Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Data Processing
3. Results
3.1. Species Composition
3.2. Seasonal Variation Characteristics of Environmental Factors
3.3. Composition of Dominant Species
3.4. Diversity and Structural Analysis of Zooplankton Communities
3.5. Community Similarity
3.6. The Relationship between Dominant Species Abundance and Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davies, C.H.; Armstrong, A.J.; Baird, M. Over 75 years of zooplankton data from Australia: Ecological Archives E095-278. Ecology 2014, 95, 3229. [Google Scholar] [CrossRef]
- Lin, C.; Su, J.; Xu, B. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem. Prog. Oceanogr. 2001, 49, 7–19. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, D.; Gu, T.; Jiang, T.; Qu, K.; Sun, J.; Cui, Z. Different responses of phytoplankton and zooplankton communities to current changing coastal environments. Environ. Res. 2022, 215, 114426. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Qin, B.; Zhu, G.; Zhang, Y.; Gao, G. Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios. Environ. Res. 2020, 187, 109704. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Dai, L.; Chen, X.; Wu, Y.; Sun, Y.; Zhu, L. Characteristics of zooplankton community structure and its relationship with environmental factors in the South Yellow Sea. Mar. Pollut. Bull. 2022, 176, 113471. [Google Scholar] [CrossRef] [PubMed]
- Goździejewska, A.M.; Koszałka, J.; Tandyrak, R.; Grochowska, J.; Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 2021, 848, 2699–2719. [Google Scholar] [CrossRef]
- Heneghan, R.F.; Everett, J.D.; Blanchard, J.L.; Sykes, P.; Richardson, A.J. Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nat. Clim. Chang. 2023, 13, 470–477. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol. Indic. 2021, 129, 107867. [Google Scholar] [CrossRef]
- Keister, J.E.; Winans, A.K.; Herrmann, B. Zooplankton Community Response to Seasonal Hypoxia: A Test of Three Hypotheses. Diversity 2020, 12, 21. [Google Scholar] [CrossRef]
- Evans, L.E.; Hirst, A.G.; Kratina, P.; Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 2020, 43, 581–590. [Google Scholar] [CrossRef]
- Garzke, J.; Sommer, U.; Ismar-Rebitz, S.M. Zooplankton growth and survival differentially respond to interactive warming and acidification effects. J. Plankton Res. 2020, 42, 189–202. [Google Scholar] [CrossRef]
- Li, K.; Ma, J.; Huang, L.; Tan, Y.; Song, X. Environmental drivers of temporal and spatial fluctuations of mesozooplankton community in Daya Bay, northern South China Sea. J. Ocean Univ. China 2021, 20, 1013–1026. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Y.; Xiao, K.; Wang, X.; Zhang, X.; Li, G.; Li, H. Effect of submarine groundwater discharge on nutrient distribution and eutrophication in Liaodong Bay, China. Water Res. 2023, 247, 120732. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, Q.; Song, G.J. Comprehensive Assessment of Eco-Environmental Quality of Fishery Waters in the Northern Liaodong Bay in 2008–2017. J. Ecol. Rural Environ. 2019, 35, 1000–1008. [Google Scholar]
- Guo, W.; Zou, J.; Liu, S.; Chen, X.; Kong, X.; Zhang, H.; Xu, T. Seasonal and spatial variation in dissolved heavy metals in Liaodong Bay, China. Int. J. Environ. Res. Public Health 2022, 19, 608. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wei, Q.; Jian, H.; Gao, Z.; Yao, Q. Variations in the nutrient concentration and composition in Liaodong Bay under long-term human activities. Marine Pollut Bull. 2022, 182, 114016. [Google Scholar] [CrossRef] [PubMed]
