siting of a proposed well
or a proposed point source at a location that protects the quality of the water extracted
by the well and hence protects the health of the users of the well.
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Appendix A. MATLAB® Codes for Constituencies with Necessary Computer Access

As described in Section 2.3, we wrote short codes in MATLAB® to determine ŷmin
exactly (to within the tolerance of a root-finding algorithm) for any given values of x̂ps
and α. This method of estimating ŷmin is recommended for those constituencies that have
access to the necessary computing resources and coding expertise. The codes of the three
MATLAB® functions we developed are provided in Figure A1.
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Appendix B. Comparison of Computer-Based and Equation-Based Estimates of
^
ymin

Figure 3 compares the near-exact computer-based estimate of ŷmin and the approx-
imate analytical solution of ŷmin for 47 of the 101 cases we considered. Tables A1–A4
provide the exact and modeled values of ŷmin for all 101 cases.
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Table A1. Exact (computer-based) and modeled (from Equation (9)) values of ŷmin for α = 0 and for
α = 0.1.

^
xps

α = 0 α = 0.1

Exact
(Computer-Based)

Value
of

^
ymin

Analytical
Estimate
of

^
ymin

Exact
(Computer-Based)

Value
of

^
ymin

Analytical
Estimate
of

^
ymin

0 0.2500 0.2500 0.2906 0.2750
0.25 0.3489 0.3596 0.3836 0.3892
0.5 0.3938 0.4024 0.4298 0.4364
1 0.4347 0.4394 0.4742 0.4784

1.5 0.4533 0.4560 0.4951 0.4977
2 0.4637 0.4655 0.5071 0.5088
3 0.4750 0.4759 0.5202 0.5211
4 0.4810 0.4815 0.5272 0.5278
5 0.4845 0.4850 0.5316 0.5319
7 0.4889 0.4891 0.5367 0.5368
10 0.4913 0.4922 0.5406 0.5406

Table A2. Exact (computer-based) and modeled (from Equation (9)) values of ŷmin for α = 0.2 and for
α = 0.5.

^
xps

α = 0.2 α = 0.5

Exact
(Computer-Based)

Value
of

^
ymin

Analytical
Estimate
of

^
ymin

Exact
(Computer-Based)

Value
of

^
ymin

Analytical
Estimate
of

^
ymin

0 0.3278 0.3000 0.4285 0.3750
0.25 0.4176 0.4183 0.5155 0.5034
0.5 0.4652 0.4697 0.5680 0.5663
1 0.5130 0.5168 0.6262 0.6284

1.5 0.5363 0.5389 0.6569 0.6591
2 0.5499 0.5517 0.6757 0.6774
3 0.565 0.5660 0.6972 0.6983
4 0.5732 0.5737 0.7091 0.7098
5 0.5782 0.5786 0.7167 0.7172
7 0.5842 0.5844 0.7257 0.7259
10 0.5888 0.5889 0.7327 0.7328

Table A3. Exact (computer-based) and modeled (from Equation (9)) values of ŷmin for α = 1 and for
α = 2.

^
xps

α = 1 α = 2

Exact
(Computer-Based)

Value
of ŷmin

Analytical
Estimate
of

^
ymin

Exact
(Computer-Based)

Value
of

^
ymin

Analytical
Estimate
of

^
ymin

0 0.5792 0.5000 0.8570 0.7500
0.25 0.6691 0.6404 0.9560 0.9050
0.5 0.7299 0.7193 1.0311 1.0068
1 0.8050 0.8049 1.1360 1.1327

1.5 0.8486 0.8505 1.2046 1.2073
2 0.8767 0.8788 1.2524 1.2568
3 0.9105 0.9121 1.3139 1.3182
4 0.9299 0.9310 1.3514 1.3548
5 0.9424 0.9433 1.3765 1.3792
7 0.9577 0.9581 1.4079 1.4095
10 0.9697 0.9699 1.4334 1.4343
15 0.9795 0.9795 1.4545 1.4549
20 1.4654 1.4656
25 1.4721 1.4723
30 1.4767 1.4767
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Table A4. Exact (computer-based) and modeled (from Equation (9)) values of ŷmin for α = 5 and for
α = 10.

^
xps

α = 5 α = 10

Exact
(Computer-

Based) Value
of

^
ymin

Analytical
Estimate
of

^
ymin

Exact
(Computer-

Based) Value
of

^
ymin

Analytical
Estimate
of

^
ymin

0 1.6392 1.5000 2.9064 2.7500
0.25 1.7568 1.6728 3.0383 2.9324
0.5 1.8577 1.8099 3.1585 3.0920
1 2.0211 2.0137 3.3698 3.3584

1.5 2.1469 2.1579 3.5491 3.5717
2 2.2462 2.2653 3.7030 3.7464
3 2.3917 2.4146 3.9526 4.0153
4 2.4922 2.5135 4.1455 4.2128
5 2.5652 2.5838 4.2984 4.3638
7 2.6636 2.6771 4.5236 4.5798
10 2.7497 2.7584 4.7420 4.7840
15 2.8251 2.8298 4.9510 4.9773
20 2.8658 2.8686 5.0709 5.0884
25 2.8912 2.8930 5.1482 5.1606
30 2.9085 2.9098 5.2021 5.2112
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