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Abstract: The increasing frequency of urban flooding, driven by global climate change, poses sig-
nificant threats to the safety and resilience of urban rail transit systems. This study systematically
examines the cascading failure processes and resilience of these networks under flood conditions,
with a specific focus on the Shanghai Metro. A comprehensive resilience evaluation model was devel-
oped by integrating geographic information, static network characteristics, and dynamic passenger
flow indicators. This study employs an improved Coupled Map Lattice (CML) model to simulate
cascading failures by considering the coupling effects of station centrality, geographic elevation, and
passenger flow dynamics. The results indicate that stations with higher degrees of centrality are
more likely to trigger rapid cascading failures across the network. However, incorporating dynamic
passenger flow and geographic elevation data helps mitigate these effects, emphasizing the need
for multi-dimensional resilience strategies. The findings provide valuable insights for urban transit
management, offering a scientific foundation for developing targeted disaster response strategies to
enhance network resilience against floods. This study advances our understanding of the vulnerabil-
ity of urban rail transit systems and offers practical guidance for improving disaster preparedness in
urban transportation infrastructure.

Keywords: cascading failure; urban rail transit; resilience; flood; Coupled Map Lattice (CML) model

1. Introduction

Urban rail transit systems are essential components of modern cities, facilitating the
daily movement of millions of passengers. However, these systems are increasingly vul-
nerable to disruptions caused by extreme weather events, particularly urban flooding.
Flooding poses significant risks to urban rail transit systems, especially those characterized
by enclosed spaces, high passenger density, and extensive underground infrastructure.
Historical incidents provide clear evidence of this vulnerability. For instance, the nation’s
busiest subway system in New York sustained the severest damage in its 108 years of oper-
ation due to Hurricane Sandy on 29 October 2012. The storm left millions of people without
service for at least a week and caused significant disruptions to transit infrastructure [1].
Similarly, the catastrophic flooding of the Zhengzhou Metro in 2021, which resulted in mul-
tiple fatalities, underscores the critical need for resilience in these networks [2]. Such events
demonstrate the potential for cascading failures, where the disruption of a single station
can propagate throughout the entire network, leading to widespread service interruptions,
economic losses, and threats to public safety.

Existing research on the resilience of transportation networks often focuses on static
network indicators and risk assessments. For instance, Bo et al. developed a vulnerability
assessment system for bus networks under heavy rain and flooding, incorporating both
static network characteristics and dynamic passenger flow indicators [3]. Similarly, Wang
et al. utilized the Fuzzy Analytic Hierarchy Process (FAHP) to construct specific indicators
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for assessing the flood risk of the Beijing Metro by integrating disaster environment factors,
disaster-inducing factors, and the characteristics of disaster-bearing bodies [4]. Li et al.
applied complex network theory to model the evolution of disaster chains in urban rail
transit triggered by floods [5].

However, there remains a significant gap regarding the dynamic interactions between
geographic factors, network topology, and real-time passenger flow during flood events [6].
While some studies, such as Kim et al.’s, emphasize the role of smart city technologies in
mitigating disaster risks through data analysis and automation [7], few studies fully explore
the dynamic nature of cascading failures in urban rail systems. Catelani et al. provided
insights into improving the maintainability of railway systems through the allocation of
maintenance resources based on failure rates, yet further research is needed to link these
insights to flood-induced cascading failures [8].

In terms of disaster communication, Khaliq et al. proposed an emergency response
system using vehicular networks, which ensures communication during disasters, even
when traditional networks fail [9]. Similarly, Kumsap et al. developed a mesh communi-
cation backbone for disaster management, demonstrating that effective communication
infrastructure can significantly improve disaster response efforts [10].

Moreover, digital post-disaster risk management techniques are critical for enhancing
urban resilience. Lagap and Ghaffarian proposed an improved framework for digital twin-
ning and real-time monitoring, underscoring the importance of using digital technologies,
such as IoT, AI, and big data analytics, for post-disaster recovery [11]. Lastly, De Francesco
and Leccese analyzed the risks to electric lifelines during seismic disasters and proposed
strategies for the recovery and maintenance of critical infrastructure [12].

This study addresses these gaps by systematically analyzing the cascading failure
mechanisms of urban rail transit systems under flood conditions, with a focus on the Shang-
hai Metro. By integrating geographic information systems (GIS), complex network theory,
and dynamic passenger flow data, this research seeks to develop a robust framework
for evaluating the resilience of rail transit networks. The inclusion of three-dimensional
geographic information and time-varying passenger flow dynamics offers a more com-
prehensive understanding of how urban flooding impacts network resilience while also
exploring variations in resilience under different flood scenarios.

