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Abstract: The adoption of green roofs is an effective practice for mitigating environmental issues in
urban areas caused by extreme weather conditions. However, certain design aspects of green roofs,
such as the characterization of the physical properties of their substrates, need a better understanding.
This study proposes a simple method for estimating two hydraulic properties of green roof substrates
based on the evolution of moisture during drying periods, or drydowns, where evaporative processes
dominate: the weighted-mean diffusivity and the saturated hydraulic conductivity. Soil moisture
was monitored using 12 in situ sensors from 2015 to 2020 in a study involving six different green
roof plots composed of various mixtures of demolition-recycled aggregates and organic substrates.
A universal parameterization for determining water diffusivity in soils was applied to estimate the
weighted-mean hydraulic diffusivity. As a by-product, the saturated hydraulic conductivity was
estimated from the evaluated diffusivity and the measured water retention data. The median values
obtained for D and ks range from 14.5 to 29.9 cm2d−1 and from 22 to 361 cmd−1, respectively. These
values fall within the ranges reported by other research groups using direct measurement methods
and supports the validity of Brutsaert’s model for green roof substrates. Furthermore, an increase
in D and a decrease in ks were observed as the percentage of recycled aggregates in the substrates
increased, which could be considered for design purposes.

Keywords: green roofs; water evaporation; weighted-mean diffusivity; saturated hydraulic conductivity

1. Introduction

The progressive increase in temperature, particularly in urban environments, the
growing concern to improve living conditions in highly populated areas, and the results of
previous experiments worldwide have led to the proliferation of urban surfaces covered
with vegetation. This has prompted the study of their properties, as seen in studies such as
those of Jacobs et al. [1] and Alim et al. [2] on green roofs.

A green roof consists essentially of a surface layer usually occupied by plants, a
growing medium that is in most cases some organic substrate, a filter typically consisting
of geotextiles, a drainage store, and a root barrier overlying a waterproofing membrane,
e.g., [3]. As Mihalakakou et al. [4] indicated, green roofs serve multiple purposes: they
save energy, maintain the quality of air, conserve water, mitigate streets flooding, enhance
biodiversity, and attenuate urban noise, among other effects. They also contribute to the
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mitigation of energy transfer rates between them and the atmosphere [5], the dissipation of
part of the incoming net radiation to maintain air temperature in a reduced interval [6], the
filtration of part of rain-leached atmospheric pollutants, the reduction of noise [7], and the
improvement in water quality in urban runoff [8–10].

In the green roof modelling literature, hydrological behavior is usually defined by
retention and detention processes. Detention is understood as the delay and attenuation of
the runoff hydrograph, and retention is understood as the amount of rainfall intercepted by
the green roof system [11]. Numerous studies have highlighted the reduction in runoff vol-
umes, the decrease in peak runoff rates, and the delay in hydrograph response, e.g., [12–14].
Simple models such as the Thornthwaite–Mather model (TMM) and the description by
McColl et al. [15] can be used. Several models assimilate the green roof to a bucket, a single
store with either a linear or non-linear relationship between storage volumes and discharge
rates. Lucatelli et al. [16] and Vesuviano et al. [17] chose the non-linear model, decomposing
the store in two parts, one for the root system and the other for the percolated water. Some
authors, such as Carson et al. [18], found that the Soil Curve Number method successfully
estimated the conversion of gross rainfall to runoff for several green roofs in New York City.
Therefore, most of the precipitation of rainfall events below a certain threshold could be
retained; Castro et al. [19], for instance, suggested up to 22 mm of retention for a certain
green roof set-up, and Kemp et al. [20] suggested up to 18% of the received rain depth. She
and Pang [21] used the Green and Ampt [22] model to follow water’s infiltration into a
growing media. Cascone et al. [23] and Ebrahimian [24] summarized the evapotranspi-
ration processes in green roofs. Starry et al. [25] applied the Penman–Monteith equation
according to FAO standards [26] with seasonal crop coefficients for different green roof
plants. Stovin et al. [27] and Berretta et al. [28] estimated the actual evapotranspiration
rate as proportional to the ET0, corrected by the ratio of the measured water content of the
growing media and its maximum value, called by them ‘field capacity’, a kind of effective
saturation degree [29] that is similar to the Thornthwaite and Mather (TMM) proposal, for
the formulation of their water balance model [30].

Previous approaches have typically relied on empirical soil moisture extraction func-
tions to factor the substrate moisture content to allow actual ET losses to be estimated from
a reference ET. But such functions do not account for substrate-specific moisture release
characteristics. The use of more complex models such as the Richards equation for soil wa-
ter movement could also be appropriate, e.g., Gardner’s [31] desorption. Some works have
used complete soil water and heat flow models like HYDRUS-1D [32] or HYDRUS-2D [33]
to interpret the behavior of green roofs. Carbone et al. [34] described a small-scale analogic
model and Sandoval et al. [33] even adapted a complete soil moisture model to explore the
possibilities of green roofs in Chile. But these types of models might not always be practical
in extensive green roofs due to their required number of parameters. The reduced depth of
the growing media and the large horizontal extent of the plots could suggest the adoption
of simpler models that require a smaller number of parameters to describe the hydraulic
properties of green roof substrates.

