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Abstract: This study investigated the variability and trends in 115 years (1909–2023) of daily precip-
itation observed at three hydrometeorological stations in southern (Kaisaniemi), central (Kajaani),
and northern (Sodankylä) Finland. We also identified the most significant climate teleconnections
influencing daily precipitation variability at these three stations during the period 1951–2023. The
daily precipitation records were primarily classified into six grades, including very light (≤1 mm),
light (1–≤5 mm), moderate (5–≤10 mm), heavy (10–≤15 mm), very heavy (15–≤20 mm), and extreme
(>20 mm). On average, the most intense daily precipitation was determined at the Kaisaniemi station
in southern Finland. At this station, however, very light and light precipitation showed the lowest
frequency, but other graded daily precipitation events were the most frequent. At all three stations,
the intensity of very light precipitation significantly declined during the past 115 years, while its
frequency increased. The highest rates of such decreases and increases in the intensity and frequency
of very light daily precipitation were found at the Sodankylä stations in northern Finland, respectively,
but the lowest rates were at the Kaisaniemi station in the south. At the Kajaani station in central
Finland, the intensity of light precipitation decreased, but very heavy precipitation intensified. At
this station, however, the number of both moderate and heavy precipitation events increased over
time. Finally, historical variations in both the intensity and frequency of graded daily precipitation
events in Finland showed significant relationships with different climate teleconnections, particularly
the Scandinavia (SCAND) and the North Atlantic Oscillation (NAO) patterns.

Keywords: frequency; intensity; precipitation; teleconnections; trend; water resources

1. Introduction

Global mean surface air temperature (SAT) warmed by 1.09 ◦C in 2011–2020, com-
pared to the period 1850–1900, particularly in response to the significant increases in the
anthropogenic concentrations of greenhouse gas (GHG) emissions to the Earth’s atmo-
sphere [1]. Sea surface temperature (SST) also increased worldwide, mainly due to the
significantly higher atmospheric CO2 concentration in recent decades [2]. Based on the
Clausius–Clapeyron (C-C) relationship, such warmer SAT and SST fundamentally increase
atmospheric moisture content [3], thereby particularly leading to significant changes in dif-
ferent characteristics (mainly in terms of intensity and frequency) of extreme precipitation
events (EPEs) around the world [4–6]. Such alterations in EPEs have already posed serious
economic, social, and environmental sustainability challenges to humanity, particularly in
developing countries with high population density, vulnerable infrastructures, and poor
land-use management [7].

Globally, the intensity and frequency of EPEs have substantially increased in recent
decades [1]. However, these increases are not essentially translated to similar alterations in
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such characteristics of EPEs on regional and local scales [8]. To investigate historical and
future changes in EPEs around the world, most of the previous studies [9–11] applied a
set of extreme precipitation indices recommended by the Expert Team on Climate Change
Detection and Indices (ETCCDI) [12]. These extreme indices were principally developed
based on daily precipitation amounts less, equal to, or greater than a couple of predefined
absolute values, threshold numbers, or long-term NNth percentiles (e.g., NN = 99) [13].
There are also several studies [14–16] focusing on extreme value analysis (EVA) approaches,
like the peak-over-threshold (POT), for evaluating spatio-temporal variability and changes
in regional and local EPEs. A few other studies, however, defined the characteristics of EPEs
based on different grades of daily precipitation amounts [17–19]. Although we have already
applied extreme precipitation indices [20] and the POT approach [21] for investigating
spatio-temporal changes in EPEs in Finland, there is still a lack of studies on variations and
trends in graded daily precipitation records throughout this country.

In the era of global warming, it is not only important to investigate regional precip-
itation changes but also to explain their different underlying physical mechanisms. In
hydrology, the spatio-temporal variability across a region is generally related to the atmo-
spheric water content sources and transport paths [22] naturally controlled by different
large-scale patterns in atmospheric circulation around the Earth [23–25]. In general, these
patterns refer to stable, repeating, and extensive modes of atmospheric pressure anomalies
exposing the predominant airflow across a widespread geographical area [26]. They also
describe the persistent variability in the natural incidence of chaotic actions in the global
climate system [27]. The strength and effects of such patterns across a region through a
certain period of the year are principally quantified by numerical indices called “climate
teleconnections” [27]. The primary components of such climate teleconnections and their
effects on historical variability in regional EPEs around the world have been previously
reviewed [6,28–32]. For Finland, we already reported influential climate teleconnections
for variability in EPEs identified by applying the extreme precipitation indices [20] and the
POT approach [21]. However, understanding and explaining the role of climate teleconnec-
tions in the spatio-temporal variability and trends in historically graded daily precipitation
records throughout Finland is still well motivated.