- Ayón Dejo, P.; Pinedo Arteaga, E.L.; Schukat, A.; Taucher, J.; Kiko, R.; Hauss, H.; Dorschner, S.; Hagen, W.; Segura-Noguera, M.; Lischka, S. Zooplankton community succession and trophic links during a mesocosm experiment in the coastal upwelling off Callao Bay (Peru). Biogeosciences 2023, 20, 945–969. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kim, H.Y.; Oh, H.J. Seasonal variation of the zooplankton community of Gamak Bay, Korea. Korean J. Environ. Biol. 2020, 38, 231–247. [Google Scholar] [CrossRef]
- Muthurajah, S.D.; Leong, S.C.Y.; Kuwahara, V.S.; Moh, P.Y.; Ross, O.B.H.; Yoshida, T. Monsoonal and spatial influence on zooplankton variation in a tropical bay, North Borneo, Malaysia. Reg. Stud. Mar. Sci. 2021, 47, 101952. [Google Scholar] [CrossRef]
- Coria-Monter, E.; Monreal-Gómez, M.A.; León, D.A.S.D.; Durán-Campos, E. Zooplankton abundance during summer in the Bay of La Paz (southwestern Gulf of California, Mexico). Lat. Am. J. Aquat. Res. 2020, 48, 794–805. [Google Scholar] [CrossRef]
- Mahara, N.; Pakhomov, E.A.; Dosser, H.V.; Hunt, B.P.V. How zooplankton communities are shaped in a complex and dynamic coastal system with strong tidal influence. Estuar. Coast. Shelf Sci. 2021, 249, 107103. [Google Scholar] [CrossRef]
- Sadia, N.; Ahmed, M.K.; Khondkar, M.M.; Rani, S.; Alam, M.J.; Al Karim, A.; Khan, M.I. Horizontal and vertical distribution and abundance of zooplankton around the Swatch-of-No-Ground of Northern Bay of Bengal. Dhaka Univ. J. Earth Environ. Sci. 2021, 10, 1–8. [Google Scholar] [CrossRef]
- Xu, D.H.; Zhou, R.J.; Du, X.Y.; Wang, T.S.; Liu, X.; Qi, Y.P.; Guan, X.Y.; Zhang, Q.B.; Sun, B.B.; Zhou, H. Community characteristics and factors influencing zooplank ton in the Bohai Bay during autumn. Mar. Sci. 2022, 46, 90–98. [Google Scholar]
- Xu, D.H.; Qi, Y.P.; Liu, X.; Pan, Y.L.; Du, X.Y.; Wang, T.S. Community characteristics of planktonic copepods in the Bohai Bay. Mar. Sci. 2022, 46, 69–80. [Google Scholar]
- Li, D.; Wen, Y.; Zhang, G. Effects of terrestrial inputs on mesozooplankton community structure in bohai bay, China. Diversity 2022, 14, 410. [Google Scholar] [CrossRef]
- Li, H.R.; Liu, G.X.; Ma, J.; Wang, W.M.; Chen, H.J. Ecological characteristics of zooplankton in the eastern coastal waters of Laizhou Bay in summer. Period. Ocean Univ. China 2017, 47, 37–45. [Google Scholar]
- Zhang, M.L.; Qi, Z.L.; Li, B.; Wang, F.; Han, H.H. A preliminary study on energy contribution of terrestrial organic carbon to zooplankton in the Laizhou Bay. Mar. Fish. 2018, 40, 319–325. [Google Scholar]
- Jiang, H.C.; Liu, D.Y.; Ma, Y.Q.; Su, B.; Liu, N.; Zhang, J.; He, J.L.; Qin, H.W.; Song, X.K.; Sun, S.; et al. Decadal Response of Mesozooplankton Assemblages to Nutrient Load Reductions in Laizhou Bay, China. Front. Mar. Sci. 2022, 9, 849739. [Google Scholar] [CrossRef]
- Bian, S.W.; Han, L.; Mei, P.W.; Wang, J.G.; Yuan, Y.X.; Zhang, Z. Community structure of zooplankton and its relationship with environmental factors in summer and autumn in Liaodong Bay. J. Tianjin Norm. Univ. (Nat. Sci. Ed.) 2020, 40, 44–49. [Google Scholar]
- Song, L.; Zhou, Z.M.; Wang, N.B.; Ma, Z.Q.; Xue, K.; Tian, J.; Yang, S.; Wang, Z.H.; Wu, J.H. Zooplankton diversity of Liaodong Bay and relationship with oceanic environmental factors. Marine Sci. 2010, 34, 35–39. [Google Scholar]
- Li, W.W.; Sun, Z.C.; Liang, S.X. Effects of the Liao river discharge on the dispersion of pollutants. Mar. Environ. Sci. 2019, 38, 294–302. [Google Scholar]
- Li, D.H.; CHAO, L.; ZHAO, F.Z.; Lei, K.; Li, Y.Y. Characteristics of hydrodynamics and pollutant transport into the sea in the LiaodongBay. Adv. Mar. Sci. 2022, 40, 423–434. [Google Scholar]
- Zhao, Q.; Wang, M.J.; Ding, D.W.; Chen, W.B. Study on hydrodynamie characteristies in the eastern part of LiaodongBay Mouth based on long term observation. Haiyang Xuebao 2016, 38, 20–30. [Google Scholar]
- GB/T 12763.6-2007; Specifications for Oceanographic Survey Part 6: Marine Biological Survey. Standardization Administration of China: Beijing, China, 2007.