By integrating insights from the aforementioned international studies, this research
significantly advances the development of robust disaster response strategies, thereby
strengthening the resilience of urban rail systems in the face of flood-induced disruptions.
This broader incorporation of global research not only enhances the capacity of these
systems to withstand and recover from extreme events but also bridges the gap between
theoretical frameworks and practical implementations. As a result, this study offers criti-
cal contributions to both academic discourse and the formulation of real-world disaster
management practices.

2. Evaluation Indicators for the Resilience of Rail Transit Networks
under Flood Conditions
2.1. Rail Transit Network Characteristics

Among the various methods for constructing these networks, the Space L and Space
P methods are commonly employed [13]. Given that this study emphasizes the spatial
characteristics of rail transit networks within an urban geographic context, the Space L
method is selected for network construction.

In the context of rail transit network resilience, the degree of centrality is a pivotal
factor in determining the likelihood and impact of cascading failures [14]. Previous studies
have examined the characteristics of the Shanghai rail transit network from a complex
network perspective, confirming that the network exhibits small-world and scale-free
properties. These characteristics render the network particularly susceptible to targeted
attacks on nodes with a high degree of centrality [15,16]. Furthermore, cascading failures in
the Chengdu Metro have been studied, showing that transfer stations, due to their central
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role and high passenger flow, experience greater failure scales and exert a more significant
impact on the overall network when they are disrupted [17].

This study utilizes the degree of centrality as the primary network characteristic
indicator for analyzing node importance. Figure 1 illustrates the impact on the network
following the failure of stations with varying degrees of centrality. Station A, with a degree
of centrality of 5, functions as a crucial transfer point within the network, affecting five other
stations when it fails. In contrast, Station B, with a lower degree of centrality of 2, primarily
connects to two other stations, and its failure has a correspondingly smaller impact.

Figure 1. Impact on the network after the destruction of stations with varying degrees of centrality.

2.2. Geographic Information of Stations

Existing studies on the resilience assessment of urban rail transit networks have largely
focused on static network characteristics and two-dimensional analyses, thus lacking a
comprehensive, multi-dimensional, and dynamic approach to network resilience [18]. The
impact of urban flooding on rail transit systems is uniquely challenging, posing significant
threats to the resilience of the entire network. Urban floods typically disperse according to
the city’s spatial layout, interacting with the three-dimensional (3D) network structure of
roads and railways and thereby influencing the entire transit network [19]. This mode of
impact differs significantly from those caused by deliberate sabotage or random failures.
Flood-induced disruptions in rail transit are heavily influenced by geographic factors,
where localized network interruptions can lead to widespread effects across areas indirectly
affected by the flood.

Current research on transportation networks largely relies on two-dimensional (2D)
complex networks using geographic coordinates, with a limited focus on 3D network
topology and the dynamic effects of geographic elevation [20]. However, existing and
complex network-based frameworks for analyzing transportation under flood conditions
are not well-suited to accounting for 3D disturbances and topologies. The inclusion of
geographic elevation as a critical third dimension is essential for accurately assessing the
impacts of floods on transit networks [6]. As illustrated in Figure 2, when stations A and B
are damaged by flooding, the elevation of neighboring stations plays a significant role in
influencing the cascading failure effect across the network.

Figure 2. Impact of stations at different elevations under flood conditions.
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2.3. Stations’ Dynamic Characteristics of Passenger Flow

In the study of cascading failures within urban rail transit networks, changes in
passenger flow are considered critical indicators. Chen et al. utilized Automatic Fare
Collection (AFC) data from the Beijing Metro to construct an Origin–Destination (OD)
matrix for passenger flow by applying an all-or-nothing assignment based on the shortest
path. They assessed the reliability of the Beijing Metro network with and without passenger
flow weighting, concluding that the network is more vulnerable when passenger flow
is factored into the analysis [21]. Similarly, Liu et al. employed the Floyd algorithm to
calculate the shortest path from the origin to the destination, assuming that when a node
fails, its passenger flow automatically redirects to the nearest alternative path until no
further nodes fail [22]. Their model primarily addresses congestion failures caused by the
failure of specific nodes.

Moreover, Huang et al. used the Coupled Map Lattice (CML) model, incorporating
passenger flow as a weighted parameter, to construct a stability analysis model for the
passenger-flow-weighted complex network in 2014 and 2018, to analyze the stability evolu-
tion of the Beijing Metro network [23]. Zhu et al. developed a passenger-flow-weighted
reliability evaluation index using AFC data from the Shanghai Metro and employed the
Dijkstra shortest path algorithm to determine the passenger flow weight of network nodes.
They built a dynamic model of the Shanghai rail transit network based on the CML model
and conducted a comprehensive network reliability analysis [24]. However, these studies
often consider passenger flow as a static weighting indicator for nodes, which does not
fully capture the dynamic impacts of passenger flow fluctuations across the entire network
due to station failures.