This study aimed to investigate long-term historical graded daily precipitation events
throughout Finland and their relationships with the well-known large-scale climate tele-
connections. Accordingly, the specific objectives were to: (1) summarize statistical analyses
of 115-year (1909–2023) graded daily precipitation records at three hydrometeorological
stations in northern, central, and southern Finland; (2) determine significant trends in
both the intensity and frequency of such historical graded daily precipitation records;
and (3) identify influential climate teleconnections strongly influencing such variabilities
and trends in historical graded daily precipitation events throughout the country. Based
on [33], such observational studies can improve our knowledge about the effects of global
warming on climatic conditions and, consequently, water resources availability in cold
regions, playing an important role in acting towards achieving the 2030 United Nations
Sustainable Development Goals (SDGs) adopted in 2015 [34].

2. Materials and Methods
2.1. Study Area and Data Used

Finland is located in the boreal environment [35] of northern Europe (Figure 1a). Its
climate is substantially affected by the latitudinal gradient, the Baltic Sea, the Scandinavian
mountains, the Atlantic Ocean, and continental Eurasia [36]. Based on the Köppen–Geiger
climate classification system, Finland generally experiences no dry season [37]. In this coun-
try, summers are warm and mild (Dfb) in southwestern coastal areas while cold and short
(Dfc) in most other parts [37]. However, a strong latitudinal gradient significantly controls
SAT variability in Finland. Accordingly, both annual mean SAT [38] and precipitation [39]
naturally increase in the south to north direction throughout this country (Figure 1b,c).
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Figure 1. Map of (a) northern Europe with Finland colored red; (b) average of annual mean SAT (◦C)
and (c) average of annual precipitation (mm) throughout Finland during the latest normal climate
period (1991–2020). Assembled based on [40].

For this study, three hydrometeorological stations of Kaisaniemi, Kajaani, and So-
dankylä in southern, central, and northern Finland, respectively, were selected (Figure 1).
These stations (i) have 115 years of daily precipitation records from 1909 to 2023; (ii) repre-
sent all three southern, central, and northern latitudes of Finland; and (iii) show the spatial
pattern of precipitation distribution throughout the country. In our previous studies [41–43],
we comprehensively explained the geographical coordinates, climatic conditions, devices,
and techniques for measuring precipitation at all three Kaisaniemi, Kajaani, and Sodankylä
stations. During the 115 years, a few hundred meters of dislocation of the stations, a
minor missing data percentage, and a small difference in summertime precipitation due to
applying different measuring devices and techniques were almost inevitable [44]; however,
it might not practically influence long-term precipitation variability and trend analyses [42].

According to our current knowledge about the large-scale atmospheric circulation
patterns influencing SAT and precipitation patterns in Finland [38,39,45,46], this study
selected six climate teleconnections (Nos. 1–6 in Table 1). The main features and mech-
anisms of such teleconnections, as well as their natural influences on climate variabil-
ity across northern Europe, are completely explained by [27]. Based on the 1981–2010
climatology, the standardized monthly time series (since January 1950) of these six cli-
mate teleconnections were obtained from the Climate Prediction Center (CPC) at the
National Oceanic and Atmospheric Administration (NOAA), USA, freely available at
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (accessed on 10 January
2024). For this study, the average values of these monthly time series from January to
December during a year were calculated as annual climate teleconnections for the years
1950–2023. Using the standardized monthly time series, seasonal climate teleconnections
for winter (December–February), spring (March–May), summer (June–August), and au-
tumn (September–November) for the years 1951–2023 were also calculated. Accordingly,
for example, winter 1951 (2023) referred to the period between 1 December 1950 (2022) and
the end of February 1951 (2023).

