Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Formulation and Reformulation
2.1.1. Deterministic Mixed Integer Programming Model
- Sets:
- I: set of farm sites, indexed by i.
- J: set of potential well sites, indexed by j.
- Parameters:
- : construction fixed cost at site j.
- : unit cost for construction at site j.
- : transportation cost from j to i.
- : demand at farm i.
- : static water level of the well at site j.
- r: average recharge quantity.
- s: area of the study region.
- : the deepest depth the well can be drilled.
- : the minimum difference between the depth well and static water level .
- Decision variables:
- : binary, equal to 1 if the well at location j is placed, 0 otherwise.
- : quantity of water that is transported from site j to farm i.
- : depth of the well to drill at site j.
- : capacity of the well at site j.
- Deterministic MIP problem formulation:
- Deterministic MIP problem reformulation:
2.1.2. Two-Stage Stochastic Mixed Integer Programming Model
- Sets:
- I: set of farm sites, indexed by i.
- J: set of potential well sites, indexed by j.
- M: set of farm demand scenarios, indexed by m.
- Parameters:
- : construction fixed cost at site .
- : unit cost for drilling one meter at site j.
- : probability of the demand scenario m.
- : demand at farm i for scenario m.
- : transportation cost from j to i.
- : static water level of the well at site j.
- : average recharge quantity
- : area of the study region
- : the deepest depth the well can be drilled.
- the minimum difference between the depth of the well and static water level .
- Decision variables:
- : binary, equal to 1 if the well at location j is placed, otherwise 0.
- : quantity of water that is transported from site j to farm i for demand scenario m.
- : depth of the well to drill at site j.
- : capacity of the well at site j.
- Two-stage SMIP problem formulation:
- Two-stage SMIP reformulation and deterministic equivalent form:
2.2. Study Area
2.3. Data
2.3.1. Construction Costs and Per-Meter Drilling Costs
2.3.2. Transportation Costs
2.3.3. Water Demand
2.3.4. Average Groundwater Recharge Quantity
2.3.5. Static Water Level
2.3.6. Other Data
3. Results
3.1. Model Optimization Results
3.2. Optimal Well Layouts
4. Discussion
4.1. Impact of Different Parameters
4.1.1. Impact of Different Fixed Construction Costs
4.1.2. Impact of Different Per-Meter Drilling Costs
4.1.3. Impact of Different Demand Scenarios
4.2. Out-of-Sample Performance
4.3. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, F.M. Understanding Ethiopia; Wolfgang Eder AV; Springer International Publishing: New York, NY, USA, 2016. [Google Scholar]
- Verner, K.; Šíma, J.; Megerssa, L. (Eds.) A Synopsis of Regional Geology and Hydrogeology of Ethiopia; Czech Geological Survey: Staré Brno, Czech Republic, 2024. [Google Scholar]
- UNICEF. Ethiopia For Every Child, Clean Water! Available online: https://www.unicef.org/ethiopia/every-child-clean-water (accessed on 30 May 2024).
- UNHCR. Horn of Africa Food Crisis Explained. Available online: https://www.unrefugees.org/news/horn-of-africa-food-crisis-explained/ (accessed on 24 May 2024).
- The World Bank. The World Bank in Ethiopia. Available online: https://www.worldbank.org/en/country/ethiopia/overview (accessed on 30 May 2024).
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global Water Resources and the Role of Groundwater in a Resilient Water Future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Carter, R.C.; Bevan, J.E. Groundwater Development for Poverty Alleviation in Sub-Saharan Africa. In Applied Groundwater Studies in Africa; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-0-429-20736-5. [Google Scholar]
- Mahmood, H.A.; Al-Fatlawi, O. Well Placement Optimization: A Review. AIP Conf. Proc. 2022, 2443, 030009. [Google Scholar] [CrossRef]
- Tafteh, A.; Babazadeh, H.; Ebrahimipak, N.; Kaveh, F. Optimization of Irrigation Water Distribution Using the Mga Method and Comparison with a Linear Programming Method. Irrig. Drain. 2014, 63, 590–598. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Liu, Y.; Sun, H.; Gui, D.; Xue, J. A Mixed Integer Linear Programming Method for Optimizing Layout of Irrigated Pumping Well in Oasis. Water 2019, 11, 1185. [Google Scholar] [CrossRef]
