Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China
Abstract
:1. Introduction
2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Groundwater Flow Numerical Simulation
3.1. Development of Hydrogeological Conceptual Model
3.1.1. Generalization of Aquifer (Aquiclude) Structure
3.1.2. Conceptualization of Boundary Conditions
3.2. Mathematical Model Development
3.3. Numerical Model Development
3.3.1. Grid Partitioning
3.3.2. Source and Sink Terms
3.3.3. Hydrogeological Parameters
3.4. Model Calibration and Validation
4. Prediction of Groundwater Environmental Pollution Impact
4.1. Construction of Groundwater Solute Transport Model
4.2. Prediction of Groundwater Pollution Impact
5. Groundwater Pollution Prevention and Control Management Research
5.1. Construction of Groundwater Pollution Prevention and Control Management Model
5.2. Groundwater Pollution Control Plan
6. Conclusions
- A numerical groundwater flow model was constructed using the MODFLOW module in GMS software. Under natural flow field conditions and the conditions of a group of well pumping tests, the groundwater flow model fit well, with small errors, showing a trend in flow from south to north.
- On the basis of the GMS groundwater flow model, a groundwater solute transport model was developed by coupling with the MT3DMS model. The dispersion data measured by a sodium chloride tracer were used to calibrate the model, and a pollution transport prediction analysis of two potential pollution sources, the wax hydrocracking unit and the aviation coal finished product tank area, was conducted. In Scenario 1, when petroleum pollutants enter the karst aquifer, the nearby karst monitoring wells can detect them in about 1–2 days. In Scenario 2, petroleum pollutants in the karst aquifer can be detected in karst monitoring wells after 1 day.
- Combining constraints such as karst collapse, ground subsidence, and single-well water output capacity in the study area, a groundwater pollution prevention and control management model was constructed to simulate optimal removal schemes for groundwater pollutants under different scenarios. In Scenario 1, when a low-concentration pollution plume is detected in the karst water monitoring wells, it indicates that the upstream unconfined aquifer has been subjected to a high concentration of pollution and the nearest unconfined aquifer and karst water monitoring wells or emergency wells should be opened immediately. In Scenario 2, when a low-concentration pollution plume is detected in the karst water monitoring wells, the efficiency of using the unconfined aquifer monitoring wells for drainage is low, so the nearest karst water monitoring wells or emergency wells should be used for pollution prevention and control.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Bian, J.; Wan, H.; Ma, Y.; Sun, X. Health risk assessment of groundwater nitrogen pollution in Songnen Plain. Ecotoxicol. Environ. Saf. 2020, 207, 111245. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S.; Perrone, D. Global groundwater wells at risk of running dry. Science 2021, 372, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barbera, J.A.; Brielmann, H.; Bouchaou, L.; Charlier, J.; Darling, W.G.; et al. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024492118. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Winkel, L.H.E.; Johannesson, K.H. Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States. Environ. Sci. Technol. 2014, 48, 5660–5666. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater Quality for Drinking and Irrigation Purposes and Potential Health Risks Assessment: A Case Study from Semi-Arid Region of South India. Expo. Health 2018, 11, 109–123. [Google Scholar] [CrossRef]
- Braunig, J.; Baduel, C.; Heffernan, A.; Rotander, A.; Donaldson, E.; Mueller, J.F. Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci. Total Environ. 2017, 596, 360–368. [Google Scholar] [CrossRef]
- Li, X.; Jiao, W.; Xiao, R.; Chen, W.; Liu, W. Contaminated sites in China: Countermeasures of provincial governments. J. Clean. Prod. 2017, 147, 485–496. [Google Scholar] [CrossRef]
- Guo, Y.; Li, P.; He, X.; Wang, L. Groundwater Quality in and Around a Landfill in Northwest China: Characteristic Pollutant Identification, Health Risk Assessment, and Controlling Factor Analysis. Expo. Health 2022, 14, 885–901. [Google Scholar] [CrossRef]
- Chen, R.; Teng, Y.; Chen, H.; Hu, B.; Yue, W. Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China. Sci. Total Environ. 2019, 696, 133972. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, L.; Hong, M. Nitrobenzene contamination of groundwater in a petrochemical industry site. Front. Environ. Sci. Eng. 2019, 13, 29. [Google Scholar] [CrossRef]