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
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Table 1. Summary of climate teleconnections considered for this study.

No. ID Climate Teleconnection Source References

1 AO Arctic Oscillation CPC [47]
2 EA East Atlantic CPC [48]
3 EA/WR East Atlantic/West Russia CPC [48,49]
4 NAO North Atlantic Oscillation CPC [48]
5 POL Polar/Eurasia pattern CPC [48]
6 SCAND Scandinavia pattern CPC [48,50]

2.2. Intensity and Frequency Indices

A number of intensity and frequency indices were defined to analyze historical daily
precipitation characteristics in Finland based on 1, 5, 10, 15, and 20 mm boundaries [17],
grouped into two categories: long-term (Table 2) and annual (Table 3). The long-term
intensity indices were used to investigate statistical characteristics of graded daily pre-
cipitation records during the full 115 years of our study period (1909–2023). However,
the annual indices were employed for determining statistically significant trends in in-
terannual fluctuations of graded daily precipitation intensity and frequency during the
period 1909–2023. Similarly, the long-term frequency indices were also described by their
interannual variations.

Table 2. Long-term intensity and frequency indices used to analyze historical daily precipitation in
Finland based on 1, 5, 10, 15, and 20 mm boundaries.

Characteristic ID Description Units

Intensity

iVLPt 0 mm < Daily precipitation ≤ 1 mm

mm day−1

iLPt 1 mm < Daily precipitation ≤ 5 mm
iMPt 5 mm < Daily precipitation ≤ 10 mm
iHPt 10 mm < Daily precipitation ≤ 15 mm

iVHPt 15 mm < Daily precipitation ≤ 20 mm
iEPt Daily precipitation ≥ 20 mm

Frequency

fVLPt 0 mm < Number of daily precipitation events ≤ 1 mm

days year−1

fLPt 1 mm < Number of daily precipitation events ≤ 5 mm
fMPt 5 mm < Number of daily precipitation events ≤ 10 mm
fHPt 10 mm < Number of daily precipitation events ≤ 15 mm

fVHPt 15 mm < Number of daily precipitation events ≤ 20 mm
fEPt Number of daily precipitation events ≥ 20 mm

Note: i: intensity; V: very; L: light; M: moderate; H: heavy; E: extreme; Pt: daily precipitation; and f: frequency.

2.3. Statistical Analyses

The Mann-Kendall non-parametric test was [51,52] applied for detecting statistically
significant (p < 0.05) trends in annual intensity and frequency indices at all stations studied
during the period 1909–2023. However, the trend-free pre-whitening (TFPW) method [53]
was used to determine statistically significant (p < 0.05) trends in time series for annual
intensity and frequency indices with positive autocorrelation. To calculate the magnitude
of such significant trends, the Sen’s slope method [54] was employed. The slope of trends
in annual intensity and frequency indices were normalized by their long-term (1909–2023)
median values, expressed as a percentage. The Spearman’s rank correlation (ρ) [55] was
used to measure relationships of annual intensity and frequency indices with different
climate teleconnections during the period 1951–2023. In the existence of autocorrelation
in the time series studied, the residual bootstrap (RB) method [56] with 5000 independent
replications was applied for estimating the standard deviations of the ]ρ-values. Such
statistical approaches have commonly been used in previous studies investigating climate
change and its impacts on hydrology and water resources around the world [57–61].
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Table 3. Annual intensity and frequency indices used to analyze historical daily precipitation in
Finland based on 1, 5, 10, 15, and 20 mm boundaries.

Characteristic ID Description Units

Intensity

iAAVLPt
Ratio of annual total precipitation for (0 mm < daily
precipitation ≤ 1 mm) to number of occurrences for

each year

mm day−1 year−1

iAALPt
Ratio of annual total precipitation for (1 mm < daily
precipitation ≤ 5 mm) to number of occurrences for

each year

iAAMPt
Ratio of annual total precipitation for (5 mm < daily
precipitation ≤ 10 mm) to number of occurrences for

each year

iAAHPt
Ratio of annual total precipitation for (10 mm < daily
precipitation ≤ 15 mm) to number of occurrences for

each year

iAAVHPt
Ratio of annual total precipitation for (15 mm < daily
precipitation ≤ 20 mm) to number of occurrences for

each year

iAAEPt Ratio of annual total precipitation for (daily precipitation
≥ 20 mm) to number of occurrences for each year