The optimal substrate for green roofs varies with climate. In Mediterranean areas,
characterized by prolonged and rainless summers, the substrate must be able to avoid
flooding during heavy rainfalls but also retain moisture during the dry season to allow the
survival of vegetation. Thus, the selection of the substrate is a key factor for the success of
the system. There are many papers dedicated to substrates, e.g., [35]. Some focus in detail
on the hydrophysical characterization of green roof substrates, with extended discussions
on the soil water retention curve (SWRC) and unsaturated hydraulic conductivity function
(HCF), e.g., [36,37]. According to Fassman-Beck et al. [38], the most relevant factor for
runoff mitigation is the horizontal flow path length through the drainage layer to vertical
gutters, as well as the roughness of this layer, dominated by the substrate. Kader et al. [39]
proposed a drought tolerance test consisting of a platform to test the ability of plants to resist
extreme drought conditions. More formal methods were suggested by Coelho et al. [40] for
the estimation of water vapor transmission, hygroscopic sorption, and water retention and
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drainage capacity; and by Sandoval et al. [33], who used the Hydrus model to estimate some
optimal compositions of the substrate mixture, i.e., peat and inert, gravel, and material.
Whilst these papers have mainly focused on the importance of these physical characteristics
for controlling the runoff/percolation rate, observations of physical characteristics are
equally relevant to soil moisture losses due to ET.

The use of recycled aggregates (RAs) as green roof substrates has been recently in-
corporated, e.g., [36,41], with a twofold purpose to obtain an optimal porous medium,
increasing pore size, and to eliminate residues which could become a nuisance. López-
Uceda et al. [42] rationalized the use of RAs in green roofs and analyzed the leaching risk
of the substrate object of this study. It was confirmed that the use of recycled aggregates
complies with non-polluting effluent regulations. But their effectiveness as a support for
vegetation in terms of water properties was not analyzed.

From the analysis of the vertically integrated water budget for a soil, Laio et al. [43]
stated that the temporal variation in the moisture content was equal to the rainfall minus
the loss rate. The loss rate can be composed of percolation, runoff, and evapotranspiration,
but a certain time after a precipitation event, it corresponds essentially to the evaporation,
and, more properly, to stage II of the evaporation, where soil controls the process.

The description of the evaporation process, which usually predominates over drainage
in Mediterranean regions, can be a key element of the characterization of the substrates,
as recommended by McColl et al. [15], who coined the term “drydown” to represent a
quasi-permanent characteristic of the land surface. The drydowns correspond roughly
to the second stage of soil water evaporation (e.g., [44]) and depend on a time factor, a
flux rate reference, and the limits of the moisture interval. The time factor is related to the
memory of the soil of the surface soil moisture, a timescale required for the dissipation of a
perturbation like a rain event, and, consequently, a characteristic of the substrate (e.g., [45]).

In a few cases, drying periods have been used to analyze the soil response, as in
Berretta et al. [28] or [46], who measured and estimated evapotranspiration in their exper-
iments to assess the suitability of green roofs in different areas of the United Kingdom.
Brutsaert [47,48] presented a universal parameterization of the daily evaporation from a
soil, considered as an isothermal linear diffusion process in a bounded medium. For such a
purpose, he adopted the weighted-mean diffusivity proposed by Crank [49] and first used
by Gardner [31] for the analysis of soil water evaporation to simplify the complexity of
the problem.

The purpose of this paper is to estimate some of the hydrophysical properties of green
roof substrates based on the evolution of moisture during the drying periods, or drydowns,
where evaporative processes dominate. To achieve this, the weighted-mean water diffu-
sivity of green roof substrates will be estimated using the method developed and applied
to natural soils by Brutsaert [47] based on the moisture data acquired by electromagnetic
sensors in a green roof experiment in Córdoba, Southern Spain, maintained during a 6-year
period. To verify the consistency of the results, the saturated hydraulic conductivity of
the substrates will be determined by comparing the weighted-mean diffusivity estimates
obtained using the Brutsaert [47] method with the estimates computed from the soil water
retention curve proposed by van Genuchten [50].

2. Materials and Methods

A green roof experiment was set up on one building of the campus of the University
of Cordoba (Section 2.1); it was equipped with moisture sensors (Section 2.2), and the
soil water retention curve of the substrates was measured in the laboratory (Section 2.3).
Inverse normalization was used to compensate for the absence of a site-specific moisture
calibration (Section 2.4). The characterization of the hydrophysical properties of the green
roof substrates was carried out during evaporation periods, also referred to as drying
periods or drydowns (Section 2.5); specifically, weighted-mean diffusivity (Section 2.6) and
saturated hydraulic conductivity (Section 2.7) were evaluated. In Section 2.6, a soil water
evaporation model was applied to identify the initial evaporation intensity and reference
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time present in the Brutsaert [47] model to finally calculate the weighted-mean diffusivity,
which can be a good indicator of the hydrophysical properties of green roof substrates.
The weighted-mean diffusivity can be characterized with other means. In Section 2.7, for
instance, the method reported by Crank [49] and van Genuchten [50] was used based on
the water retention curve. This alternative method offers the possibility to estimate the
value of the saturated hydraulic conductivity. The conceptual road map followed in the
mentioned analysis is presented in Figure 1.
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Figure 1. Conceptual figure of the road map followed for calculations. Symbols used in this figure
are rainfall (R), reference evapotranspiration (ETo), soil moisture (θ), soil saturation degree (S),
evaporation (e), the reference evaporation rate (e0) and time (κ) from the Brutsaert [47] method, as
well as, weighted-mean diffusivity (D), saturated hydraulic conductivity (ks), and the soil water
retention curve (SWRC) with its correspondent values of residual water content (θr), saturated water
content (θs), a scaling parameter (α), and shape parameters (m, n).

2.1. Green Roof Set-Up

At the beginning of spring 2015, six extensive green roofs plots 4.4 × 3.2 m2 in size and
containing different substrates were installed on a building on the University of Cordoba
campus (37.92◦ N, 4.72◦ W, 136 masl), as seen in Figure 2. The depth of the growing
media was initially 0.10 m. The climate in Cordoba is Mediterranean, Csa in the Köppen–
Geiger scheme [51]. Agrometeorological information, namely, air temperatures, reference
evapotranspiration rates (ETos), and rainfall rates, were collected from an automatic station
called “UCO-B.G. Olivo” (37.93◦ N 4.72◦ W), located within 200 m from the study site [52].
In this location, the mean annual temperature is 18.5 ◦C, with a long, hot summer and
fluctuations between the average of the annual minimum daily values in winter, −2.1 ◦C,
and the average of the annual maximum daily values in summer, 42.6 ◦C. The average
annual precipitation is 530 mm, with 80% of the rain concentrated in the fall and winter
seasons, from October to March, and the average annual potential evapotranspiration is
1313 mm.
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Figure 2. Location and appearance of the six green roof plots and the reference plot installed on a
building of the University of Cordoba. (a) Location on the map, and (b) situation on the roof of the
building [53] and plot identification. (c,d) Appearance of the plots.