- Kuvichko, A.; Ermolaev, A. Mixed-Integer Programming for Optimizing Well Positions; OnePetro: Richardson, TX, USA, 2020. [Google Scholar]
- Liu, X.; Wang, S.; Huo, Z.; Li, F.; Hao, X. Optimizing Layout of Pumping Well in Irrigation District for Groundwater Sustainable Use in Northwest China. Hydrol. Process. 2015, 29, 4188–4198. [Google Scholar] [CrossRef]
- Halilovic, S.; Böttcher, F.; Kramer, S.C.; Piggott, M.D.; Zosseder, K.; Hamacher, T. Well Layout Optimization for Groundwater Heat Pump Systems Using the Adjoint Approach. Energy Convers. Manag. 2022, 268, 116033. [Google Scholar] [CrossRef]
- Bayer, P.; Bürger, C.M.; Finkel, M. Computationally Efficient Stochastic Optimization Using Multiple Realizations. Adv. Water Resour. 2008, 31, 399–417. [Google Scholar] [CrossRef]
- Emerick, A.A.; Silva, E.; Messer, B.; Almeida, L.F.; Szwarcman, D.; Pacheco, M.A.C.; Vellasco, M.M.B.R. Well Placement Optimization Using a Genetic Algorithm with Nonlinear Constraints; OnePetro: Richardson, TX, USA, 2009. [Google Scholar]
- Sharifipour, M.; Nakhaee, A.; Yousefzadeh, R.; Gohari, M. Well Placement Optimization Using Shuffled Frog Leaping Algorithm. Comput. Geosci. 2021, 25, 1939–1956. [Google Scholar] [CrossRef]
- AlQahtani, G.; Alzahabi, A.; Kozyreff, E.; de Farias, I.R., Jr.; Soliman, M. A Comparison between Evolutionary Metaheuristics and Mathematical Optimization to Solve the Wells Placement Problem. Adv. Chem. Eng. Sci. 2013, 3, 30–36. [Google Scholar] [CrossRef]
- Yin, J.; Pham, H.V.; Tsai, F.T.-C. Multiobjective Spatial Pumping Optimization for Groundwater Management in a Multiaquifer System. J. Water Resour. Plan. Manag. 2020, 146, 04020013. [Google Scholar] [CrossRef]
- Li, W.; Finsa, M.M.; Laskey, K.B.; Houser, P.; Douglas-Bate, R. Groundwater Level Prediction with Machine Learning to Support Sustainable Irrigation in Water Scarcity Regions. Water 2023, 15, 3473. [Google Scholar] [CrossRef]
- Li, W.; Finsa, M.M.; Houser, P.; Laskey, K.B.; Douglas-Bate, R. Groundwater Recharge Estimation in Data-Limited Water-Scarce Regions. Hydrol. Res. 2024. Submitted. [Google Scholar]
- Fan, Z.; Ji, R.; Chang, S.-C.; Chang, K.-C. Novel Integer L-Shaped Method for Parallel Machine Scheduling Problem under Uncertain Sequence-Dependent Setups. Comput. Ind. Eng. 2024, 193, 110282. [Google Scholar] [CrossRef]
- Fan, Z.; Chang, K.-C.; Ji, R.; Chen, G. Data Fusion for Optimal Condition-Based Aircraft Fleet Maintenance with Predictive Analytics. J. Adv. Inf. Fusion (JAIF) 2023, 18, 102. [Google Scholar]
- Fan, Z.; Ji, R.; Lejeune, M.A. Distributionally Robust Portfolio Optimization under Marginal and Copula Ambiguity. J. Optim. Theory Appl. 2024. [Google Scholar] [CrossRef]
- Ji, R.; Lejeune, M.A.; Fan, Z. Distributionally Robust Portfolio Optimization with Linearized STARR Performance Measure. Quant. Financ. 2022, 22, 113–127. [Google Scholar] [CrossRef]
- McCormick, G.P. Computability of Global Solutions to Factorable Nonconvex Programs: Part I—Convex Underestimating Problems. Math. Program. 1976, 10, 147–175. [Google Scholar] [CrossRef]
- Ahmed, S. Two-Stage Stochastic Integer Programming: A Brief Introduction. In Wiley Encyclopedia of Operations Research and Management Science; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; ISBN 978-0-470-40053-1. [Google Scholar]
- Cholo, B.E.; Tolossa, J.G. Identification of Groundwater Recharge and Flow Processes Inferred from Stable Water Isotopes and Hydraulic Data in Bilate River Watershed, Ethiopia. Hydrogeol. J. 2023, 31, 2307–2321. [Google Scholar] [CrossRef]
- Deribew, K.T.; Arega, E.; Moisa, M.B. Prediction of the Topo-Hydrologic Effects of Soil Loss Using Morphometric Analysis in the Upper Bilate Watershed. Bull. Eng. Geol. Environ. 2024, 83, 162. [Google Scholar] [CrossRef]
- Powers, P.J.; Corwin, A.B.; Schmall, P.C.; Kaeck, W.E.; Herridge, C.J.; Morris, M.D. Appendix A: Friction Losses for Water Flow Through Pipe. In Construction Dewatering and Groundwater Control; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 597–602. ISBN 978-0-470-16810-3. [Google Scholar]
- FlexPVC. Water Flow Charts Based on Pipe Size. Available online: https://flexpvc.com/Reference/WaterFlowBasedOnPipeSize.shtml (accessed on 25 May 2024).