Frequency

fACVLPEt Number of events (0 mm < daily precipitation ≤ 1 mm)
for each year

days year−1

fACLPEt Number of events (1 mm < daily precipitation ≤ 5 mm)
for each year

fACMPEt Number of events (5 mm < daily precipitation ≤ 10 mm)
for each year

fACHPEt Number of events (10 mm < daily precipitation ≤ 15 mm)
for each year

fACVHPEt Number of events (15 mm < daily precipitation ≤ 20 mm)
for each year

fACEPEt Number of days with precipitation ≥ 20 mm

Note: i: intensity; AA: average annual; V: very; L: light; M: moderate; H: heavy; E: extreme; Pt: daily precipitation;
P: Precipitation; f: frequency; AC: annual count; and Et: events.

3. Results

On average, the amount of very light daily precipitation (iVLPt) in Finland during the
period 1909–2023 ranged from 0.31 to 0.44 mm (Figure 2a). Such graded daily precipitation
events were mostly measured in 53–130 days of a year (Figure 2e). Interestingly, the
Sodanklylä station experienced the lowest intensity (Figure 2a) but the highest frequency
(Figure 2e) of very light daily precipitation events. The light daily precipitation (iLPt) was
between 2.35 and 2.73 mm (Figure 2b), observed in 55–93 days per year (Figure 2f). The
most intense (iLPt) (Figure 2b) and frequent (fLPt) (Figure 2f) light daily precipitation
events were usually experienced at the Kajaani station in central Finland. The highest
intensities (iMPt, iHPt, iVHPt, and iEPt) and frequencies (fMPt, fHPt, fVHPt, and fEPt) of
daily precipitation greater than 5 mm were generally recorded at the Kaisaniemi station in
southern Finland (Figure 2b–d,f–h). The range of moderate daily precipitation intensity
(iMPt) was from 6.70 to 7.30 mm (Figure 2b), occurring 32–37 times per year (Figure 2f).
In Finland, both the intensities (Figure 2c,d) and frequencies (Figure 2g,h) of all heavy,
very heavy, and extreme daily precipitation events increased from the north (Sodankylä) to
south (Kaisaniemi) direction. The only exception referred to the lower frequency of extreme
daily precipitation (fEPt) in central (Kajaani) rather than in northern (Sodankylä) Finland
(Figure 2h). The intensity of extreme daily precipitation events (Figure 2d) ranged between
22.10 and 33.34 mm, experienced only 1–8 times in each year (Figure 2h).
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Figure 2. Box-and-whisker plots of long-term (1909–2023) daily precipitation (a–d) intensity and (e–h)
frequency indices (Table 2) at the Sodankylä, Kajaani, and Kaisaniemi stations in northern, central,
and southern Finland, respectively. Mean value (µ) ± standard deviation (σ) as statistical parameters
are given on top of each index. The outliers are represented by red “+” symbols.

The annual average intensity of very light daily precipitation events (iAAVLPt) showed
statistically significant (p < 0.05) decreasing trends, ranging from 0.36 to 0.42%, at all three
stations studied during the period 1909–2023 (Figure 3a). However, the annual frequency
of such events (iACVLPEt) substantially increased by 64% at Sodankylä, 81% at Kajaani,
and 104% at Kaisaniemi (Figure 3b). At Kajaani in central Finland, the annual intensity of
light daily precipitation (iAALPt) decreased by 2.54%, while there was an increasing trend
(by 17.16%) in the annual intensity of very high daily precipitation time series (Figure 3a).
At this station (Kajaani), significant trends were found in the annual frequencies of both
moderate (fACMPEt) and high (fACHPEt) daily precipitation events at the rates of 27% and
9%, respectively (Figure 3b). The Kaisaniemi station experienced substantial decreasing
trends in the annual intensity of moderate daily precipitation (iAAMPt) and the annual
frequency of extreme precipitation events (fACEPEt) during the 100-years study period
(Figure 3b). At Sodankylä in northern Finland, no significant trends were found in annual
intensity and frequency indices other than iAAVLPt and FACVLPEt (Figure 3).
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Figure 3. Normalized (% per year, p < 0.05) inter-annual trends in daily precipitation (a) intensity and
(b) frequency indices (Table 3) at the Sodankylä, Kajaani, and Kaisaniemi stations in northern, central,
and southern Finland, respectively, during the period 1909–2023. The median values for normalized
trends in annual indices at each studied station are presented on the top or bottom of the bars.