Six substrates composed of mixtures in different proportions of recycled aggregates
and organic substrates were tested. The properties of the growing media are summarized in
Table 1. The recycled aggregates (RAs) consist of recycled sand obtained in a construction
and demolition waste treatment plant, containing ceramic, concrete, gypsum, and other
residues, with a maximum particle size of 8 mm and a sandy texture. The commercial
substrate S, recommended for roof gardens, consists of organic material (mull, coconut) and
volcanic tuff, and has a sandy texture. Substrate C is composted mulch used for organic
cropping, and comprises 100% composted organic matter. The bulk density was measured
in 2019 by standard methods [54] (§ 2.1).

Table 1. Green roof growing media composition, bulk density, and thickness.

Plot 1 Composition 2 Bulk Density
(ρb)

Thickness 3

(z)RA S C

% Mg m−3 cm

S100 0 100 0 0.562 7.0
S75 25 75 0 0.955 6.3
C75 25 0 75 1.094 7.5
C50 50 0 50 1.208 8.3
S50 50 50 0 1.153 8.9
S25 75 25 0 1.305 8.9

Note: 1 Plot refers to the plot identification; 2 RA, S, and C are the percentage by volume of recycled aggregates
and organic substrates; 3 thickness is the average value of substrate depth during the measurement period.

A selection of plant species with shallow rooting systems and moderate development
of aerial parts was adopted (e.g., [55]). A mixture of Acinos alpinus, Trifolium repens, Phag-
nalon saxatile, Lobularia maritima, Sedum sediforme, Cerastium tomentosum, Lotus corniculatus,
Sanguisorba minor, Paronychia argentea, Brachypodium retusum, Bellis perennis, and Dianthus
arenarius was sown. During the hot season, an automatic drip irrigation system supplies
approximately 4 l m−2 of water to the plants daily. An outlet on the side of each plot and
below the height of the drainage layer directs runoff water to a tank located on the ground
floor of the building. The experimental plots have a 0.08 slope toward the outlet.
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2.2. Monitoring in the Set-Up

Water content and temperature were monitored every 15 min with (i) two Campbell
CS616 moisture sensors and (ii) ten Campbell 107 thermistors in each plot. The aim was to
characterize through different studies the water and energy balances, and the efficiency of
different substrate mixtures to reduce the impact of incoming radiation into the building
underneath. The sensors’ arrangement in and the schematic cross-section of each plot are
shown in Figure 3.
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The water content was averaged daily from the measures and recorded every 15 min.
The data were treated separately in the two moisture sensors of each plot, resulting in 12
daily datasets.

Linear standard calibration from Campbell was applied to the data collected with the
moisture sensors, preceded by a temperature calibration [56], obtaining the volumetric θraw.

2.3. Water Retention Curves

The soil water retention curve of the substrates was measured in the laboratory using
the standard methods [57] (§ 3.3.2). Experimental data were measured by Montes [58] dur-
ing the year 2019 with a sand suction table, a kaolin suction table, and a WP4 psychrometer.

The van Genuchten [50] soil water retention equation, written in terms of a water
saturation degree or normalized humidity, S (Equation (1)), was fitted to the moisture
content, θ, and the matric or suction component of the soil water potential, ψ, using the
curve_fit function from the SciPy library for Python [59] based on the Levenberg–Marquardt
optimization algorithm [60]. The relevant parameters were the residual water content,
θr, the saturated water content, θs, a scaling parameter, α, and a shape parameter, n. An
additional shape parameter, m, adopts the value m = 1 − 1/n to simplify the hydraulic
conductivity expression [50].

S =
θ − θr

θs − θr
=

[
1 + (αh )n]−m (1)

2.4. Moisture Site-Specific Calibration

On-site substrate-specific calibrations were not undertaken a priori. To address this
issue, the obtained water content (θraw) was written in terms of the water saturation degree
or normalized humidity, S, using the actual moisture content (θraw), the residual moisture
content (θraw min), understood as the minimum value, and the saturation moisture content
(θraw max), understood as the maximum value in every sensor, defined by Equation (2).

S =
θraw − θraw min

θraw max − θraw min
(2)
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With the saturation and residual moisture from the water retention curves in each sub-
strate, substrate-specific calibration of the moisture sensor data was carried out through in-
verse normalization, obtaining the considered substrate’s calibrated θ value (Equation (3)).

θ = θr + S(θs − θr) (3)

2.5. Selection of Soil Moisture Drydowns

Evaporation periods, also referred to as drying periods or drydowns, were methodi-
cally extracted from the moisture database, spanning from the year 2015 to 2020. The daily
evapotranspiration intensity, denoted as ei, was estimated as the difference between the
mean daily values of measured soil moisture for each two consecutive days (Equation (4)).

ei = z(θi − θi+1) (4)

where i is the day, z is the substrate depth, and θi and θi+1 are the mean moisture in the
day and the day after, respectively.

The drydown periods were filtered for periods of continuous water loss of 4 days or
more, with neither precipitation nor irrigation. The ei values of each period were compared
with those of the reference evapotranspiration rates (ETos) from the nearby weather station.

