Exploring the Effects of Fissures on Hydraulic Parameters in Subsurface Flows from the Perspective of Energy Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Calculation of Hydraulic Factors
2.1.1. Reynolds Number (Re)
2.1.2. Water Flow Shear Force (τ)
2.2. Field Validation
2.2.1. Study Location Description
2.2.2. Monitoring of Soil Water Content, Pore Water Pressure, and Matrix Suction
2.2.3. Measurements of Soil Macropores
2.3. Data Statistics and Analysis
3. Results
3.1. The Reynolds Number under Different Subsurface Flows
3.2. The Distribution of Soil Pore Pressure under Different Subsurface Flows
3.3. The Water Flow Shear Force under Different Subsurface Flows
4. Discussion
4.1. The Distribution of Re in Different Profiles
4.2. The Effects of Flow Regimes on Pore Water Pressure
4.3. Factors Controlling Water Flow Shear Force
4.4. Understanding Subsurface Flow Dynamics and Energy Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renard, P.; Allard, D. Connectivity metrics for subsurface flow and transport. Adv. Water Resour. 2013, 51, 168–196. [Google Scholar] [CrossRef]
- Guo, L.; Lin, H. Addressing two bottlenecks to advance the understanding of preferential flow in soils. Adv. Agron. 2018, 147, 61–117. [Google Scholar]
- Lin, H. Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Soil Sci. Soc. Am. 2006, 5, 317–340. [Google Scholar] [CrossRef]
- Preziosi, L.; Farina, A. On Darcy’s law for growing porous media. Int. J. Non-Linear Mech. 2002, 37, 485–491. [Google Scholar] [CrossRef]
- Clothier, B.; Green, S.; Deurer, M. Preferential flow and transport in soil: Progress and prognosis. Eur. J. Soil Sci. 2007, 59, 2–13. [Google Scholar] [CrossRef]
- Glass, R.; Nicholl, M.; Pringle, S.; Wood, T. Unsaturated flow through a fracture–matrix network: Dynamic preferential pathways in mesoscale laboratory experiments. Water Resour. Res. 2002, 38, 17-1–17-17. [Google Scholar] [CrossRef]
- Tyner, J.; Wright, W.; Yoder, R. Identifying long-term preferential and matrix flow recharge at the field scale. Trans. ASABE 2007, 50, 2001–2006. [Google Scholar] [CrossRef]
- Rahardjo, H.; Leong, E.; Rezaur, R. Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrol. Process. 2008, 22, 506–523. [Google Scholar] [CrossRef]
- Campbell, G. Soil water potential measurement: An overview. Irrig. Sci. 1988, 9, 265–273. [Google Scholar] [CrossRef]
- Uchida, T.; Asano, Y.; Mizuyama, T.; McDonnell, J. Role of upslope soil pore pressure on lateral subsurface storm flow dynamics. Water Resour. Res. 2004, 40, W12401. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, X.; Xian, Q.; Weisbrod, N.; Yang, J.; Wang, H. A field study of colloid transport in surface and subsurface flows. J. Hydrol. 2016, 542, 101–114. [Google Scholar] [CrossRef]
- Reynolds, O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc. R. Soc. Lond. 1883, 35, 84–99. [Google Scholar]
- Atwood, D.; Gorelick, S. Hydraulic gradient control for groundwater contaminant removal. J. Hydrol. 1985, 76, 85–106. [Google Scholar] [CrossRef]
- Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proc. R. Soc. Lond. 1894, 56, 40–45. [Google Scholar]
- Towner, G. The application of classical physics transport theory to water movement in soil: Development and deficiencies. J. Soil Sci. 1989, 40, 251–260. [Google Scholar] [CrossRef]
- Lu, T.; Biggar, J.; Nielsen, D. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis. Water Resour. Res. 1994, 30, 3275–3281. [Google Scholar] [CrossRef]
- Vasil’ev, M. On the force acting on a cylinder in a steady stream of viscous fluid at low reynolds number. J. Appl. Math. Mech. 1981, 45, 632–635. [Google Scholar] [CrossRef]