- Maldaner, C.H.; Munn, J.D.; Coleman, T.; Molson, J.M.; Parker, B.L. Groundwater Flow Quantification in Fractured Rock Boreholes Using Active Distritbuted Temperature Sensing Under Natural Gradient Conditions. Water Res. 2019, 55, 3285–3306. [Google Scholar] [CrossRef]
- Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A review of threats to groundwater quality in the Anthropocene. Sci. Total Environ. 2019, 684, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Skurray, J.H.; Roberts, E.J.; Pannell, D.J. Hydrological challenges to groundwater trading:Lessons from south-west Western Australia. Hydrogeol. J. 2013, 412, 256–268. [Google Scholar]
- Shu, S.; Zhu, W.; Shi, J. A new simplified method to calculate breakthrough time of municipal solid waste landfill liners. J. Clean. Prod. 2019, 219, 649–654. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Huan, H.; Li, M.; Xi, B.; Lv, N.; Wu, Y.; Xie, Y.; Li, X.; Yang, J. Method for screening prevention and control measures and technologies based on groundwater pollution intensity assessment. Sci. Total Environ. 2016, 551, 143–154. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, F.; Yang, S.; Jing, H.; Meng, B. Numerical simulation of particle migration from crushed sandstones during groundwater inrush. J. Hazard. Mater. 2018, 362, 327–335. [Google Scholar] [CrossRef]
- Hosono, T.; Wang, C.; Umezawa, Y.; Nakano, T.; Onodera, S.; Nagata, T.; Yoshimizu, C.; Tayasu, I.; Taniguchi, M. Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. Hydrogeol. J. 2011, 397, 23–36. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Azzellino, A.; Colombo, L.; Lombi, S.; Marchesi, A.; Piana, A.; Andrea, M.; Alberti, L. Groundwater diffuse pollution in functional urban areas: The need to define anthropogenic diffuse pollution background levels. Sci. Total Environ. 2019, 656, 1207–1222. [Google Scholar] [CrossRef]
- Wu, H.; Dong, Y.; Gao, L.; Song, X.; Liu, F.; Peng, X.; Zhang, G. Identifying Nitrate Sources in Surface Water, Regolith and Groundwater in a Subtropical Red Soil Critical Zone by Using Dual Nitrate Isotopes. Catena 2021, 198, 104994. [Google Scholar] [CrossRef]
- Naderi, M.; Jahanshahi, R.; Dehbandi, R. Two distinct mechanisms of fluoride enrichment and associated health risk in springs’ water near an inactive volcano, southeast Iran. Ecotoxicol. Environ. Saf. 2020, 195, 110503. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Yang, X.; Jia, C. Combining multi-source data to evaluate the leakage pollution and remediation effects of landfill. Hydrogeol. J. 2022, 610, 127889. [Google Scholar] [CrossRef]
- Buckerfield, S.J.; Quilliam, R.S.; Bussiere, L.; Waldron, S.; Naylor, L.A.; Li, S.; Oliver, D.M. Chronic urban hotspots and agricultural drainage drive microbial pollution of karst water resources in rural developing regions. Sci. Total Environ. 2020, 744, 140898. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Luo, J.; O’Connor, D.; Cao, X.; Hou, D. Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone. Hydrogeol. J. 2020, 580, 124353. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the long-term operational performance of pump and treat and the possibility of closure for a large TCE plume. Hazard. Mater. J. 2019, 365, 796–803. [Google Scholar] [CrossRef]
- Liolios, K.; Moutsopoulos, K.N.; Tsihrintzis, V.A. Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands. Chem. Eng. J. 2012, 200, 681–693. [Google Scholar] [CrossRef]
- Chang, S.; Clement, T.; Simpson, M.J.; Lee, K. Does sea-level rise have an impact on saltwater intrusion. Adv. Water Res. 2011, 34, 1283–1291. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, D.; Medeiros, S.C.; Hagen, S.C.; Hall, C.R. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida. Sci. Total Environ. 2018, 630, 211–221. [Google Scholar] [CrossRef]
- Sreekanth, J.; Datta, B. Coupled simulation-optimization model for coastal aquifer management using genetic programming-based ensemble surrogate models and multiple-realization optimization. Water Res. 2011, 47, W04516. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, C.; Zeng, W.; Srivastava, A.K.; Gaiser, T.; Wu, J.; Huang, J. Simulating water and salt transport in subsurface pipe drainage systems with HYDRUS-2D. Hydrogeol. J. 2021, 592, 125823. [Google Scholar] [CrossRef]