- GB/T 12763.4-2007; Specifications for Oceanographic Survey Part 4: Survey of Chemical Parameters in Sea Water. Standardization Administration of China: Beijing, China, 2007.
- GB/T 17378.5-2007; The Specification for Marine Monitoring Part 5: Sediment Analysis. Standardization Administration of China: Beijing, China, 2007.
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pielou, E.C. An introduction to mathematical ecology. Bioscience 2011, 24, 7–12. [Google Scholar]
- Margalef, D.R. Information theory in ecology. Soc. Gen. Syst. Res. 1958, 3, 36–71. [Google Scholar]
- Zhang, L.; Tao, H.H.; Ji, Y.L.; Su, K.; Wang, J.W.; Pu, S.C. Community structure characteristics of zooplankton in the sea area near Dongjiakou Port of Qingdao in spring and autumn. J. Appl. Oceanogr. 2023, 42, 16–27. [Google Scholar]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Wang, B.; Dong, Q.; Liu, C.Y.; Sun, M.; Yu, X.G.; Liu, X.Z.; Li, Y.P.; Li, P.J. Distribution of giant jellyfish and major zooplankton in jellyfish release area of Liaodong Bay, Bohai Sea in early summer. Prog. Fish. Sci. 2010, 31, 83–90. [Google Scholar]
- Choi, S.Y.; Lee, E.H.; Soh, H.Y.; Jang, M.C. Effects of temperature and salinity on egg production, hatching, and mortality rates in Acartia ohtsukai (Copepoda, Calanoida). Front. Mar. Sci. 2021, 8, 704479. [Google Scholar] [CrossRef]
- Magouz, F.I.; Essa, M.A.; Matter, M.; Mansour, A.T.; Gaber, A.; Ashour, M. Effect of different salinity levels on population dynamics and growth of the cyclopoid copepod Oithona nana. Diversity 2021, 13, 190. [Google Scholar] [CrossRef]
- Kuismanen, L.; Forsblom, L.; Engström-Öst, J.; Båmstedt, U.; Glippa, O. Salinity effects on egg production, hatching, and survival of Eurytemora affinis (Copepoda, Calanoida). Crustaceana 2020, 93, 429–445. [Google Scholar] [CrossRef]
- Mariani, M.; Vignatti, A.; Echaniz, S.; Cueto, G.; Zagarese, H.; Diovisalvi, N. Zooplankton community size structure across lakes within a semi-arid landscape: The effect of temperature and salinity. J. Plankton Res. 2023, 45, 440–453. [Google Scholar] [CrossRef]
- Ojok, W.; Wasswa, J.; Ntambi, E. Assessment of Seasonal Variation in Water Quality in River Rwizi Using Multivariate Statistical Techniques, Mbarara Municipality, Uganda. J. Water Resour. Prot. 2017, 9, 83–97. [Google Scholar] [CrossRef]
- Zuo, T.; Wang, J.; Shi, Y.Q. Seasonal distribution of body length and abundance of Aidanosagitta crassa (Tokioka, 1938) in Laizhou Bay, Bohai Sea. Acta Ecol. Sin. 2017, 37, 5189–5197. [Google Scholar]
- Uye, S.I.; Liang, D. Seasonal population dynamics, production, and feeding of the chaetognath Aidanosagitta crassa in a temperate eutrophic inlet. Plankton Benthos Res. 2022, 17, 312–326. [Google Scholar] [CrossRef]