2.6. Soil Water Evaporation Modeling Applied to Green Roofs

As Brutsaert [47] explained, water evaporation from a porous medium of finite depth
underlain by a plane of zero flux can be characterized by the Richards, or Richardson
and Richards, equation [61], neglecting the gradient of the gravitational component of the
water potential in vertical flow (Equation (5)). This equation, with the depth z, volumetric
moisture content θ, and time t, incorporates the matric potential component of water in the
medium, ψm = −h, and the hydraulic conductivity, k. Additionally, the introduction of soil
water diffusivity, D (Equation (6)), reduces the dependent variables of soil moisture, θ.

∂θ

∂t
=

∂

∂z

(
k

∂ψm

∂z

)
≡ ∂

∂z

(
D

∂θ

∂z

)
(5)

D = k
dψm

dθ
(6)

The term diffusivity D is defined as the product of the hydraulic conductivity, k, and
the slope of the soil water retention curve, dψ/dθ. This equation is subject to initial and
boundary conditions (Equation (7)) corresponding to the second stage of evaporation, con-
trolled by the soil properties. The initial condition corresponds to a uniformly distributed
water content in the substrate θini. Boundary conditions include a fixed moisture value in
the surface of the substrate, θ0, and a zero-flux plane depth, ze, and t is the time. Although
the boundary condition at the zero-flux plane depth may appear somewhat limiting, Brut-
saert [48] later demonstrated that the solution to Equation (5) produces similar results when
a constant zero-flux plane depth is fixed.

z > 0 t = 0 θ = θini
z = 0 t ≥ 0 θ = θ0
z = ze t ≥ 0 ∂θ/∂z = 0

(7)

To solve Equation (5), a linearization or conversion to a linear form can be employed,
following the approach introduced by Crank [49]. This involves utilizing a weighted-mean
value of the diffusion coefficient, referred to as the weighted-mean diffusivity, D. Gardner
and Mayhugh [62], and particularly Gardner [31], successfully applied the weighted-mean
diffusivity in soil physics to obtain an analytical solution of the water movement.

To calculate the daily evolution of evaporation intensity instead of examining the
evolution of moisture profiles in the substrate, Brutsaert [47] solved the Richards equation,
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Equation (5), with the Laplace transform [63], leading to Equation (8). The evaporative flux,
e, can be expressed as the product of the weighted-mean diffusivity, D, and the moisture
gradient at the substrate surface, z = 0.

e = D
∂θ

∂z

∣∣∣∣
z=0

= e0

∞

∑
j=1

exp

[
− (2j − 1)2t

κ

]
(8)

In Equation (8), e0 represents the initial evaporation rate, and κ the reference time. And its
solution for long periods can be reduced to Equation (9).

e = e0 exp(−t/ κ) (9)

According to Equation (9), Brutsaert’s parameters e0 and κ can be determined by
establishing a linear relationship between the logarithm of the evaporation rate e and the
time (Equation (10)). During the second stage of the evaporation, e0 is obtained from
the ordinate at the intercept, and κ is calculated as the inverse of the slope of the fitted
linear relationship.

ln e = −1
κ

t + lne0 (10)

In this study, both parameters, e0 and κ, were evaluated with a simple linear regression
fit during drydowns, using the daily evolution of substrate evaporation derived from the
moisture measurements made by the sensors installed in the substrates.

A statistical analysis to evaluate the exponential fit of e with time was carried out with
the MSE, F-test, and its probability (e.g., [64] (§ 7.2.5)) to reduce errors related with the
potential presence of other components of the loss function in certain drydown periods.

Additionally, Brutsaert [47] indicated that the two parameters e0 and κ are related to
the weighted-mean diffusivity D, the zero-flux plane depth ze, and the two characteristic
moisture contents θini and θ0.

e0 =
2D(θini − θ0)

ze
(11)

κ =

(
2ze

π

)2
D−1 (12)

Therefore, squaring Equation (11) and multiplying it by Equation (12), the weighted-
mean diffusivity can be written as a function of the parameters e0 and κ (Equation (13)).
Subsequently, the weighted-mean diffusivity can be inferred from the moisture sensor data
for each drydown.

D = κ

[
πe0

4(θ ini − θ0)

]2
(13)

2.7. Assessment of the Weighted-Mean Diffusivity Based on the Water Retention Curve Parameters
for the Estimation of the Saturated Hydraulic Conductivity

An alternative method to obtain the weighted-mean diffusivity is a direct evaluation
from the soil water retention and the hydraulic conductivity equations. The diffusivity
depends on the hydraulic conductivity and the slope of the soil water retention curve, as
defined by Equation (14), e.g., [65] (§ 5.3).

D(θ) = k(θ)
∣∣∣∣dh
dθ

∣∣∣∣ (14)

Therefore, by coupling the van Genuchten soil water retention function with the
Mualem hydraulic conductivity function, known as the van Genuchten–Mualem hydraulic
conductivity function [50], the water diffusivity can be determined (Equation (15)).
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D =
ks(1 − m)S1/2−1/m

αm(θs − θr)

[(
1 − S1/m

)−m/2
−

(
1 − S1/m

)m/2
]2

(15)

In Equation (15), ks represents the saturated hydraulic conductivity, S is the water satu-
ration degree (Equation (1)), and α and m are the van Genuchten soil water retention param-
eters. The only unknown parameter is precisely the saturated hydraulic conductivity, ks.

The weighted-mean diffusivity formulated by Crank [49] and coined by Brutsaert [47]
can be estimated for each drydown by integrating it with the parameter nw and with the
moisture content limits θ0 and θini.

D = nw(θini − θ0)
−nw

∫ θini

θ0

(θini − θ)nw−1D(θ)dθ (16)

The integral of Equation (16) does not have a known general analytical solution
since the form of the diffusivity might be any function. Some works, e.g., [31,66], fitted
an exponential function to the experimentally evaluated data. Brutsaert [47] applied a
diffusivity function that had an exact solution for the water desorption process to give a
proper estimate of the value of the coefficient, nw ≈ 1.77.