In general, both iAAVLPt and fACVLPEt indices showed statistically significant
(p < 0.05) relationships with the SCAND pattern at Sodankylä (Figure 4) and Kajaani
(Figure 5), while with the EA at Kaisaniemi (Figure 6). Both the intensity (iAALPt) and
frequency (fACLPEt) of light daily precipitation events were negatively associated with
the NAO index at all three stations studied (Figures 4–6). However, the SCAND, EA/WR,
and NAO were the influential climate teleconnections for variations in both iAAMPt and
fACMPEt indices at Sodankylä (Figure 4), Kajaani (Figure 5), and Kaisaniemi (Figure 6).
For heavy daily precipitation events, both the intensity (iAAHPt) and frequency (fACHPEt)
were in significantly negative correlations with the EA/WR at Sodankylä (Figure 4), Kajaani
(Figure 5), and Kaisaniemi (Figure 6). At all these stations, however, the very heavy daily
precipitation intensity (iAAVHPt) and frequency (fACVHPEt) indices showed positive
relationships with the SCAND pattern (Figures 4–6). These teleconnections (the EA/WR
and the SCAND) also controlled interannual variations in the intensity (iAAEPEt) and
frequency (fACEPEt) of extreme daily precipitation at the Sodankylä (Figure 4), Kajaani
(Figure 5), and Kaisaniemi (Figure 6) stations. Figures 4–6 comprehensively represent the
correlations of interannual variations in daily graded precipitation indices with the annual
and seasonal large-scale climate teleconnections at the Sodankylä, Kajaani, and Kaisaniemi
stations, respectively.
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4. Discussion
4.1. Variability and Trends in Graded Daily Precipitation Characteristics

In Finland, daily precipitation intensity [42] and all extreme precipitation intensity
indices [20] generally decrease from the northern to southern parts. The present study also
found this spatial pattern in the intensity of graded daily precipitation events, except for
both very light and moderate daily precipitation records that showed the highest amounts
in central Finland. Such disagreement might be related to the different definitions used by
these studies to calculate extreme daily precipitation intensities in Finland. In fact, applying
percentiles by previous studies focusing on EPEs resulted in a similar spatial pattern
to the mean precipitation variability across the country. Using different absolute daily
precipitation amount boundaries, however, the present study improved our knowledge
about which grades of daily precipitation intensity behave differently from the spatial
distribution of precipitation values throughout Finland previously reported.

Defining the EPEs based on different percentile values, ref. [42] concluded that the
extreme precipitation frequency increased from southern to northern Finland. However,
ref. [20] determined that both relatively low and high extreme precipitation indices were
more frequent in northern and southern Finland, respectively, during the period 1961–2011.
The present study also indicated more frequencies of relatively low (high) EPEs in the north
(south) than in the south (north) of Finland. As exceptions, we found the highest rates of
frequency for both light and extreme daily precipitation grades at the Kajaani station in
central Finland. Similarly, a few previous studies also reported such higher return values
for relatively high EPEs in central Finland than in its other areas [62,63].

The present study detected statistically significant decreasing trends in the intensity of
very light daily precipitation grades at all three hydrometeorological stations of Kaisaniemi,
Kajaani, and Sodankyl in southern, central, and northern Finland, respectively, during
the last 115 years (1909–2023). For the same stations, our previous study also reported
such significant decreases in the very light amounts of daily precipitation calculated based
on their 50th percentile values [42]. Both of these studies determined the highest rate of
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such decreasing trends at the Sodankylä station in northern Finland. The lowest rates
of such decreasing trends were found at Kaisaniemi in southern areas by our previous
study [42] but at Kajaani in central parts by the present study. Similarly, [63] concluded
substantial decreases in the moderate amounts of daily precipitation, defined based on
their 60th percentile values, in Finland. Additionally, the present study found considerable
decreasing (increasing) trends in light and moderate (very heavy) daily precipitation grades
at Kajaani and Kaisaniemi (Kajaani) in central and southern (central) Finland, respectively,
during the period 1909–2023. Such decreases, however, were not reported by previous
studies. This might likely be related to the use of other hydrometeorological stations
throughout Finland, the consideration of different study periods, and the application
of dissimilar definitions for calculating EPEs. Like [42,63], moreover, the present study
identified that heavy to extreme daily precipitation grades were mostly unchanged in
Finland over time.