- Govan, A.; Hewitt, G.; Owen, D.; Burnett, G. Wall shear stress measurements in vertical air-water annular two-phase flow. Int. J. Multiph. Flow 1989, 15, 307–325. [Google Scholar] [CrossRef]
- Iverson, R.; Reid, M. Gravity-driven groundwater flow and slope failure potential: 1. Elastic Effective-Stress Model. Water Resour. Res. 1992, 28, 925–938. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Hu, J.; Tang, C.; Zheng, H. Characteristics of the surface–subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region. South. China J. Hydrol. 2016, 539, 457–467. [Google Scholar] [CrossRef]
- Goulter, I.; Lussier, B.; Morgan, D. Implications of head loss path choice in the optimization of water distribution networks. Water Resour. Res. 1986, 22, 819–822. [Google Scholar] [CrossRef]
- Lilleleht, L.; Hanratty, T. Relation of interfacial shear stress to the wave height for concurrent air-water flow. AIChE J. 1961, 7, 548–550. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, D.; Zhang, S.; Bai, M.; Li, Y. A hybrid coupled model of surface and subsurface flow for surface irrigation. J. Hydrol. 2013, 500, 62–74. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, A. Hydraulic Properties of Porous Media: Hydrology Papers 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Reichardt, K.; Timm, L. The Movement of Water in the Systems. In Soil, Plant and Atmosphere; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Shi, D. Soil erosion and its control in the granite region of Southern China. J. Soil Water Conserv. 1991, 3, 63–72. (In Chinese) [Google Scholar]
- Van-Genuchten, M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Brooks, R.; Corey, A. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 1966, 92, 61–88. [Google Scholar] [CrossRef]
- Nimmo, J.; Rubin, J.; Hammermeister, D. Unsaturated flow in a centrifugal field: Measurement of hydraulic conductivity and testing of Darcy’s law. Water Resour. Res. 1987, 23, 124–134. [Google Scholar] [CrossRef]
- Dakshanamurthy, V.; Fredlund, D. A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients. Water Resour. Res. 1981, 17, 714–722. [Google Scholar] [CrossRef]
- Greco, R. Preferential flow in macroporous swelling soil with internal catchment: Model development and applications. J. Hydrol. 2002, 269, 150–168. [Google Scholar] [CrossRef]
- Ludwig, R.; Gerke, H.; Wendroth, O. Describing water flow in macroporous field soils using the modified macro model. J. Hydrol. 1999, 215, 135–152. [Google Scholar] [CrossRef]
- Revol, P.; Vauclin, M.; Vachaud, G.; Clothier, B. Infiltration from a surface point source and drip irrigation: 1. The midpoint soil water pressure. Water Resour. Res. 1997, 33, 1861–1867. [Google Scholar] [CrossRef]
- Chu-Agor, M.; Fox, G.; Cancienne, R.; Wilson, G. Seepage caused tension failures and erosion undercutting of hillslopes. J. Hydrol. 2008, 359, 247–259. [Google Scholar] [CrossRef]
- Shoushtari, S.; Cartwright, N.; Perrochet, P.; Nielsen, P. Two-dimensional vertical moisture-pressure dynamics above groundwater waves: Sand flume experiments and modelling. J. Hydrol. 2017, 544, 467–478. [Google Scholar] [CrossRef]
- Anochikwa, C.; Kamp, G.; Barbour, S. Interpreting pore-water pressure changes induced by water table fluctuations and mechanical loading due to soil moisture changes. Can. Geotech. J. 2012, 49, 357–366. [Google Scholar] [CrossRef]
- Tatard, L.; Planchon, O.; Wainwright, J.; Nord, G.; Favis-Mortlock, D.; Silvera, N.; Ribolzi, O.; Esteves, M.; Huang, C. Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. J. Hydrol. 2008, 348, 1–12. [Google Scholar] [CrossRef]