- Guo, L.; Mo, L.; Su, Y.; Hu, X.; Xu, D. Studying the Metazoan Zooplankton Community Characteristics and Evaluating the Water Quality Based on the Ecological and Functional Zones in Gaoyou Lake. Water 2023, 15, 3357. [Google Scholar] [CrossRef]
- Zhikharev, V.; Gavrilko, D.; Kudrin, I.; Vodeneeva, E.; Erina, O.; Tereshina, M.; Shurganova, G. Structural organization of zooplankton communities in different types of river mouth areas. Diversity 2023, 15, 199. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.Y.; Tang, X.X.; Han, Q.; Yin, F.; Guo, M.C.; Lu, W.X. Evaluation of Chaohu Lake metazoan zooplankton communities and their nutritional status in different lakes. J. Hydroecol. 2023, 44, 73–81. [Google Scholar]
- Giraldo, C.; Cresson, P.; Mackenzie, K.; Fontaine, V.; Loots, C.; Delegrange, A.; Lefebvre, S. Insights into planktonic food-web dynamics through the lens of size and season. Sci. Rep. 2024, 14, 1684. [Google Scholar] [CrossRef]
- Wasserman, R.J.; Vink, T.J.; Kramer, R.; Froneman, P.W. Hyperbenthic and pelagic predators regulate alternate key planktonic copepods in shallow temperate estuaries. Mar. Freshw. Res. 2014, 65, 791–801. [Google Scholar] [CrossRef]
- Pinto-Coelho, R.; Pinel-Alloul, B.; Méthot, G. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: Variation with trophic status. Can. J. Fish. Aquat. Sci. 2005, 62, 348–361. [Google Scholar] [CrossRef]
- Hamil, S.; Bouchelouche, D.; Arab, S.; Alili, M.; Baha, M.; Arab, A. The relationship between zooplankton community and environmental factors of Ghrib Dam in Algeria. Environ. Sci. Pollut. Res. 2021, 28, 46592–46602. [Google Scholar] [CrossRef] [PubMed]
- Bișinicu, E.; Boicenco, L.; Pantea, E.; Timofte, F.; Lazăr, L.; Vlas, O. Qualitative Model of the Causal Interactions between Phytoplankton, Zooplankton, and Environmental Factors in the Romanian Black Sea. Phycology 2024, 4, 168–189. [Google Scholar] [CrossRef]
- Liu, H.; El-Din, N.N.; Rowe, G.; Al-Ansi, M.; Wei, C.L.; Soliman, Y.; Nunnally, C.; Quigg, A.; Al-Ansari, I.S.; Al-Maslamani, I.; et al. Characteristics and renewal of zooplankton communities under extreme environmental stresses in the oligotrophic hypersaline Arabian Gulf. Prog. Oceanogr. 2022, 201, 102643. [Google Scholar] [CrossRef]
- Ye, W.J.; Du, P.; Shou, L.; Cai, X.X.; Chen, Y.; Tang, Y.B.; Liao, Y.B.; Huang, W.; Liu, X.Y. Spatio-temporal variation of marco and mesozooplankton communities and the controlling factors around Zhoushan archipelago. Acta Ecol. Sin. 2021, 41, 254–267. [Google Scholar]