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual 2024. Available online: https://www.gurobi.com/documentation/11.0/refman/index.html (accessed on 25 May 2024).
- Python Software Foundation. The Python Language Reference, Version 3.12. Available online: https://docs.python.org/3/reference/index.html (accessed on 25 May 2024).
- QGIS. Development Team QGIS Geographic Information System. Available online: https://qgis.org/en/site/ (accessed on 1 August 2023).
Deterministic MIP with Fixed Demand | ||||||
Demand (kg/km2) | 800 | 900 | 1000 | 1100 | 1200 | Average |
Optimized number of wells | 43 | 44 | 45 | 46 | 46 | 45 |
Total costs (USD) | 42,177,807 | 42,224,273 | 42,265,578 | 42,306,933 | 42,347,516 | 42,264,421 |
Total fixed construction costs (USD) | 215,000 | 220,000 | 225,000 | 230,000 | 230,000 | 224,000 |
Total drilling costs (USD) | 41,719,176 | 41,728,938 | 41,738,701 | 41,748,463 | 41,758,326 | 41,738,721 |
Total transportation costs (USD) | 243,631 | 275,335 | 301,877 | 328,470 | 359,190 | 301,700 |
Two-stage SMIP (Demand scenarios: uniform distribution) | ||||||
Demand Instance | U (400, 1200) | U (500, 1300) | U (600, 1400) | U (700, 1500) | U (800, 1600) | Average |
Optimized number of wells | 45 | 45 | 46 | 46 | 46 | 45.6 |
Total costs (USD) | 42,215,743 | 42,256,368 | 42,297,266 | 42,339,950 | 42,381,187 | 42,298,103 |
Total fixed construction costs (USD) | 225,000 | 225,000 | 230,000 | 230,000 | 230,000 | 228,000 |
Total drilling costs (USD) | 41,748,893 | 41,758,756 | 41,768,351 | 41,778,241 | 41,787,793 | 41,768,406 |
Total transportation costs (USD) | 241,850 | 272,612 | 298,915 | 331,709 | 363,394 | 301,696 |
Two-stage SMIP (Demand scenarios: normal distribution) | ||||||
Demand Instance | N (800, 300) | N (900, 300) | N (1000, 300) | N (1100, 300) | N (1200, 300) | Average |
Optimized number of wells | 44 | 44 | 46 | 46 | 46 | 45.2 |
Total costs (USD) | 42,233,743 | 42,275,352 | 42,316,817 | 42,360,022 | 42,402,269 | 42,317,641 |
Total fixed construction costs (USD) | 220,000 | 220,000 | 230,000 | 230,000 | 230,000 | 226,000 |
Total drilling costs (USD) | 41,762,470 | 41,772,055 | 41,783,204 | 41,793,020 | 41,802,142 | 41,782,578 |
Total transportation costs (USD) | 251,273 | 283,297 | 303,613 | 337,002 | 370,127 | 309,062 |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
In-sample demand | Deterministic with demand = 1100 | Uniform distribution U (600, 1400) | Deterministic with demand = 1100 | Normal distribution N (1000, 155) |
Out-of-sample demand | Uniform distribution U (600, 1400) | Uniform distribution U (600, 1400) | Normal distribution N (1000, 155) | Normal distribution N (1000, 155) |
Mean | 47,124,183 | 42,494,243 | 44,200,128 | 42,625,237 |
Standard deviation | 938,970 | 107,608 | 437,315 | 172,968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Finsa, M.M.; Laskey, K.B.; Houser, P.; Douglas-Bate, R.; Verner, K. Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach. Water 2024, 16, 2715. https://doi.org/10.3390/w16192715
Li W, Finsa MM, Laskey KB, Houser P, Douglas-Bate R, Verner K. Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach. Water. 2024; 16(19):2715. https://doi.org/10.3390/w16192715
Chicago/Turabian StyleLi, Wanru, Mekuanent Muluneh Finsa, Kathryn Blackmond Laskey, Paul Houser, Rupert Douglas-Bate, and Kryštof Verner. 2024. "Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach" Water 16, no. 19: 2715. https://doi.org/10.3390/w16192715
APA StyleLi, W., Finsa, M. M., Laskey, K. B., Houser, P., Douglas-Bate, R., & Verner, K. (2024). Optimizing Well Placement for Sustainable Irrigation: A Two-Stage Stochastic Mixed Integer Programming Approach. Water, 16(19), 2715. https://doi.org/10.3390/w16192715