Introducing the moisture normalized values, S, Sini, S0 (Equations (1) and (17)) in
Equation (19) using the residual moisture, θr, and saturated moisture, θs, from the retention
curve, the final formulation of the weighted-mean diffusivity for the interval S0 to Sini is
derived, as presented in Equation (18).

Sini =
θini − θr

θs − θr
S0 =

θ0 − θr

θs − θr
(17)

D(S0, Sini) = nw(Sini − S0)
−nw

∫ Sini

S0

(Sini − S)nw−1D(S)dS (18)

Substituting the expression of the soil water diffusivity (Equation (15)) into the lat-
ter equation (Equation (18)) yields a final expression for the weighted-mean diffusivity
(Equation (19)).

D
/

ks
=

nw(Sini − S0)
−nw

α(n − 1)(θs − θr)

∫ Sini

S0

(Sini − S)nw−1 S
1
2−1/m

[(
1 − S

1
m

)− m
2 −

(
1 − S

1
m

)m
2
]2

dS (19)

If we assume, as Brutsaert [47] did, a power relationship between the normalized
moisture, S, and diffusivity, D, in Equation (15), the integration can be solved with the
assistance of the incomplete beta function [67] (§ 6.6). However, if this hypothesis is not
acceptable, a straightforward numerical integration, such as Gauss–Legendre, e.g., [68]

(§ 4.5), can estimate the value of the D
/

ks
method used in this case study.

Without previous knowledge of the saturated hydraulic conductivity, ks, it is possible
to evaluate it by comparing Equation (19) with Equation (13), yielding Equation (20), where(

D
)

Brut. represents the D obtained with the Brutsaert (2014a) method and
(

D
/

ks

)
vG. and Cr

represents the value obtained with the integration of Equation (19) from the van Genuchten [50]
and Crank [49] method.

ks =

(
D
)

Brut.(
D
/

ks

)
vG. and Cr

(20)

2.8. Comparison of the Weighted-Mean Diffusivities of the Different Substrates

Will the weighted-mean diffusivity discriminate between different substrates? To
answer this question, the estimated values of the weighted-mean diffusivity must be
compared. For such a purpose, given the different size of the sets of data for each substrate,
some nonparametric tests were chosen, e.g., [64] (§ 5.3.1). The Kruskal and Wallis test is, as
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indicated by Conover [69] (§ 5.2), a good exploratory tool to check if the data of different
statistical populations, in this case corresponding to the different substrates, proceed from
the same ensemble. The resulting statistic is based on the ranks of observations of a mixture
of all the sets of data, or substrates used. This statistic tests the null hypothesis that all the
sets have the same mean. In the case that the probability associated with this statistic is
smaller than 0.05, the null hypothesis will be rejected. If the equality of all means is rejected,
the sets of the data obtained in each sensor should be compared pairwise with the test of
Mann–Whitney [69] (§ 5.1).

3. Results and Discussion

Daily moisture and evaporation from each sensor were analyzed, as shown in Figure 4,
for one sensor in one single year. The evolution of moisture content is similar in all the
plots. Moisture increases quickly in response to the rainfall pulses, partially due to the
thinness of the substrate. The drying processes are slightly slower, indicating the control of
the process by the substrate.
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Figure 4. (a) Evolution of moisture for the west moisture sensor of plot C75, (b) observed moisture
for the same sensor in one year, 2019, and (c) obtained daily evaporation for the same year and sensor.
In b and c, the red lines show the exponential fits of the 7 drydown periods identified.

A total of 447 drydown periods were obtained for all years and sensors. The average
values (Table 2) show the expected variability during the different seasons; moisture content
is lower in summer and higher in winter, which is opposite to air temperature and the
average ETo, being higher in summer and lower in winter.
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Table 2. Summary of moisture drydowns extracted for the analysis from year 2015 to 2020, grouped
by season.

Season Number of
Drydowns

Average Number of
Days

Initial Volumetric
Water Content 1 Air Temperature 1 Average Evapotranspiration

Rate 1

m3m−3 ◦C mm d−1

Winter 111 8 0.250 (±0.084) 9.2 (±2.5) 1.31 (±0.38)
Spring 155 7 0.168 (±0.078) 17.2 (±4.2) 4.33 (±1.17)

Summer 107 12 0.085 (±0.056) 28.1 (±1.7) 6.95 (±0.46)
Autum 74 7 0.155 (±0.086) 19.1 (±6.5) 3.41 (±1.64)

Note: 1 Initial volumetric water content, air temperature, and average evapotranspiration rate show the average
value of the drydown periods and their standard deviation in brackets.

3.1. Water Retention Curve Parameters

The values of the van Genuchten water retention curve parameters for each substrate
are gathered in Table 3. The goodness of fit of the van Genuchten equation to the laboratory-
measured data achieved a mean value of the Nash–Sutcliffe efficiency coefficient of 0.97.

Table 3. Green roof growing media properties. θr is residual moisture, θs is saturation moisture, α, n,
and m are van Genuchten soil water retention parameters, where m = 1 − 1/n.

Plot θr θs α n m

m3m−3 m3m−3 cm−1

S100 0.026 0.624 0.320 1.49 0.328
S75 0.014 0.449 0.079 1.55 0.355
C75 0.028 0.387 0.053 2.06 0.514
C50 0.021 0.357 0.043 1.97 0.492
S50 0.018 0.389 0.058 1.72 0.419
S25 0.018 0.322 0.045 1.87 0.465

To check the relationships between the different parameters, the matrix of correlations
between them is computed in Table 4, showing coherent results.

Table 4. Correlation matrix for the values of the parameters of the van Genuchten soil water retention
equation: α, n, the residual moisture θr, and saturated moisture, θs.