- Wang, X.; Wang, Z.; Zhang, X.; Liu, P. The distribution of zooplankton and the influencing environmental factors in the South Yellow Sea in the summer. Mar. Pollut. Bull. 2021, 167, 112279. [Google Scholar] [CrossRef]
- Gao, Q.; Xu, Z.; Zhuang, P. The relation between distribution of zooplankton and salinity in the Changjiang Estuary. Chin. J. Oceanol. Limnol. 2008, 26, 178–185. [Google Scholar] [CrossRef]
- Harvey, M.; Therriault, J.C.; Simard, N. Hydrodynamic control of late summer species composition and abundance of zooplankton in Hudson Bay and Hudson Strait (Canada). J. Plankton Res. 2001, 23, 481–496. [Google Scholar] [CrossRef]
- Nicolle, A.; Hansson, L.A.; Brodersen, J.; Nilsson, P.A.; Brönmark, C. Interactions between predation and resources shape zooplankton population dynamics. PLoS ONE 2011, 6, e16534. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, B.J.; Xie, B.; Zhang, H.; Li, D.P. Zooplankton community structure of the sea farming in Haizhou Bay and its relationships with environment factors. Ecol. Environ. Sci. 2017, 26, 1410–1418. [Google Scholar]
- Jiang, H.C.; Chen, H.G.; Song, X.K.; Liu, N.; He, J.L.; Cheng, L.; Wang, Y.X. Zooplankton community structure in Jincheng area of Laizhou Bay and its relationship with environmental factors. Acta Ecol. Sin. 2015, 35, 7308–7319. [Google Scholar]
- Karpowicz, M.; Ejsmont-Karabin, J.; Kozłowska, J.; Feniova, I.; Dzialowski, A.R. Zooplankton community responses to oxygen stress. Water 2020, 12, 706. [Google Scholar] [CrossRef]
- Breitburg, D.; Levin, L.A.; Oschlies, A.; Grégoire, M.; Chavez, F.P.; Conley, D.J.; Garçon, V.; Gilbert, D.; Gutiérrez, D.; Isensee, K.; et al. Declining oxygen in the global ocean and coastal waters. Science 2018, 359, eaam7240. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.M.; Chen, S.L.; Chen, B.J.; Lv, Z.B.; Wang, Y.B.; Zhang, J.J.; Li, M.; Ren, Z.H. Seasonal variation of zooplankton community structure and its influencing factors in waters adjacent to the Huanghua port, Bohai in 2014. Mar. Sci. 2022, 46, 81–97. [Google Scholar]
- Wang, X.M.; Sheng, H.X.; Liu, S.D.; Fang, G.J.; Yu, H.L.; Tang, Y.L.; Liang, Z.L. Distribution characteristics of Liza haematocheila and its relationship with environmental factors in Furongdao artificial reef zones, Laizhou Bay, China. J. Fish. China 2019, 43, 1914–1924. [Google Scholar]
Arthropoda | |
Copepoda | |
Paracalanus parvus (Claus, 1863) | Centropages tenuiremis Thompson I.C. & Scott A., 1903 |
Acartia pacifica Steuer, 1915 | Corycaeus (Ditrichocorycaeus) affinis McMurrich, 1916 |
Centropages dorsispinatus Thompson I.C. & Scott A., 1903 | Centropages abdominalis Sato, 1913 |
Tortanus spinicaudatus Shen & Bai, 1956 | Microsetella norvegica (Boeck, 1865) |
Acartia (Acanthacartia) bifilosa (Giesbrecht, 1881) | Acartia hongi Soh & Suh, 2000 |