- Shoushtari, S.; Nielsen, P.; Cartwright, N.; Perrochet, P. Periodic seepage face formation and water pressure distribution along a vertical boundary of an aquifer. J. Hydrol. 2015, 523, 24–33. [Google Scholar] [CrossRef]
- Cuss, R.; Harrington, J.; Graham, C.; Noy, D. Observations of pore pressure in clay-rich materials; implications for the concept of effective stress applied to unconventional hydrocarbons. Energy Procedia 2014, 59, 59–66. [Google Scholar] [CrossRef]
- Shu, A.; Zhou, X.; Yu, M.; Duan, G.; Zhu, F. Characteristics for circulating currents and water-flow shear stress under the condition of bank slope collapse. J. Hydraul. Eng. 2018, 49, 271–281. [Google Scholar]
- Lu, J.; Lee, J.; Lu, T.; Hong, J. Experimental study of extreme shear stress for shallow flow under simulated rainfall. Hydrol. Process. 2009, 23, 1660–1667. [Google Scholar] [CrossRef]
- Onitsuka, K.; Akiyama, J.; Matsuoka, S. Prediction of velocity profiles and Reynolds stress distributions in turbulent open-channel flows with adverse pressure gradient. J. Hydraul. Res. 2009, 47, 58–65. [Google Scholar] [CrossRef]
- Zheng, F.; Huang, C.; Norton, L. Vertical hydraulic gradient and run-on water and sediment effects on erosion processes and sediment regimes. Soil Sci. Soc. Am. J. 2000, 64, 4–11. [Google Scholar] [CrossRef]
- Green, C.; Stonestrom, D.; Bekins, B.; Akstin, K.; Schulz, M. Percolation and transport in a sandy soil under a natural hydraulic gradient. Water Resour. Res. 2005, 41, W10414. [Google Scholar] [CrossRef]
- Liu, H.; Birkholzer, J. On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay. J. Hydrol. 2012, 475, 242–247. [Google Scholar] [CrossRef]
- Newman, B.; Campbell, A.; Wilcox, B. Tracer-based studies of soil water movement in semi-arid forests of New Mexico. J. Hydrol. 1997, 196, 251–270. [Google Scholar] [CrossRef]
- Harr, R. Water flux in soil and subsoil on a steep forested slope. J. Hydrol. 1977, 33, 37–58. [Google Scholar] [CrossRef]
Profile | Soil Layer (cm) | Soil Particle Size Distribution (%) | Soil Porosity (%) | Bulk Density (g cm−3) | |||||
---|---|---|---|---|---|---|---|---|---|
Sand * | Silt | Clay | >1 mm | 1~0.5 mm | 0.5~0.2 mm | <0.2 mm | |||
A | 0~20 | 43.66 | 32.19 | 24.15 | 1.52 | 1.16 | 1.76 | 38.59 | 1.58 |
20~40 | 43.33 | 32.38 | 24.29 | 1.51 | 3.6 | 1.52 | 36.77 | 1.54 | |
40~60 | 44.2 | 35.87 | 19.93 | 1.26 | 3.36 | 0.93 | 34.2 | 1.55 | |
60~80 | 44.65 | 35.58 | 19.77 | 1.3 | 2.98 | 0.74 | 34.6 | 1.54 | |
B | 0~20 | 47.67 | 32.69 | 19.64 | 1.6 | 3.06 | 1.11 | 35.72 | 1.55 |
20~40 | 50.59 | 31.89 | 17.52 | 2.95 | 6.27 | 3.27 | 28.61 | 1.56 | |
40~60 | 56.97 | 29.07 | 13.96 | 5.45 | 5.9 | 1.01 | 29.94 | 1.53 | |
60~80 | 58.94 | 26.9 | 14.16 | 9.72 | 10.17 | 0.54 | 22.17 | 1.52 |
Profile | Rainfall Amount | Rainfall Intensity | Soil Layer | Initial Water Content | Equivalent Pore Diameter (PF/MF) | Infiltration Rate (PF/MF) | Reynolds Number (MF) | Reynolds Number (PF) |
---|---|---|---|---|---|---|---|---|
mm | mm h−1 | cm | m3 m−3 | mm | mm s−1 | |||
A | 60, artificial rainfall | 10 | 0~20 | 0.222 | 0.20 | |||
20~40 | 0.336 | 0.32 | 0.033 | 0.033 | ||||
40~60 | 0.267 | 0.29 | 0.043 | 0.029 | ||||
60~80 | 0.278 | 0.31 | 0.013 | 0.014 | ||||
60, artificial rainfall | 10 | 0~20 | 0.254 | 0.25 | ||||
20~40 | 0.354 | 0.34 | 0.046 | 0.049 | ||||
40~60 | 0.301 | 0.34 | 0.018 | 0.021 | ||||
60~80 | 0.302 | 0.33 | 0.016 | 0.016 | ||||
34, natural rainfall | 10 | 0~20 | 0.243 | 0.23 | ||||
20~40 | 0.373 | 0.35 | 0.083 | 0.091 | ||||
40~60 | 0.291 | 0.32 | 0.033 | 0.034 | ||||
60~80 | 0.319 | 0.34 | 0.015 | 0.016 | ||||
B | 30, artificial rainfall | 10 | 0~20 | 0.284 | 2.11 | |||
20~40 | 0.294 | 2.34 | 1.334 | 0.975 | ||||