θr θs α n

θr 1
θs 0.341 1
α 0.419 0.958 1
n 0.333 −0.760 −0.685 1

3.2. Parameter Estimation of the Brutsaert [47] Soil Water Evaporation Model

The values for the reference evaporation rate (e0) and time (κ) were obtained for all
drydowns. Their mean, median value, and standard deviation for each plot appear in
Table 5.

The results are of the same order of magnitude as the data found by Brutsaert [47]
for field soils. If the parameter values are normalized by the fraction of the vegetative
substrates (VS) S and C and plotted against either the percentage of vegetative substrates
or aggregates (Figure 5), a notable relationship emerges where e0 and κ increase with
the percentage of recycled aggregates. This approach emphasizes the main role of the
vegetative substrate in the evaporation process.

The box-and-whisker plots in Figures 6 and 7 compare the estimated values of the
parameters for each plot and season. In this stage, evaporation is controlled mainly by
the soil; nevertheless, some differences are observed in the parameters depending on the
season. In spring, the e0 values are higher than in other seasons and with different values
between plots, while the values of κ are similar between plots and lower than in other
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seasons, indicating a faster evaporation process. In winter, the opposite happens; κ values
are higher, which means a slower process and with variations between plots, while the
reference evaporation, e0, is lower and without appreciable differences between plots.

Table 5. Mean, median, and standard deviation of the reference evaporation rate (e0) and reference
time (κ) from the Brutsaert equation [47] for each substrate.

Plot Mean
e0

Median
e0

SD
e0

Mean
κ

Median
κ

SD
κ

mmd−1 d

S100 0.729 0.544 0.574 9.68 6.54 8.91
S75 0.803 0.643 0.705 6.70 5.01 5.55
C75 1.109 0.871 1.011 8.78 6.55 8.96
C50 0.717 0.528 0.561 10.92 6.81 11.90
S50 0.876 0.592 0.807 10.09 6.18 16.81
S25 0.651 0.492 0.492 8.24 6.06 7.15
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Figure 5. (a) Reference evaporation (e0) normalized with the fraction of vegetative substrates and
compared with the fraction of recycled aggregates. (b) Reference time (κ) normalized with the fraction
of vegetative substrates and compared with the fraction of recycled aggregates.
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Figure 6. Box-and-whisker plots representing the variation in the estimates for the Brutsaert reference
evaporation rate (e0) differentiated by plot and season. The central horizontal bar in each rectangle
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represents the median value, the horizontal bars at the rectangles’ upper and lower boundaries are
the values of the first (Q1) and third quartile (Q3), and the whiskers extend from the smallest to the
largest values within 1.5 times the interquartile range (IQR), which is the range between the first
quartile and third quartile.
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Figure 7. Box-and-whisker plots representing the variation in the estimates for the Brutsaert reference
time (κ) differentiated by plot and season. The central horizontal bar in each rectangle represents
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of the first (Q1) and third quartile (Q3), and the whiskers extend from the smallest to the largest
values within 1.5 times the interquartile range (IQR), which is the range between the first quartile
and third quartile.

3.3. Relationship between Calculated Evaporation and Reference Evapotranspiration Rates

The relationship between the values of the parameter for the initial evaporation
intensity in Brutsaert’s solution [47], e0, and the estimated reference evapotranspiration
intensity based on meteorological information, e.g., [26], data provided by the respective
observatories, ET0, is depicted in Figure 8. In Figure 8b, a rising envelope trend is detected
between the initial moisture, θi, at which the evaporation process begins, and the intensity
of the process.
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of evaporation processes (θi) (b), for the 6 plots of the green roofs in the selected drying periods.
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The same relationships have been explored for the drydowns corresponding to each
plot (Figure 9) and each season (Figure 10). In Figure 9b, it can be observed that in the plots
with a higher content of recycled aggregates, the average initial moisture during the drying
periods is lower, and the maximum values reached are also lower. For instance, in plot
S100, the initial moisture values (θini) reach 0.6 m3/m3, whereas in plot S25, they only reach
0.3 m3/m3 (Figure 10b), indicating a lower water retention capacity.

In the different plots, no distinct patterns are found in the e0 − ET0 point clouds.
However, for the different seasons, the point clouds are clustered in different sections of
the graph. During winter and summer, the e0 values are below approximately 2 mm d−1 in
all plots, while in spring and autumn, there is greater dispersion of the data. This is due to
both higher variability in ET0 and a broader range of e0 variation, particularly in spring.

In any case, the estimated values of the initial evaporation rate e0 are within the range
of the reference evapotranspiration rates (ETos) measured in the nearby weather station.
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Figure 9. Variation in each plot from the reference evaporation rate by Brutsaert (e0) with (a) the
computed potential evaporation rate from the agrometeorological station (ETo) and with (b) the initial
substrate moisture at the onset of the evaporation processes (θi).
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Figure 10. Variation classified by season in the reference evaporation rate for the 6 plots with
(a) the computed potential evaporation rate from the agrometeorological station (ETo), and with
(b) the initial substrate moisture at the onset of the evaporation processes (θi).

3.4. Determination of Weighted-Mean Diffusivity D

The values of the estimated weighted-mean diffusivity using Brutsaert’s equation [47],
as defined by Equation (13), were obtained (Table 6 and Figure 11). The substrates of plots
C50, S50, and S25, containing 50% and 75% recycled aggregates, stand out due to their
higher mean and median values.

Looking at the substrate mixtures with substrate S, there is an increase in D with
the increase in RAs, except for in plot S100, which has no RAs. Looking at the substrate
mixtures containing substrate C, the same increasing trend in D with RA content is found.
This trend is coherent with a coarser texture as RA content increases. These values are not
too far from the order of magnitude of the field observations reported by Brutsaert [47].

The variability of values obtained for the weighted-mean diffusivity are due to the
variable limits between the initial and final moisture content of these substrates during
drydown periods, and to the inherent variability of them.

Table 6. Mean, median, and standard deviation values of weighted-mean diffusivity (D) from
Brutsaert’s [47] method.