Candacia sp. | Paracalanus crassirostris (Dahl F., 1894) |
Acartia (Acartiura) clausi Giesbrecht, 1889 | Tortanus (Eutortanus) derjugini Smirnov, 1935 |
Pontellopsis tenuicauda (Giesbrecht, 1889) | Labidocera euchaeta Giesbrecht, 1889 |
Calanus sinicus Brodsky, 1965 | Oithona similis Claus, 1866 |
Amphipoda | |
Themisto compressa Goës, 1866 | |
Gammarus sp. | |
Mysidacea | |
Acanthomysis longirostris li, 1936 | |
Decapoda | |
Acetes chinensis Hansen, 1919 | |
Chaetognatha | |
Aidanosagitta crassa (Tokioka, 1938) | |
Cnidaria | |
Hydrozoa | |
Rathkea octopunctata (M. Sars, 1835) | Turritopsis nutricula McCrady, 1857 |
Bougainvillia britannica (Forbes, 1841) | Bougainvillia muscus (Allman, 1863) |
Eirene ceylonensis Browne, 1905 | Eirene kambara Agassiz & Mayer, 1899 |
Podocoryne minina (Trinci, 1903) | |
Chordata | |
Tunicate | |
Oikopleura (Vexillaria) dioica Fol, 1872 | |
Pelagic larva | |
Macrura larvae | Zoea larva (Brachyura) |
Ophiopluteus larva | Polychaete larva |
Ophiuroidea larva | Gastropoda larva |
Nauplius larva (Copepoda) | Brachyura megalopa |
Echinodermata larva | Lingula larva |
Lamellibranchia larva | Fish larva |
Alima larva | Fish egg |
Environmental Factors | Spring | Summer | Autumn | Winter | Annual Summary | |||||
---|---|---|---|---|---|---|---|---|---|---|
Variation Range | Average Value | Variation Range | Average Value | Variation Range | Average Value | Variation Range | Average Value | Variation Range | Average Value | |
Temperature/°C | 11.5–11.7 | 11.6 | 22.7–22.8 | 22.73 | 24.2–24.3 | 24.25 | 8.6–8.9 | 8.8 | 8.6–24.3 | 16.8 |
Salinity/S | 29.8–30.5 | 30.1 | 29.1–30.2 | 29.7 | 28.6–30.1 | 29.15 | 29.6–30.4 | 29.93 | 28.6–30.5 | 29.72 |
Suspended particulate organic matter/mg·L−1 | 3.42–4.21 | 3.82 | 4.52–5.11 | 4.93 | 4.96–5.81 | 5.46 | 1.96–2.41 | 2.2 | 1.96–5.81 | 4.1 |
Total suspended particulate matter/mg·L−1 | 9.52–16.25 | 12.43 | 24.32–32.14 | 29.21 | 29.38–39.81 | 34.11 | 5.63–6.74 | 6.315 | 5.63–39.81 | 20.52 |
Water pH | 7.88–8.01 | 7.96 | 7.98–8.06 | 8.01 | 8.0–8.1 | 8.04 | 7.89–8.01 | 7.97 | 7.88–8.1 | 7.99 |
Dissolved oxygen mg·L−1 | 5.7–6.7 | 6.4 | 3.9–4.7 | 4.4 | 2.7–3.6 | 3.3 | 5.1–7.2 | 6.3 | 2.7–7.2 | 5.07 |
Dissolved inorganic nitrogen/μg·L−1 | 986.54–1481.22 | 1280.32 | 418.38–629.81 | 484.42 | 35.61–302.11 | 216.36 | 237.66–458.51 | 341.04 | 35.61–1481.22 | 580.5 |
Nitrite/μg·L−1 | 116.52–147.38 | 133.74 | 32.84–62.31 | 46.55 | 19.86–35.14 | 27.3 | 24.22–45.32 | 32.42 | 19.86–147.38 | 60 |
Nitrate/μg·L−1 | 812.35–1246.37 | 1069.06 | 345.23–501.23 | 390.16 | 185.64–281.43 | 227.73 | 204.89–395.46 | 306.14 | 185.64–1246.37 | 498.27 |