In the event of a real flood disaster, the failure of a rail transit station can lead to two
primary scenarios: one where the station is closed and trains bypass the station, causing
passengers to alight at the preceding or subsequent stations, and another where the train
halts at the previous station and resumes service only after the affected station is cleared for
safety. The likelihood of passengers continuing to search for the shortest path within the
disrupted rail transit system is minimal. Therefore, this study constructs a dynamic matrix
of station passenger volume based on time-varying AFC data, thus establishing dynamic
weighting indicators for passenger flow. This approach is then utilized to calculate the
cascading failure effects on the dynamic impact of network passenger capacity following
station failures due to flood conditions.

3. Modeling and Analysis of Cascading Failures in Rail Transit Networks Based on CML
3.1. Coupled Map Lattice (CML)

Current research on cascading failures in networks primarily utilizes complex network
models, load-capacity models, and Coupled Map Lattice models [25]. The Coupled Map
Lattice (CML) model discretizes time and space variables while keeping state variables
continuous. It reflects the degree of chaos at nodes and the diffusion effects of cascading
failure processes within the system, making it suitable for analyzing the spatiotemporal
dynamics and patterns of networks [26]. This study employs the CML model to investigate
cascading failures in rail transit networks.

The selection of the CML model for this study is primarily motivated by its capacity to
capture dynamic interactions within complex networks, particularly under spatiotemporal
disruptions, such as flooding. Unlike traditional approaches, the CML model offers several
distinct advantages. For instance, complex network models typically emphasize static
network properties, such as the degree of centrality, but fall short in representing the
dynamic behavior of nodes during cascading failures. Similarly, load-capacity models,
while useful in assessing failures based on predefined thresholds, do not account for the
continuous evolution of node states and changes in network topology over time [25].

In contrast, the CML model excels in discretizing both time and space while simulta-
neously allowing for the continuous variation of state variables. This makes it especially
well-suited to analyzing the spatiotemporal dynamics of urban rail networks under condi-
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tions of flooding. The model effectively simulates how disruptions at one station propagate
throughout the network, thus integrating geographic factors and dynamic passenger
flows [26]. By incorporating real-time variations in passenger behavior, geographical eleva-
tion, and network topology, the CML model delivers a more comprehensive framework for
understanding cascading failures within urban rail transit systems [27].

Although other models, such as agent-based simulations or flow-redistribution models,
might also be applicable, they often lack the precision required to capture the chaotic
interactions between stations during failures. The CML model’s robustness in modeling
these complex dynamics justifies its use in this research. Moreover, previous studies, such
as those by Huang et al. and Liu et al., have demonstrated the effectiveness of CML in
simulating cascading failures within urban rail networks, further affirming the model’s
relevance and utility in this context [23,24].

In real-world scenarios, when a rail transit station is affected by flooding, the failure of
the station could be caused by its geographic characteristics, changes in the overall network
topology, or dynamic variations in passenger flow. Subsequently, both the network topology
and the flow distribution within the entire rail transit system are affected, leading to the
sequential failure of stations due to the combined effects of the “geographically weighted
topological network” and the “dynamic passenger flow network”. In essence, the “dynamic
passenger flow network” is a result of the dynamic changes in passenger flow triggered by
the failure of the topological network.

Therefore, considering the impact of dynamic passenger behavior on network re-
silience in reality, this study incorporates actual passenger flow data into the geographically
weighted topological network of rail transit stations. By analyzing the behavior of cascad-
ing failures in the entire rail transit system under different coupling strengths of these two
networks, this research has significant implications for improving the resilience of actual
rail transit networks. The formula commonly used in CML for networks is as follows in
Equation (1):

xi(t + 1) =
∣∣∣∣(1 − ε) f (xi(t)) + ε∑n

j=1,j ̸=i
aij f (xj(t))

ki

∣∣∣∣
k(i) = ∑ j∈n aij

f (x) = 4x(1 − x)

(1)

In the formula, xi(t) represents the CML state of node i at time t, ε is the coupling
coefficient introduced for the unweighted topological network, and ki denotes the degree
of node i, which refers to the number of other nodes directly connected to it. aij is the
element in the adjacency matrix corresponding to the i row and the j column, and f (x) is a
nonlinear mapping function, which can be physically interpreted as the evolution of node
i’s capacity or operational constraints, with a value range between (0 and 1).