Plot No.1
Mean
¯
DBrut

Median
¯
DBrut

S.D.
¯
DBrut

cm2d−1

S100 79 23.6 19.1 22.0
S75 82 17.7 14.5 12.9
C75 72 27.6 18.5 29.8
C50 64 35.6 23.3 36.6
S50 80 40.1 25.5 57.2
S25 70 36.0 29.9 38.7

Note: 1 Number of dryout periods used in the analysis.
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Figure 11. Box-and-whisker diagram of D. The central horizontal bar in each rectangle represents
the median value, the horizontal bars at the rectangles’ upper and lower boundaries are the values
of the first (Q1) and third quartile (Q3), and the whiskers extend from the smallest to the largest
values within 1.5 times the interquartile range (IQR), which is the range between the first quartile
and third quartile.

The different behavior of plot S100 could be attributed to the high percentage of total
carbon in the substrate. The percentage of total carbon in the different substrates was
measured in the substrates in 2018, obtaining for mixtures with vegetative substrate S a
16.6% weight of total carbon in plot S100, a 3.8% in S75, a 2.6% in S50, and a 1.9% in S25.
And for mixtures with substrate C, these values were a 4.5% in plot C75 and a 2.6% in C50.
Therefore, for both vegetative substrates (S and C), there was a decreasing trend in carbon
content with the increase in recycled aggregates.

It is evident that S100 has an exceptionally high amount of organic matter, which
could alter diffusivity values. The presence of organic matter can improve soil structure
and porosity, thereby increasing diffusivity.

To statistically check if the obtained sets of weighted-mean diffusivity values in the six
plots have the same mean value, a Kruskal and Wallis test was applied (Section 2.8). The
null hypothesis that all the sets have the same mean was tested, and the value obtained
for the statistic T was T = 35.2. With 5 degrees of freedom, this yielded a probability of
p = 0.0001. Therefore, the null hypothesis was rejected, confirming that there are appreciable
differences between the substrates, as the weighted-mean diffusivity values suggested.

A closer comparison can be made between the substrates; the datasets obtained from
each sensor were compared pairwise with the Mann–Whitney test. Table 7 shows the
probabilities of the statistic T of Mann–Whitney for all the combinations of the substrates.

Due to the natural compaction of the porous media and the potential clogging of pores
by dust particles, the weighted-mean diffusivity exhibits a gradual decrease over time at a
relatively low rate, even within a 6-year period. Nevertheless, this effect does not impact
the results presented in this study.

Table 7. Probability of the Mann–Whitney statistic for the comparison between the mean values of
the weighted-mean diffusivity values of the substrates. The values smaller than 0.025 indicate that
there are relevant differences among the respective substrates.

Substrates 2 3 4 5 6

1 0.0314 0.3185 0.0152 0.0010 0.0005

2 0.0003 0.0003 0.0000 0.0000

3 0.0435 0.0151 0.0044
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Table 7. Cont.

Substrates 2 3 4 5 6

4 0.4693 0.2796

5 0.2492

3.5. Estimation of the Saturated Hydraulic Conductivity ks

As an additional result, the two different methods adopted for the estimation of mean-
weighted water diffusivity—the Brutsaert method during the evaporation process and the
van Genuchten–Mualem water retention and hydraulic conductivity function—enable the
estimation of the saturated hydraulic conductivity.

However, this procedure requires that the initial moisture content at the start of the
evaporation process is not too low to avoid very small values in the denominator of
Equation 20. Otherwise, the estimation of hydraulic conductivity would be unreasonably
high and therefore unreliable. The estimated saturated hydraulic conductivity using
Equation 20 is variable within each substrate, though differences are evident among the
substrates, as outlined in Table 8, Figure 12, and the box-and-whisker plot in Figure 13.

The maximum mean value of hydraulic conductivity corresponds to substrate S100, fol-
lowed by substrates S75 and S50. In plots S100, S75, S50, and S25, with the same vegetative
substrate and increasing percentage of recycled aggregates, a general trend in decreasing
saturated hydraulic conductivity, ks, with an increase in the percentage of aggregates is
observed. The opposite pattern is observed in plots C75 and C50, where aggregates are
mixed with compost (Table 1), with a 313 cmd−1 difference in the median value.

The values of saturated hydraulic conductivity fall within the range reported by
various groups, such as Timlin et al. [70], Chapuis [71], Assouline and Or [72], and
Wang et al. [73], among others. Although direct measurement methods, as suggested
by Stanic et al. [74], are more reliable and not particularly difficult, studies such as that by
Zhang and Schaap [75] highlight that they are expensive and sometimes not feasible. This
methodology offers an alternative to pedotransfer functions for the estimation of ks.

These results enable a straightforward characterization of certain hydrophysical prop-
erties of green roof substrates, particularly in Mediterranean climates where long drydown
periods are frequent. Although this modelling exercise does not directly serve to predict
substrate moisture, it provides estimates of the soil properties D and ks, which can be useful
in physical models to help estimate substrate moisture.

Table 8. Values of the estimated saturated hydraulic conductivity (ks) for each substrate, obtained
using the method by Brutsaert [47].

Plot No. 1 Mean
ks

Median
ks

S.D.
ks

mmd−1

S100 38 4261 3607 3051
S75 48 1779 791 2345
C75 70 936 221 1502
C50 63 1341 534 2104
S50 59 1536 410 2272
S25 67 1253 232 1974

Note: 1 Number of dryout periods used in the analysis.



Water 2024, 16, 2716 18 of 22Water 2024, 16, 2716 19 of 23 
 

 

 

Figure 12. Variations in Ks with the initial moisture of each drydown period (a) for the mixtures 

with vegetative substrate type S, and (b) for the mixtures with vegetative substrate type C. 