- Ahmed, I.I.K.; Fea, A.; Au, L.; Ang, R.E.; Harasymowycz, P.; Jampel, H.; Samuelson, T.W.; Chang, D.F.; Rhee, D.J. A prospective randomized trial comparing Hydrus and iStent micro-invasive glaucoma glaucoma surgery implants for standalone treatment of open-angle glaucoma: The COMPARE Study. Ophthalmology 2020, 127, 52–61. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Simunek, J.; Shi, H.; Hu, Q.; Zhang, Y. Evaluating soil nitrate dynamics in an intercropping dripped ecosystem using HYDRUS-2D. Sci. Total Environ. 2020, 718, 137314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, R.; Li, Y.; Li, H. Simulation and optimization of layered bioretention facilities by HYDRUS-1D model and response surface methodology. Hydrogeol. J. 2020, 586, 124813. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, G.; Duan, R. Impacts of Long-Term Climate Change on The Groundwater Flow Dynamics in A Regional Groundwater System: Case Modeling Study in Alashan, China. Hydrogeol. J. 2020, 590, 125557. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Uyama, A.; Tomiyama, S.; Villacorte-Tabelin, M.; Phengsaart, T.; Silwamba, M.; Jeon, S.; Park, I.; Arima, T.; Igarashi, T. Geochemical audit of a historical tailings storage facility in Japan: Acid mine drainage formation, zinc migration and mitigation strategies. J. Hazard. Mater. 2022, 438, 129453. [Google Scholar] [CrossRef]
- Vu, T.; Ni, C.; Li, W.; Truong, M.; Hsu, S.M. Predictions of groundwater vulnerability and susta-inability by an integrated index-overlay method and physical-based numerical model. Hydrogeol. J. 2021, 596, 126082. [Google Scholar]
- Morway, E.; Niswonger, R.; Langevin, C.; Bailey, R.; Healy, R. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS. Groundwater 2013, 51, 237–251. [Google Scholar] [CrossRef]
- Beegum, S.; Šimůnek, J.; Szymkiewicz, A.; Sudheer, K.; Nambi, I. Implementation of Solute Transport in the Vadose Zone into the ‘HYDRUS Package for MODFLOW’. Groundwater 2019, 57, 392–408. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Ye, M.; Zhang, X.; Wu, J.; Yang, J. A new quasi-3-D model with a dual iterative coupling scheme for simulating unsaturated-saturated water flow and solute transport at a regional scale. Hydrogeol. J. 2021, 602, 12. [Google Scholar] [CrossRef]
- Graaf, I.I.E.M.D.; Gleeson, T.; Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Envir-onmental flow limits to global groundwater pumping. Nature 2019, 574, 7776. [Google Scholar] [CrossRef]
- Yao, N.; Li, C.; Yu, J.; Xu, Q.; Wei, S.; Tian, Z.; Yang, Z.; Yang, W.; Shen, J. Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water. Sep. Purif. Technol. 2020, 236, 116278. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts: Recent development. Clean. Prod. J. 2018, 205, 930–954. [Google Scholar] [CrossRef]
- Elshall, A.S.; Ye, M.; Finkel, M. Evaluating Two Multi-Model Simulation-Optimization Approaches for Managing Groundwater Contaminant Plumes. Hydrogeol. J. 2020, 590, 125427. [Google Scholar] [CrossRef]
- Mao, L.; Revil, A.; Hort, R.D.; Munakatamarr, J.; Atekwana, E.A.; Kulessa, B. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments. Hydrogeol. J. 2015, 530, 1–14. [Google Scholar] [CrossRef]
- Morrissy, J.G.; Currell, M.J.; Reichman, S.M.; Surapaneni, A.; Megharaj, M.; Crosbie, N.D.; Hirth, D.; Aquilina, S.; Rajendram, W.; Ball, A.S. Nitrogen Contamination and Bioremediation in Groundwater and The Environment: A Review. Earth-Sci. Rev. 2021, 222, 103816. [Google Scholar] [CrossRef]
Borehole No. | Water Level | Borehole No. | Water Level |
---|---|---|---|
ZK151 | 1885.34 | ZK20 | 1907.59 |
ZK209 | 1888.02 | ZK24 | 1909.42 |
ZK262 | 1885.17 | ZK30 | 1908.26 |
ZK298 | 1888.23 | ZK150 | 1908.24 |
ZK352 | 1897.42 | ZK208 | 1913.94 |
ZK12 | 1886.74 | JC44 | 1909.567 |
ZK16 | 1912.73 | YJ06 | 1912.71 |
Borehole No. | Measured Water Level | Calculated Water Level | Absolute Error |
---|---|---|---|
JC01 | 1904.172 | 1902.44 | 1.732 |
JC02 | 1904.544 | 1904.23 | 0.314 |
JC03 | 1905.41 | 1903.82 | 1.59 |
JC04 | 1910.526 | 1911.96 | 1.434 |
JC05 | 1908.166 | 1911.12 | 2.954 |
JC06 | 1906.352 | 1908.53 | 2.178 |
YJ10 | 1905.751 | 1907.79 | 2.039 |
Duration of Pumping Center | 30 | 60 | 120 | |
---|---|---|---|---|
Concentration Value | ||||
First layer: | 59.77 | 58.39 | 55.73 | |
Second layer: | 17.04 | 17 | 16.91 | |
Third layer: | 0.336 | 0.333 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Tang, S.; Niu, Z.; Tong, J. Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China. Water 2024, 16, 2713. https://doi.org/10.3390/w16192713
Fang X, Tang S, Niu Z, Tong J. Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China. Water. 2024; 16(19):2713. https://doi.org/10.3390/w16192713
Chicago/Turabian StyleFang, Xiaoqi, Shiyao Tang, Zhenru Niu, and Juntao Tong. 2024. "Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China" Water 16, no. 19: 2713. https://doi.org/10.3390/w16192713
APA StyleFang, X., Tang, S., Niu, Z., & Tong, J. (2024). Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China. Water, 16(19), 2713. https://doi.org/10.3390/w16192713