This study uses the enhanced Coupled Map Lattice model proposed by Huang
et al. [23] and Shen et al. [27], as shown in Equation (2).

xi(t + 1) =

∣∣∣∣∣∣∣∣∣
(1 − εdr − εde − εin − εout) f (xi(t)) + εdr ∑

j,j ̸=i
aij

f
(
xj(t)

)
ki

+ εdedi
f (xi(t))

+εin ∑
j,j ̸=i

sin
i

f (xi(t))
win

ij
+ εout ∑

j,j ̸=i
sout

i
f (xi(t))

wout
ij

∣∣∣∣∣∣∣∣∣ + R

εdr, εde, εin, εout ∈ (0, 1)
εdr + εde + εin + εout ≤ 1

(2)

εdr is the coupling coefficient introduced for the unweighted topological network, εde
is the deep coupling coefficient, and εin εout is the coupling coefficient for the weighted
distribution of inflow and outflow at the stations, which, respectively, represent the differ-
ences in network coupling relations caused by the presence or absence of depth and the
loading of flow.
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aij indicates the connection status between node i and node j. If there is an edge
connecting nodes i and j, then aij = aji = 1; otherwise, aij = aji = 0. ki is the degree of
node i, di i is the depth-normalized value of the node, sin

i represents the inflow strength
at node i, sout

i represents the outflow strength at node i, win
ij represents the inflow strength

at other nodes, and wout
ij represents the outflow strength at other nodes. R represents the

perturbation intensity.

3.2. Spatiotemporal State of Network Stations under Different Conditions

The CML model describes the state of network nodes and their interactions. At each
time step, the state of a particular node is influenced by its state at the previous time step
and the states of surrounding nodes. Initially, at time t = 0, each node is randomly assigned
a value between 0 and 1. At the next time, step t = 1, a new state value is calculated
according to Equation (1). Over time, the CML values of network nodes across all time
steps are obtained. When the network is not disturbed, the node states remain within the
range of 0 to 1. Taking Station 45 of the Shanghai rail transit as an example, its CML state
without applying any disturbance R is shown in Figure 3.

Figure 3. CML state of station 45 (without disturbance).

This study employs an improved Coupled Map Lattice (CML) model to simulate
cascading failures while considering the coupling effects of station centrality, geographic
elevation, passenger flow dynamics, and passenger behavior. Chen et al. introduced
coupling coefficients to reflect the influence of station centrality and network topology on
failure propagation, highlighting that stations with higher passenger flows and greater
centrality were more likely to trigger network-wide failures [21]. Ma et al. also emphasized
that passenger boarding and alighting behaviors play a critical role in influencing failure
propagation [28]. Therefore, we incorporated these behaviors as part of the coupling
coefficients in our study. Liu et al. further analyzed the resilience of urban rail transit
networks to cascading failures, identifying that a coupling coefficient of 0.5 could trigger
noticeable cascading failures [22]. Based on these findings, we employed a total coupling
coefficient of 0.5 by summing the station centrality, depth coefficient, and passenger flow
coefficients and by incorporating passenger behavior to enhance the model’s accuracy
under flood conditions.

When a node in the network is disturbed at a certain time t (R ≥ 1), this node fails
and is removed from the network at the next time, step t + 1. The neighboring nodes of
this failed node are affected, potentially leading to their failure and causing the failure to
propagate to adjacent nodes until no more nodes fail, at which point the cascading failure
in the network stops. According to Equation (2), different coupling coefficients result in
different states, thus affecting the speed and extent of the failure. Taking Station 45 as an
example, with external disturbance R = 1 applied at time step 27, the CML state under
different combinations of coupling coefficients (Combination 1: εdr = 0.5; Combination 2:
εdr = 0.3, εin = 0.1, εout = 0.1; Combination 3: εdr = 0.3, εde = 0.2, εin = 0.05, εout = 0.05)
is shown in Figure 4.
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Figure 4. CML state of Station 45 under different coupling coefficients.

When a node in the network is disturbed at a certain time, t, it can trigger cascading
failures throughout the network. The effect of cascading failures varies under different
disturbances. Taking Station 45 as an example, with external disturbances R = 1, 2, 3, 4, 5, 6
applied at time step 27, and with the coupling coefficients set to Combination 1, εdr = 0.5,
the cascading failure effect on other nodes in the network is shown in Figure 5. As R
increases, the number of failed nodes increases, and the failure speed accelerates. Due to
the cascading failures in the network, the impact on passenger flow is illustrated in Figure 6,
where the number of affected passengers increases with higher values of R.

Figure 5. (a) Condition of failed stations at Station 45 under different disturbances. (b) Impact on
passenger flow at Station 45 under different disturbances.

Figure 6. (a) Cascading failure process under different coupling coefficients of Station 41. (b) Passen-
ger flow changes under different coupling coefficients of Station 41.

3.3. Resilience Algorithm Process for Cascading Failures in Rail Transit Based on CML

The CML state values of network stations, the number of failed nodes, the geograph-
ically weighted topological network, and the stability of the dynamic passenger flow
network at different time points during the cascading failure process can be obtained
through the following algorithmic process:
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Step 1: Determine the initial values by calculating the network centrality, geographic
weighted intensity, and passenger flow weighted intensity of each station, and set the CML
state values for all stations in the network.

Step 2: Select a specific time point and deliberately disturb the stations with the
highest degree of centrality, stations at lower geographic elevations, and stations historically
affected by flooding to cause failure. Record the attribute values at the current time point.