We found significant increasing trends in the frequency of very light precipitation
grade in Finland during the period 1909–2023. The highest and lowest rates of these in-
creases were seen in the north and south of this country, respectively. Such increasing
trends and their spatial patterns throughout Finland were also reported previously by [42].
Despite such increases, the present study detected considerable decreasing trends in mod-
erate and heavy (extreme) daily precipitation grades at Kajaani (Kaisaniemi) in central
(southern) Finland over time. Less frequent moderate precipitation at Kajaani was similarly
identified by our previous study [42]. When analyzing extreme precipitation indices, how-
ever, [20] showed no clear changes in the number of heavy (daily precipitation ≥ 10 mm)
and very heavy (daily precipitation ≥ 20 mm) days, but it showed significant increases
in wet days (daily precipitation ≥ 1 mm) in Finland during the period 1961–2011. At
Kaisaniemi, Kajaani, and Sodankylä, no significant trends in heavy precipitation days were
detected during the period 1910–1995 [64]. The other previous studies reported increases in
very heavy precipitation frequency over Finland during the 20th century, particularly after
1980 [12,65]. The differences between our results and such previous studies are mainly be-
cause of the grading of daily precipitation records by the present study, which can provide
us with more details about which amount boundaries of daily precipitation significantly
contributed to changes in the frequency of EPEs greater than a certain threshold (e.g.,
1 mm).

4.2. Influential Climate Teleconnections

Across Finland, historical variations in annual precipitation were considerably asso-
ciated with the SCAND and EA/WR patterns in 1911–2011 [39]. Statistically significant
correlations between both the SCAND and EA/WR patterns and the ratio of annual total
precipitation to the number of days with precipitation (>0 mm) were also reported over
Finland during the period 1908–2008 [42]. By analyzing extreme precipitation indices, simi-
larly, ref. [20] concluded that the SCAND and EA/WR were the most influential climate
teleconnections for interannual variability in total precipitation in wet days in Finland
through the years 1961–2011. Likewise, the present study found substantial relationships
between these two climate teleconnections—SCAND and EA/WR—and both the intensities
and frequencies of moderate, heavy, very heavy, and extreme precipitation records, which
are key components of annual precipitation in Finland. Additionally, this study discovered
that the SCAND could also influence very light daily precipitation (between 0 and 1 mm)
across the country, while the light daily precipitation (between 1 and 5 mm) was more
evidently connected to the NAO during the period 1951–2023. This can be explained by the
typical occurrence of very light (light) daily precipitation events during all months (cold
months: December–May) of the year, for which the SCAND (NAO) generally influences
precipitation variability across Finland [20,39]. Although our previous studies reported
such relationships between climate teleconnections and EPEs in Finland, the present study
improved our understating about the roles of the SCAND, EA/WR, and NAO in the spatio-
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temporal variations in different daily precipitation grades as the primary contributors to
the formation of EPEs across the country—an insight that has not yet been acknowledged.

The SCAND consists of a primary circulation center over the Scandinavian Peninsula
and an extensive part of the Arctic Ocean throughout northern Siberia [48]. With the
opposite sign of pressure anomalies, the two other action centers of this climate telecon-
nection (SCAND) are located over western Europe (the north-east Atlantic) and Mongolia
(western China) [48]. The negative/positive phase of SCAND describes low/high pressure
airflow inducing a colder/warmer and wetter/drier climate than normal conditions over
Greenland, the Norwegian Sea, and the Scandinavian Peninsula [50]. This negative rela-
tionship was also evidenced by significant decreases in very light precipitation amounts in
Finland, which were positively associated with the SCAND variability over time. However,
considerable correlations between the SCAND and moderate, very heavy, and extreme
daily precipitation events were not caused by any significant changes in their historical
time series.