40~60 | 0.196 | 1.98 | 1.334 | 0.825 | ||||
60~80 | 0.187 | 2.02 | 2.667 | 1.684 | ||||
30, artificial rainfall | 10 | 0~20 | 0.215 | 2.11 | ||||
20~40 | 0.267 | 2.34 | 1.334 | 0.975 | ||||
40~60 | 0.174 | 1.98 | 2.667 | 1.652 | ||||
60~80 | 0.266 | 2.02 | 2.667 | 1.684 | ||||
27, natural rainfall | 10 | 0~20 | 0.381 | 2.11 | ||||
20~40 | 0.373 | 2.34 | 1.334 | 0.975 | ||||
40~60 | 0.344 | 1.98 | 1.334 | 0.825 | ||||
60~80 | 0.283 | 2.02 | 2.667 | 1.684 |
Profile | Soil Layer (cm) | Pore Water Pressure (KPa) | Soil Matrix Potential (MF) (KPa) | Water Flow Shear Force (N m−2) | Water Flow Shear Force (N m−2) | ||
---|---|---|---|---|---|---|---|
via Pore Pressure | via Gravity | via Matrix Potential | |||||
A, artificial rainfall | 0–20 | 0.016 | −2.3 | ||||
20–40 | 0.014 | −2.1 | 0.547 | 0.001 | 0.591 | −0.045 | |
40–60 | 0.011 | −5.2 | 1.579 | 0.001 | 0.564 | 1.014 | |
60–80 | 0.052 | −4.6 | 0.343 | −0.012 | 0.588 | −0.233 | |
A, artificial rainfall | 0–20 | 0.346 | −2.2 | ||||
20–40 | 0.008 | −1.6 | 0.461 | 0.164 | 0.711 | −0.414 | |
40–60 | 0.011 | −3.1 | 1.216 | −0.001 | 0.711 | 0.506 | |
60–80 | 0.076 | −3.0 | 0.648 | −0.024 | 0.709 | −0.039 | |
A, natural rainfall | 0–20 | 0.014 | −2.1 | ||||
20–40 | −0.279 | −1.2 | 0.593 | 0.126 | 0.761 | −0.294 | |
40–60 | −0.292 | −4.2 | 1.729 | 0.004 | 0.662 | 1.063 | |
60–80 | 0.077 | −2.8 | 0.076 | −0.143 | 0.760 | −0.543 | |
B, artificial rainfall | 0–20 | 0.842 | |||||
20–40 | 1.0536 | 4.439 | −1.335 | 5.737 | |||
40–60 | 0.161 | 6.902 | 2.047 | 4.855 | |||
60–80 | 0.277 | 4.576 | −0.384 | 4.960 | |||
B, artificial rainfall | 0–20 | −0.561 | |||||
20–40 | 0.257 | 2.406 | −3.332 | 5.737 | |||
40–60 | 0.341 | 3.623 | −1.232 | 4.855 | |||
60–80 | −0.357 | 6.949 | 1.989 | 4.960 | |||
B, natural rainfall | 0–20 | −0.059 | |||||
20–40 | 0.231 | 5.621 | −0.116 | 5.737 | |||
40–60 | 0.115 | 5.121 | 0.266 | 4.855 | |||
60–80 | 0.091 | 5.046 | −0.086 | 4.960 |
Profile | Soil Layer (cm) | Equivalent Pore Diameter (MF) (mm) | Saturated Hydraulic Conductivity (cm d−1) | Water Flow Flux (mm s−1) | Water Flow Shear Force Due to Pore Pressure (N m−2) |
---|---|---|---|---|---|
B, artificial rainfall | 0–20 | 0.3 | 0.163 | ||
20–40 | 0.32 | 0.353 | 0.033 | 0.907 | |
40–60 | 0.23 | 0.349 | 0.043 | 0.252 | |
60–80 | 0.24 | 0.577 | 0.013 | 0.147 | |
B, artificial rainfall | 0–20 | 0.21 | 0.163 | ||
20–40 | 0.34 | 0.353 | 0.046 | 0.631 | |
40–60 | 0.29 | 0.349 | 0.018 | 0.766 | |
60–80 | 0.29 | 0.577 | 0.016 | 1.419 | |
B, natural rainfall | 0–20 | 0.21 | 0.163 | ||
20–40 | 0.35 | 0.353 | 0.083 | 1.606 | |
40–60 | 0.27 | 0.349 | 0.033 | 0.465 | |
60–80 | 0.31 | 0.577 | 0.015 | 0.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Peng, S.; Chen, J.; Long, S.; Liao, B. Exploring the Effects of Fissures on Hydraulic Parameters in Subsurface Flows from the Perspective of Energy Changes. Water 2024, 16, 2712. https://doi.org/10.3390/w16192712
Tao Y, Peng S, Chen J, Long S, Liao B. Exploring the Effects of Fissures on Hydraulic Parameters in Subsurface Flows from the Perspective of Energy Changes. Water. 2024; 16(19):2712. https://doi.org/10.3390/w16192712
Chicago/Turabian StyleTao, Yu, Siwen Peng, Jiazhou Chen, Shiping Long, and Bin Liao. 2024. "Exploring the Effects of Fissures on Hydraulic Parameters in Subsurface Flows from the Perspective of Energy Changes" Water 16, no. 19: 2712. https://doi.org/10.3390/w16192712
APA StyleTao, Y., Peng, S., Chen, J., Long, S., & Liao, B. (2024). Exploring the Effects of Fissures on Hydraulic Parameters in Subsurface Flows from the Perspective of Energy Changes. Water, 16(19), 2712. https://doi.org/10.3390/w16192712