Step 3: Assess the CML state values of all stations from the previous time point. If the
state value xi(t) ≥ 1, the station is considered to have failed, and it is removed from the
network. Update the CML state values for the remaining network stations and record the
attribute values at the current time point.

Step 4: Repeat Step 3 until the number of failed stations in the network no longer
changes. The network reaches a new stable state, and the new attribute values are recorded.

Step 5: Repeat Steps 2 through 4, output the results for each time point, and record the
corresponding statistical data.

4. Results of Cascading Failure Process and Resilience Analysis of the Shanghai Rail
Transit Network under Flood Conditions
4.1. Data Source

Due to the varied sources of data, this study maximizes the use of data from the same
time period.

Passenger Flow Data: Based on the Shanghai Metro AFC (Automatic Fare Collection)
card data publicly available through the Shanghai Open Data Applications (SODA) com-
petition, data from Tuesday, 8 March 2016 were used. After cleaning the data, a 15 min
interval was adopted, with 96 time steps recorded from 00:00 to 24:00 as the basis for time
and passenger statistics.

Metro Station Data: By the end of 2016, the Shanghai Metro had 14 lines with a total of
326 stations.

Station Elevation Data: Elevation data for Shanghai Metro stations were obtained
using the publicly available 50 m DEM (Digital Elevation Model) data from the Geospatial
Data Cloud. Only the gravitational influence on water flow direction was considered.
The ArcGIS Hydrology Analysis module was used to generate a flow direction map and
extract catchment basins. Combined with the raster data of Shanghai Metro stations, the
depth information of metro stations was extracted. For stations without catchment basin
information, the DEM elevation data were directly used [29].

4.2. Analysis of Stepwise Weighted Resilience Changes during the Cascading Failure Process of the
Rail Transit Network under Flood Conditions

The initial values were determined by calculating the network centrality, geographic
weighted height, and passenger-flow-weighted intensity for each station and subsequently
setting the CML state values across the entire network. In this study, three stations with
the highest degree of centrality, three stations at lower geographic elevations, and three
stations with a history of flood damage were selected. The disturbances were introduced
starting at 7:00 AM, corresponding to the 29th time step.

4.2.1. Stations with the Highest Degree of Centrality

Stations with higher degrees of centrality are more important within the network.
In a metro network, stations with high degree values are often located in central areas
of the network, while those with lower values are usually on the periphery. To study
the impact of stations with different degree values on the cascading failure process of
the network, three metro stations were selected: Shanghai Rail Transit Station 41 (degree
of centrality 7, depth 0.96), Station 19 (degree of centrality 6, depth 0.96), and Station 45
(degree of centrality 6, depth 0.93). Under different combinations of coupling coefficients
(Combination 1: εdr = 0.5; Combination 2: εdr = 0.3, εin = 0.1, εout = 0.1; Combination 3:
εdr = 0.3, εde = 0.2, εin = 0.05, εout = 0.05), the same disturbance, R = 4, was applied. The
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resulting network station failure process, the number of failures, and changes in passenger
flow are shown in Figures 6–8.

Figure 7. (a) Cascading failure process under different coupling coefficients of Station 19. (b) Passen-
ger flow changes under different coupling coefficients of Station 19.

Figure 8. (a) Cascading failure process under different coupling coefficients of Station 45. (b) Passen-
ger flow changes under different coupling coefficients of Station 45.

Stations with high degrees of centrality are often more important stations, and the
overall network damage process varies with different coupling coefficients. Among the
41 stations, when the passenger flow coefficient is added (Combination 2), the entire
network’s damage rate increases. When both the passenger flow and the depth coefficients
are added (Combination 3), the network’s damage rate slows down, and some stations
remain undamaged at R = 4 (Figure 6a). However, from the perspective of passenger flow,
if the damage begins at 7 a.m., after the morning peak, the passenger flow is significantly
affected (Figure 6b).

Among the 19 stations, when the passenger flow coefficient is added (Combination 2),
the overall network damage rate decreases, and some nodes remain undamaged at R = 4.
When both the passenger flow and depth coefficients are added (Combination 3), the overall
network damage is reduced, with only a dozen nodes being destroyed (Figure 7a), and the
affected passenger flow is minimal (Figure 7b).

In the experiment with 45 stations, adding the passenger flow coefficient (Combination
2) slows down the network damage compared to when only the degree of centrality
is considered, but the number of damaged stations increases (Figure 8a). When both
the passenger flow and depth coefficients are added (Combination 3), similarly to the
19 stations, the overall network damage is reduced, with only a dozen stations being
destroyed, and the impact on passenger flow is minimal (Figure 8b).