Ammonia/μg·L−1 | 54.12–84.32 | 72.96 | 29.68–64.12 | 43.34 | 9.24–26.91 | 18.9 | 4.69–14.69 | 8.07 | 4.69–84.32 | 35.82 |
Dissolved inorganic phosphorus/μg·L−1 | 38.47–54.33 | 48.91 | 27.81–37.42 | 32.98 | 28.12–38.12 | 33.98 | 32.12–42.16 | 37.07 | 27.81–54.33 | 38.23 |
Chemical oxygen demand/mg·L−1 | 0.48–0.89 | 0.65 | 0.78–1.28 | 1.08 | 0.97–1.41 | 1.23 | 0.89–1.19 | 1.06 | 0.48–1.41 | 1.01 |
Chlorophyll a/μg·L−1 | 2.13–3.56 | 2.98 | 3.89–5.02 | 4.56 | 4.96–6.32 | 5.68 | 1.56–2.49 | 2.17 | 1.56–6.32 | 3.85 |
Sediment total nitrogen/% | 0.04–0.11 | 0.08 | 0.06–0.09 | 0.08 | 0.02–0.05 | 0.04 | 0.04–0.08 | 0.07 | 0.02–0.11 | 0.06 |
Sediment organic carbon/% | 0.36–0.48 | 0.42 | 0.32–0.46 | 0.4 | 0.36–0.54 | 0.47 | 0.45–0.62 | 0.53 | 0.32–0.62 | 0.46 |
Sediment sulfide/mg·kg−1 | 29.78–37.21 | 34.72 | 9.86–15.31 | 12.76 | 6.54–14.97 | 11.09 | 21.36–35.42 | 27.62 | 6.54–37.21 | 21.55 |
Sediment redox potential/mV | 26.7–36.2 | 31.17 | 24.86–39.45 | 32.39 | 19.36–40.21 | 29.18 | 38.21–67.22 | 53.16 | 19.36–67.22 | 36.48 |
Sediment pH | 7.4–7.8 | 7.6 | 7.5–8.0 | 7.7 | 7.4–7.9 | 7.7 | 7.4–7.8 | 7.6 | 7.4–8.0 | 7.63 |
Species Name | Species Code | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
Paracalanus parvus (Claus, 1863) | SP1 | 0.161 | 0.032 | 0.021 | |
Acartia pacifica Steuer, 1915 | SP2 | 0.226 | 0.028 | ||
Centropages dorsispinatus Thompson I.C. & Scott A., 1903 | SP3 | 0.028 | |||
Tortanus spinicaudatus Shen & Bai, 1956 | SP4 | 0.029 | |||
Acartia (Acanthacartia) bifilosa (Giesbrecht, 1881) | SP5 | 0.068 | |||
Calanus sinicus Brodsky, 1965 | SP6 | 0.138 | 0.088 | 0.304 | |
Acartia hongi Soh & Suh, 2000 | SP7 | 0.076 | |||
Paracalanus crassirostris (Dahl F., 1894) | SP8 | 0.025 | |||
Macrura larvae | SP9 | 0.135 | 0.036 | 0.038 | |
Tortanus (Eutortanus) derjugini Smirnov, 1935 | SP10 | 0.07 | |||
Labidocera euchaeta Giesbrecht, 1889 | SP11 | 0.021 | |||
Lamellibranchia larvae | SP12 | 0.037 | |||
Brachyura zoea | SP13 | 0.045 | 0.042 | ||
Oithona similis Claus, 1866 | SP14 | 0.025 | 0.036 | ||
Polychaeta larvae | SP15 | 0.205 | 0.04 | ||
Aidanosagitta crassa (Tokioka, 1938) | SP16 | 0.06 | 0.188 | 0.481 | 0.391 |
Site | H′ | J | D | Site | H′ | J | D |
---|---|---|---|---|---|---|---|
A1 | 2.34 | 0.63 | 1.59 | C1 | 1.38 | 0.34 | 1.82 |
A2 | 2.53 | 0.73 | 1.49 | C2 | 2.06 | 1.43 | 1.90 |
A3 | 2.28 | 0.64 | 1.76 | C3 | 1.81 | 0.46 | 2.10 |
A4 | 2.23 | 0.67 | 1.75 | C4 | 2.32 | 0.59 | 2.30 |
A5 | 2.75 | 0.87 | 1.53 | C5 | 2.07 | 0.56 | 2.04 |
A6 | 2.86 | 0.86 | 2.04 | C6 | 2.25 | 0.61 | 2.12 |
mean ± SD | 2.50 ± 0.24 | 0.73 ± 0.10 | 1.69 ± 0.19 | mean ± SD | 1.98 ± 0.31 | 0.67 ± 0.35 | 2.05 ± 0.15 |
B1 | 2.58 | 0.70 | 1.47 | D1 | 2.58 | 0.70 | 2.03 |