For Finland, the EA/WR describes the meridional circulation that naturally weakens
when the westerly airflow strengthens. As a zonally oriented climate teleconnection, the
EA/WR principally consists of two action centers over western Europe and the Caspian Sea
in winter, while the other three pressure anomaly centers are in the coastal areas of Portugal,
northwestern Europe, and the western–northwestern parts of Russia during both spring and
autumn seasons [48]. The negative/positive phase of this climate teleconnection (EA/WR)
is fundamentally associated with the southeasterly/northwesterly and southerly/northerly
airflows over the Baltic Sea and the East European Plain [49]. Accordingly, the positive
phase of EA/WR principally brings a warmer and wetter (colder and drier) climate than
normal conditions across East Asia (the Arctic area, large parts of western Russia, and
northeast Africa) [49]. This study confirmed such relationships by measuring significant
negative correlations between increasing EA/WR values [66] and heavy daily precipitation
events, resulting in their lower frequency at the Kajaani station located close to western
Russia in recent decades.

Besides such effects of SCAND (EA/WR) on very light, moderate, very heavy, and
extreme (heavy) daily precipitation, this study also determined the substantial negative
correlations of NAO with both the intensity and frequency of light daily precipitation
records in Finland. This climate teleconnection (NAO) is a numeric index for describing the
power of westerlies from the North Atlantic to the Atlantic parts of Europe [47]. Hence, the
positive/negative NAO phase generally corresponds to the strengthening and weakening
of westerly airflows, bringing a milder and wetter/colder and drier climate than normal
conditions over the north of Europe, particularly during the cold months (Dec–May) [67,68].
Based on [69], the NAO power increased by 0.20 decade-1 in recent decades. Despite
significant negative relationships between this climate teleconnection (NAO) and light
daily precipitation events, such an increasing trend in the NAO caused no clear changes in
the intensity and frequency of this daily precipitation grade (light) across Finland. As the
only exception, however, the Kajaani station in central Finland experienced a significant
decreasing trend in the intensity of light daily precipitation over time.

5. Conclusions

This study analyzed variability and trends in daily graded (from very light to extreme)
precipitation records at three hydrometeorological stations of Kaisaniemi, Kajaani, and
Sodankylä in southern, central, and northern Finland during the last 115 years (1909–2023).
The relationships of such variability and trends with large-scale, well-known climate tele-
connections were also measured for the period of 1951–2023. The major conclusions were:

• In general, more intense but less frequent very light daily precipitation events were
recorded in Finland during the period 1909–2023. The Sodnakylä (Kaisaniemi) station
in northern (southern) Finland experienced the highest (lowest) rates of such decreases
and increases in the intensity and frequency of historical very light precipitation events.
At Kajaani in central Finland, however, the intensities of light daily precipitation events
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showed a significant decreasing trend during the period 1909–2023. At this station,
statistically significant trends were also detected in both the intensity and frequency
of heavy daily precipitation events over time.

• The SCAND (EA) pattern was the strongest climate teleconnection positively (nega-
tively) influencing the variability in both the intensity and frequency of very light daily
events in northern and central (southern) Finland during the period 1951–2023. At all
three stations of Sodankylä, Kajaani, and Kaisaniemi, however, both the intensity and
frequency of light daily precipitation events showed substantial negative relationships
with the NAO in the last 70 years. The SCAND and NAO also influenced the variations
in both the intensity and frequency of historical moderate daily precipitation events
at all three stations studied. The intensities and frequencies of all heavy (very heavy
and extreme) daily precipitation events in Finland, however, were mainly controlled
by variations in the EA/WR (SCAND) pattern over time. Hence, the SCAND was
the most influential climate teleconnection for variations in both the intensities and
frequencies of all daily graded precipitation events in Finland, except for light daily
precipitation records significantly associated with the NAO over time.

Such conclusions can lay the foundation for developing adaptation and mitigation
strategies for sustainable water resources management in the boreal environment of Finland
and supporting this country in achieving economic, social, and environmental sustainability
under global warming and climate change.
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