4.2.2. Centrality of Stations with Lower Geographical Positions

The lower the geographical elevation of a station, the more important it becomes to
the network during flood disasters. To study the impact of stations at different depths on
the network’s cascading failure process, three subway stations in Shanghai’s rail transit
system were selected: Station 159 (degree of centrality 4, depth 0.99), Station 164 (degree
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of centrality 4, depth 0.99), and Station 189 (degree of centrality 4, depth 0.99). The same
disturbance, R = 4, was applied under different coupling coefficient combinations, and the
resulting network station damage process and reliability changes are shown in Figures 9–11.

Figure 9. (a) Cascading failure process under different coupling coefficients of Station 159. (b) Passen-
ger flow changes under different coupling coefficients of Station 159.

Figure 10. (a) Cascading failure process under different coupling coefficients of Station 164. (b) Pas-
senger flow changes under different coupling coefficients of Station 164.

Figure 11. (a) Cascading failure process under different coupling coefficients of Station 189. (b) Pas-
senger flow changes under different coupling coefficients of Station 189.

This study selected three stations with the same depth and degree of centrality to
conduct the same experiment, but the overall network damage process varied significantly
among the three stations. For Station 159, when the passenger flow coefficient was added
(Combination 2) and when both passenger flow and depth coefficients were added (Combi-
nation 3), the network damage rate remained the same as when only the degree of centrality
was considered (Figure 9a). The entire network’s passenger flow would completely cease
after the morning peak (Figure 9b).

In the case of Station 164, adding the passenger flow coefficient (Combination 2)
slowed down the network damage rate, and most stations remained undamaged at R = 4.
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When both passenger flow and depth coefficients were added (Combination 3), the network
damage was reduced, with only a dozen stations being destroyed (Figure 10a), and the
affected passenger flow was minimal (Figure 10b).

In the experiment with Station 189, adding the passenger flow coefficient (Combina-
tion 2) resulted in the same network damage as when only the degree of centrality was
considered (Figure 11a). When both passenger flow and depth coefficients were added
(Combination 3), similarly to Station 164, the network damage was reduced, with only a
dozen stations being destroyed, and the affected passenger flow was minimal (Figure 11b).

4.2.3. Historically Flood-Prone Stations

Given the numerous conditions that can lead to flood disasters, this study focuses on
stations that have experienced such events in the past. Three stations were selected for
analysis: Shanghai Rail Transit Station 48, which experienced flooding in 2005 (degree of
centrality 4, depth 0.87); Station 104, which was suspended during a flood event in 2019
(degree of centrality 4, depth 0.71); and Station 197, which experienced water ingress in
2021 (degree of centrality 4, depth 0.98). The same disturbance, R = 4, was applied under
different combinations of coupling coefficients, and the resulting network station damage
process and reliability changes are shown in Figures 12–14.

This study examines three stations that have been affected by flood disasters at differ-
ent times. Although these stations share the same degree of centrality, they differ in depth,
leading to significant variations in the overall network damage process. For Station 48,
adding the passenger flow coefficient (Combination 2) slowed the overall network damage
rate, and the number of damaged stations decreased. When both passenger flow and depth
coefficients were added (Combination 3), most stations remained undamaged at R = 4
(Figure 12a), and the impact on passenger flow was minimal (Figure 12b).

Figure 12. (a) Cascading failure process under different coupling coefficients of Station 48. (b) Passen-
ger flow changes under different coupling coefficients of Station 48.

Figure 13. (a) Cascading failure process under different coupling coefficients of Station 104. (b) Pas-
senger flow changes under different coupling coefficients of Station 104.
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Figure 14. (a) Cascading failure process under different coupling coefficients of Station 197. (b) Pas-
senger flow changes under different coupling coefficients of Station 197.

For Station 104, the overall network damage rate was similar to when only the degree
of centrality was considered, regardless of whether the passenger flow coefficient (Com-
bination 2) or both passenger flow and depth coefficients (Combination 3) were added
(Figure 13a). After the morning peak, the network was completely destroyed, rendering it
unable to sustain any operational capacity (Figure 13b).

In the experiment with Station 197, adding the passenger flow coefficient (Combination
2) slowed the network damage compared to when only the degree of centrality was
considered, but the number of damaged stations increased. When both passenger flow and
depth coefficients were added (Combination 3), the overall network damage decreased,
with only a dozen stations being destroyed (Figure 14a), and the impact on passenger flow
was minimal (Figure 14b).

In real cases, after Station 48 was flooded in 2005, the metro implemented certain
measures, such as speed restrictions, and related stations only implemented crowd control
measures. In 2021, when a large amount of water flowed into Station 197 due to external
construction, the operator’s strategy was to close the station temporarily, conduct necessary
operations, and reopen it within three hours. However, in the case of Station 104 during
the 2019 flood, the strategy was to close the related stations one day in advance, which
corresponds to the severity of cascading failure observed in this study.