 

Figure 13. Box-and-whisker plot of the saturated hydraulic conductivity, 𝑘𝑠. The central horizontal 

bar in each rectangle represents the median value, the horizontal bars at the rectangles’ upper and 

lower boundaries are the values of the first (Q1) and third quartile (Q3), and the whiskers extend 

from the smallest to the largest values within 1.5 times the interquartile range (IQR), which is the 

range between the first quartile and third quartile. 

The maximum mean value of hydraulic conductivity corresponds to substrate S100, 

followed by substrates S75 and S50. In plots S100, S75, S50, and S25, with the same vege-

tative substrate and increasing percentage of recycled aggregates, a general trend in de-

creasing saturated hydraulic conductivity, ks, with an increase in the percentage of aggre-

gates is observed. The opposite pattern is observed in plots C75 and C50, where aggre-

gates are mixed with compost (Table 1), with a 313 cmd−1 difference in the median value. 

The values of saturated hydraulic conductivity fall within the range reported by var-

ious groups, such as Timlin et al. [70], Chapuis [71], Assouline and Or [72], and Wang et 

al. [73], among others. Although direct measurement methods, as suggested by Stanic et 

al. [74], are more reliable and not particularly difficult, studies such as that by Zhang and 

Schaap [75] highlight that they are expensive and sometimes not feasible. This methodol-

ogy offers an alternative to pedotransfer functions for the estimation of 𝑘𝑠. 

These results enable a straightforward characterization of certain hydrophysical 

properties of green roof substrates, particularly in Mediterranean climates where long 

drydown periods are frequent. Although this modelling exercise does not directly serve 

Figure 12. Variations in Ks with the initial moisture of each drydown period (a) for the mixtures with
vegetative substrate type S, and (b) for the mixtures with vegetative substrate type C.

Water 2024, 16, 2716 19 of 23 
 

 

 

Figure 12. Variations in Ks with the initial moisture of each drydown period (a) for the mixtures 

with vegetative substrate type S, and (b) for the mixtures with vegetative substrate type C. 

 

Figure 13. Box-and-whisker plot of the saturated hydraulic conductivity, 𝑘𝑠. The central horizontal 

bar in each rectangle represents the median value, the horizontal bars at the rectangles’ upper and 

lower boundaries are the values of the first (Q1) and third quartile (Q3), and the whiskers extend 

from the smallest to the largest values within 1.5 times the interquartile range (IQR), which is the 

range between the first quartile and third quartile. 

The maximum mean value of hydraulic conductivity corresponds to substrate S100, 

followed by substrates S75 and S50. In plots S100, S75, S50, and S25, with the same vege-

tative substrate and increasing percentage of recycled aggregates, a general trend in de-

creasing saturated hydraulic conductivity, ks, with an increase in the percentage of aggre-

gates is observed. The opposite pattern is observed in plots C75 and C50, where aggre-

gates are mixed with compost (Table 1), with a 313 cmd−1 difference in the median value. 

The values of saturated hydraulic conductivity fall within the range reported by var-

ious groups, such as Timlin et al. [70], Chapuis [71], Assouline and Or [72], and Wang et 

al. [73], among others. Although direct measurement methods, as suggested by Stanic et 

al. [74], are more reliable and not particularly difficult, studies such as that by Zhang and 

Schaap [75] highlight that they are expensive and sometimes not feasible. This methodol-

ogy offers an alternative to pedotransfer functions for the estimation of 𝑘𝑠. 

These results enable a straightforward characterization of certain hydrophysical 

properties of green roof substrates, particularly in Mediterranean climates where long 

drydown periods are frequent. Although this modelling exercise does not directly serve 

Figure 13. Box-and-whisker plot of the saturated hydraulic conductivity, ks. The central horizontal
bar in each rectangle represents the median value, the horizontal bars at the rectangles’ upper and
lower boundaries are the values of the first (Q1) and third quartile (Q3), and the whiskers extend
from the smallest to the largest values within 1.5 times the interquartile range (IQR), which is the
range between the first quartile and third quartile.

One possible limitation that could explain some of the observed variability is that
the influence of vegetation was considered in this study. For future studies, it may be
necessary to separate evaporation from transpiration, possibly with the assistance of the
leaf area index. An influence on the analysis is also expected from external conditions such
as temperature. Higher temperatures generally increase the kinetic energy of molecules,
enhancing diffusivity, while lower temperatures slow down molecular movement, decreas-
ing diffusivity.

4. Conclusions

The substrates used in green roofs, being porous media, despite their slight thickness
can be described using the same physical principles that apply to other porous media. This
study demonstrates the possibility of characterizing two key hydraulic properties of green
roof substrates in a straightforward manner.

The regression analysis of Brutsaert’s [47] exponential evaporation equation allows for
the evaluation of the hydraulic diffusivity of the substrates. Although Brutsaert originally
developed this equation in 2014, this study emphasizes its suitability for characterizing
green roof substrates. Moreover, by estimating the weighted-mean diffusivity (D) from
the substrate retention curve, the value of the saturated hydraulic conductivity (ks) can be
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determined. This approach is particularly well suited for Mediterranean climates, where
drying periods can easily be identified without interference from precipitation. This study
marks the first application of this method to green roofs, demonstrating it to be both highly
efficient and straightforward.

The results for D and ks for each plot show variability due to the heterogeneity of the
substrates, the initial moisture content during drydown periods, and external influences.
The median values on the plots range from 14.5 to 29.9 cm2d−1 for D, and from 22 to
361 cmd−1 for ks. These values are within the ranges reported by other research groups.
Generally, in the analyzed green roofs, an increase in D and a decrease in ks are observed
as the percentage of recycled aggregates in the substrates increases.

The results support the adoption of analytical solutions from the Richards equation
to characterize hydrological properties in green roofs during drying periods. However,
there are still some challenges to address, specifically, improving the analysis of processes
in a thin substrate layer covering a large surface area and accounting for vegetation and
environmental factors like solar radiation and wind, among others.
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