B2 | 3.07 | 0.78 | 1.94 | D2 | 1.73 | 0.54 | 1.37 |
B3 | 1.77 | 0.48 | 1.69 | D3 | 2.04 | 0.64 | 1.32 |
B4 | 2.94 | 0.79 | 1.77 | D4 | 2.22 | 0.64 | 1.94 |
B5 | 2.40 | 0.76 | 1.21 | D5 | 2.68 | 0.84 | 1.79 |
B6 | 2.52 | 0.84 | 1.20 | D6 | 1.59 | 0.53 | 1.37 |
mean ± SD | 2.54 ± 0.42 | 0.72 ± 0.12 | 1.55 ± 0.28 | mean ± SD | 2.14 ± 0.40 | 0.65 ± 0.11 | 1.64 ± 0.29 |
Abundance | Biomass | H′ | J | D | |
---|---|---|---|---|---|
Depth | −0.490 * | −0.274 | −0.084 | −0.008 | −0.164 |
Temperature | 0.373 | 0.251 | −0.114 | −0.14 | 0.375 |
Salinity | −0.647 ** | −0.569 ** | 0.343 | 0.39 | −0.226 |
Suspended particulate organic matter | 0.620 ** | 0.403 | −0.137 | −0.222 | 0.333 |
Total suspended particulate matter | 0.644 ** | 0.428 * | −0.161 | −0.198 | 0.224 |
Water pH | 0.650 ** | 0.483 * | −0.277 | −0.374 | 0.235 |
Dissolved oxygen (DO) | −0.24 | −0.242 | 0.162 | 0.136 | −0.410 * |
Dissolved inorganic nitrogen (DIN) | 0.05 | −0.086 | 0.471 * | 0.374 | −0.410 * |
Nitrite | 0.133 | −0.025 | 0.379 | 0.257 | −0.428 * |
Nitrate | 0.099 | −0.015 | 0.444 * | 0.317 | −0.395 |
Ammonia | 0.317 | 0.074 | 0.474 * | 0.262 | −0.129 |
Dissolved inorganic phosphorus (DIP) | −0.03 | −0.285 | 0.084 | 0.13 | −0.115 |
Chemical oxygen demand (COD) | 0.404 * | 0.440 * | −0.397 | −0.336 | 0.221 |
Chlorophyll a | 0.629 ** | 0.441 * | −0.17 | −0.231 | 0.3 |
Sediment total nitrogen | 0.201 | 0.184 | 0.395 | 0.242 | −0.512 * |
Sediment organic carbon | −0.122 | −0.013 | −0.4 | −0.391 | 0.028 |
Sediment sulfide | −0.287 | −0.365 | 0.213 | 0.332 | −0.326 |
Sediment redox potential | −0.217 | −0.124 | −0.297 | 0.037 | −0.377 |
Sediment pH | 0.608 ** | 0.412 * | 0.039 | −0.077 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, W.; Cai, Z.; Ma, J.; Li, G.; Ma, B.; Zhao, J.; Li, Z.; Li, S.; Chen, M.; et al. Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China. Water 2024, 16, 2711. https://doi.org/10.3390/w16192711
Li J, Zheng W, Cai Z, Ma J, Li G, Ma B, Zhao J, Li Z, Li S, Chen M, et al. Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China. Water. 2024; 16(19):2711. https://doi.org/10.3390/w16192711
Chicago/Turabian StyleLi, Jiaxing, Wenjun Zheng, Zhonglu Cai, Jin Ma, Geng Li, Bo Ma, Jing Zhao, Zhonghong Li, Shuang Li, Mingkang Chen, and et al. 2024. "Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China" Water 16, no. 19: 2711. https://doi.org/10.3390/w16192711
APA StyleLi, J., Zheng, W., Cai, Z., Ma, J., Li, G., Ma, B., Zhao, J., Li, Z., Li, S., Chen, M., & Gao, C. (2024). Changes in the Characteristics of Zooplankton Communities in Response to Shifts in the Aquatic Environment in the Shallow Waters of Northern Liaodong Bay, China. Water, 16(19), 2711. https://doi.org/10.3390/w16192711