4.2.4. Comparative Analysis

To better compare the cascading failure effects under the same coupling coefficients
for different stations, this study conducted a cross-sectional comparison of nine stations.
Figure 15a shows the situation of station failures over time under Combination 1 for
different stations. Figure 15b shows the situation under Combination 2, and Figure 15c
shows the situation under Combination 3.

Figure 15a illustrates the scenario where the coupling coefficient is only based on the
degree of centrality. The selected stations all have a relatively high degree of centrality.
According to studies, nodes with a higher degree of centrality tend to lead to faster network
failures and more station failures [17,24]. However, Figure 15a shows that the stations
where the network fails fastest are Station 19 and Station 48, with degree of centrality values
of 6 and 4, respectively. Meanwhile, Station 45, although initially failing quickly, has some
stations that remain intact. Therefore, it can be concluded that the degree of centrality
does influence the speed of cascading failures in the network, but the overall effect on the
network’s cascading failures can vary depending on the station’s location.

Figure 15b illustrates the combined effect of the degree of centrality and dynamic
passenger flow coefficients. When passenger flow weighting is added, the network fail-
ure speed is faster than when only the degree of centrality is considered [24]. However,
Figure 15b shows that after adding the dynamic passenger flow coefficient, because the pas-
senger flow in this study is a real dynamic flow that changes over time and the assumption
is that when a station fails, its passenger flow is considered lost and is no longer counted in
the network, the impact of the passenger flow diminishes as more stations fail. This results
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in fewer station failures (e.g., Stations 164, 19, and 48) and slower failure speeds compared
to Figure 15a. Thus, it can be concluded that compared to other all-or-nothing passenger
flow indicators, the presence of stations with low overall passenger flows or diminishing
passenger flows during failures can slow down the overall cascading failure speed of the
network.

Figure 15. Cascading failure process under (a) Combination 1, (b) Combination 2, and (c) Combination
3 after the failure of different stations.

Figure 15c illustrates the combined effect of the degree of centrality, dynamic passenger
flow coefficients, and station elevation coefficients. The results show that after adding the
elevation coefficient, as more stations fail, the overall network failure speed slows down,
and fewer stations are affected (e.g., Stations 19, 45, 164, 189, 48, and 197). However, there
are also instances where the failure speed increases and more stations are affected (e.g.,
Stations 41, 159, and 104).

4.2.5. Critical Node Failure Analysis and System Vulnerability

This section presents an analysis of key node failures within the urban rail transit
network under flood conditions, examining how cascading failures propagate across the
system. By evaluating certain factors, such as the degree of centrality, geographic elevation,
and dynamic passenger flow, we explore how different scenarios—represented by coupling
coefficients C1, C2, and C3—affect the system’s vulnerability and overall resilience. The
results in Table 1 outline the behavior of critical stations under these varying conditions.

The table illustrates how different combinations of these coefficients influence station
behavior. C1 focuses solely on the degree of centrality, C2 integrates dynamic passenger
flow, and C3 adds geographic elevation as an additional resilience factor. By incorporating
these varying coefficients, we can assess how well these stations resist cascading failures
and identify those most vulnerable under flood conditions.

A Failure Mode, Effects, and Criticality Analysis (FMECA) framework is employed
to analyze the potential failure modes of key stations and their criticality in the context of
system-wide cascading failures. The analysis helps to understand the impact of failures on
the entire network, providing insights into which stations are most susceptible to failure
and how their failure could propagate through the system.
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Table 1. Characteristics of stations and cascading failure sequence.

Station
Characteristics

Order of Station
Failures

Order of Passenger
Flow Impact

Order of Cascading
Failure Speed

Station No. Degree Deep C1 C2 C3 C1 C2 C3 C1 C2 C3

41 7 0.96 1 1 3 1 1 3 4 1 3
19 6 0.96 1 4 6 1 4 6 1 5 6
45 6 0.93 3 1 4 3 1 4 3 2 4

159 4 0.99 1 1 1 1 1 1 8 7 1
164 4 0.99 1 5 6 1 5 6 7 9 6
189 4 0.99 1 1 5 1 1 5 6 3 7

48 4 0.87 1 3 7 1 3 7 2 7 8
104 4 0.71 1 1 2 1 1 2 9 8 2
197 4 0.98 2 2 7 2 2 7 5 4 8

Stations like 41 and 45, which have a high degree of centrality, exhibit early failures
in the C1 and C2 scenarios due to their strong interconnectedness with other parts of the
network. Under these conditions, their failure significantly impacts passenger flow, leading
to rapid propagation of cascading failures. However, when the geographic elevation
coefficient is introduced in C3, the sequence of failures is delayed, thus reducing the
speed and extent of the cascading process. This finding demonstrates the importance of
incorporating elevation as a resilience factor to mitigate the vulnerability of these key nodes.

In contrast, Stations 159 and 164, which are characterized by lower degrees of centrality
but are situated in areas with low elevation, fail early in all scenarios, indicating their
high vulnerability to flooding. Although the cascading process is slowed down when
additional coefficients are added in C2 and C3, these stations still remain critical points
of failure within the network. The persistent vulnerability of these stations suggests that
geographic elevation plays a pivotal role in shaping the network’s response to flooding
events, highlighting the need for targeted infrastructure improvements, such as enhanced
flood defenses and drainage systems.

For stations like Stations 48 and 104, although they exhibit lower degrees of centrality,
they fail rapidly under C1, particularly in areas with historical exposure to flooding.
However, when passenger flow and elevation factors are considered in C2 and C3, the
cascading failure process is significantly slowed, further demonstrating the importance of
adopting multidimensional approaches in failure analysis.

The results of the FMECA analysis reveal that focusing solely on the degree of centrality
does not provide a complete picture of the system’s vulnerability. The integration of
geographic elevation and passenger flow data is essential to fully capture the dynamics
of cascading failures. Stations that are critical due to their centrality and location within
the network must be prioritized for infrastructure upgrades and disaster preparedness
measures. Improving flood protection at these critical nodes, such as installing better
drainage systems or enhancing flood barriers, can help prevent widespread disruptions
and ensure network resilience.

Additionally, the incorporation of real-time passenger flow data and geographic
factors into emergency response plans can provide transit operators with the tools to
better manage failures and optimize evacuation routes. Such proactive measures will help
minimize the impact of cascading failures and improve the overall resilience of urban rail
transit networks.

In conclusion, the FMECA-based analysis highlights the necessity of considering
multiple factors—the degree of centrality, geographic elevation, and passenger flow—when
assessing the resilience of urban rail transit systems. By identifying key failure modes
and their effects on the network, this analysis provides valuable recommendations for
improving system robustness, particularly in flood-prone areas.
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5. Conclusions

This study systematically investigates the cascading failure mechanisms and resilience
of urban rail transit networks under flood conditions, with a specific focus on the Shanghai
Metro. By integrating three-dimensional geographic information, static network character-
istics, and dynamic passenger flow data, this research offers a comprehensive framework
for evaluating the resilience of urban rail transit systems. The use of the improved CML
model allows for a detailed simulation of cascading failure processes, thus providing new
insights into the interplay between network topology, geographic factors, and passenger
dynamics during flood events.

The findings have significant practical implications for urban transit authorities and
disaster management agencies, not only for Shanghai but also for other flood-prone cities
globally. The identification of critical nodes within the rail network, which are highly
susceptible to cascading failures, offers a foundation for prioritizing infrastructure upgrades
and targeted disaster preparedness efforts. By applying these findings, other cities can
optimize infrastructure investments in flood-prone areas. For example, increasing drainage
capacity or enhancing protection at critical stations could reduce floods’ impacts on metro
systems. This approach is applicable to cities facing similar risks, thus contributing to a
globally relevant disaster management strategy.

Additionally, the dynamic analysis of passenger flow under various flood scenarios
provides actionable insights into optimizing evacuation routes and improving emergency
response strategies. Incorporating geographic elevation as a resilience indicator highlights
the importance of three-dimensional urban topography in the planning and management
of urban rail systems. These findings can also be adapted to enhance the robustness of rail
networks in other cities vulnerable to floods, making this framework valuable for urban
planners and transit operators worldwide.

While previous studies have predominantly focused on static network characteristics
and two-dimensional analyses, this research advances the field by integrating real-time
data and three-dimensional geographic considerations. By bridging the gap between
theoretical modeling and practical applications, this study offers both critical contributions
to academic discourse and practical tools for real-world disaster management. The inclusion
of geographic factors and passenger dynamics in the improved CML model makes this
approach highly adaptable to different urban contexts and disaster scenarios.

However, several areas warrant further investigation. Future research could explore
the integration of more sophisticated flood simulation models to account for varying flood
intensities and durations. Incorporating real-time data analytics and machine learning
algorithms, such as deep learning and reinforcement learning, would enhance the predictive
capabilities of the model, thus enabling real-time monitoring and adaptive responses
during actual flood events. Expanding the study to include multi-modal transportation
networks, such as buses and ferries, could provide a more comprehensive view of urban
mobility resilience under extreme weather conditions. Lastly, developing region-specific
resilience indicators would tailor disaster response strategies to the unique geographic and
infrastructural characteristics of different cities.

In conclusion, this research contributes to the field of urban transportation resilience
by offering a novel methodological approach that can be adapted to various contexts. The
integration of three-dimensional geographic data with dynamic passenger flow analysis
offers a more complete understanding of how urban rail networks respond to flood events.
By identifying critical vulnerabilities and offering insights for infrastructure optimization,
this study lays the groundwork for more effective disaster response strategies and the
development of more resilient urban rail systems globally.
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