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Abstract: To address the escalating demand for power grid load regulation, pumped storage power
stations must frequently switch between operational modes. As a key component of such stations,
the pump turbine has seen extensive research on its steady-state flow behavior. However, the
intricate dynamics of its transient flow have not yet been thoroughly examined. Notably, the no-load
condition represents a quintessential transient state, the instability of which poses challenges for
grid integration. Under certain extreme conditions, this could result in the impairment of the unit’s
elements, interruption of its functioning, and endangerment of the security of the power station’s
output as well as the stability of the power network’s operations. Thus, investigating the flow
characteristics of pump turbines under no-load conditions is of significant practical importance. This
paper focuses on the transient flow characteristics of a Weifang hydro-generator unit under no-load
conditions, exploring the internal unsteady flow features and their underlying mechanisms. The study
reveals that under no-load conditions, the runner channel is obstructed by a multitude of vortices,
disrupting the normal pressure gradient within the runner and resulting in substantial hydraulic
losses. Within the draft tube, a substantial reverse flow zone is present, predominantly along the
walls. This irregular flow pattern within the tube generates a potent, stochastic pressure fluctuation.
In addition to the interference frequencies of dynamic and static origins, the pressure pulsation
frequency at each measurement point also encompasses a substantial portion of low-frequency,
high-amplitude components.

Keywords: pump turbine; no-load; blade vortex; entropy generation; pressure pulsation

1. Introduction

Pumped storage units are pivotal in addressing peak energy demands while also
being adept at harnessing periods of low power consumption to store energy efficiently
through the pumped storage process. This dual capability ensures the optimization of
energy utilization. The method of energy storage is instrumental in stabilizing the power
grid’s load, thereby enhancing both the operational efficiency and the overall reliability of
the grid.

However, the evolving requirements for a broader operational spectrum and swifter
response times from the power grid have rendered the ‘low head start’ operation of these
units indispensable [1]. The issue of grid connection failure during low-head startup, a
consequence of no-load instability, is not uncommon among domestic power stations.

In the quest to understand no-load transient conditions, scholars worldwide have
contributed valuable research. Gentner [2], for instance, presented numerical simulations
coupled with PIV measurements demonstrating that under zero-load conditions, the dy-
namic relationship between the primary stream and the incoming reverse stream within
the runner leads to the emergence of vortex formations. These vortices obstruct the
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runner’s flow channel, complicating the grid connection process for the unit. Meanwhile,
Houde et al. [3] delved into the root causes of no-load instability in axial-flow turbines,
employing a comprehensive approach that integrated experimental and numerical simu-
lation techniques. Their study suggests that rotating stall events are closely associated
with the existence of unstable vortices, not solely attributable to the runner blade’s
configuration or inherent traits. This significant revelation paves the way for enhancing
turbine stability by refining flow dynamics, all without necessitating alterations to the
blade configuration.

Li et al. [4] dedicated their work to examining the dynamic performance impacts on
the runner as a result of operational head variations in the pump turbine during power
generation. Their research highlights that the leading and trailing edges of the blades
experience pressure fluctuations primarily driven by static and dynamic interactions,
along with the vortex band effect. Within the domain of numerical investigations into
the unloaded state of Francis turbines, Decaix [5] and team utilized a variety of RANS
turbulence models. They compared the performance of these models to the predictions
of the conventional SST k-ω turbulence model. The findings indicated that the SST-SAS
model surpasses the conventional SST k-ω model in accurately representing the subtleties
of pressure and velocity variations, providing a more detailed and precise portrayal
of flow dynamics in unloaded conditions. Scholars like Nennemann [6] have directed
their research towards the intricacies of the unsteady no-load condition, meticulously
probing its potential to influence the fatigue life of Francis turbine runners. This inquiry is
profoundly significant, offering insights crucial for bolstering the robustness and service
duration of hydraulic turbine runners. Jiang et al. [7] delved into computational fluid
dynamics, performing one-way fluid–solid coupling numerical calculations for the pump
turbine’s runner under a spectrum of operational settings. They adeptly charted the
runner’s static stress distribution under both turbine and pump operating conditions,
followed by an in-depth analysis of the runner’s stress distribution traits across these
contrasting operational regimes. Wang [8] leveraged sophisticated dynamic mesh tech-
nology to simulate the startup procedures of reversible pump turbines, factoring in two
divergent guide vane control strategies. The investigation uncovered that operational
instability predominantly emanates from the interplay of dynamic and static forces within
the flow channel, the pivotal actions of the guide vanes, and the swirling currents within
the draft tube. These elements induce variations in the fluid forces impinging on the
runner, heightening the unit’s susceptibility to instability during the startup sequence and
when the load is incrementally raised under partial opening conditions. Meng Qing [9]
performed an extensive numerical simulation to clarify the dynamic characteristics and
flow dynamics inside the pump turbine during no-load startup. The research revealed
how the operation of the adjustable guide vanes affects the runner’s force, the distribution
of vortex cores in the flow passage, and the interaction with the ‘S’-shaped performance
curve. Within the field of unloaded pump turbine research, Hu [10] discovered that a
runner with an alternating long and short blade design exhibited superior dynamic and
static interference characteristics under no-load conditions. This design demonstrated
lower pressure pulsation amplitudes and a more balanced S characteristic curve, offering
a viable direction for enhancing the pump turbine’s stability during off-design operations.
Huang Wenlong and Bi Huili et al. [11] noted that during startup, when the pump turbine
shifts to an unloaded condition with small guide vane openings and quick acceleration, a
high-velocity water ring emerges in the space devoid of vanes. This phenomenon leads
to a precipitous decline in flow and torque, accompanied by the emergence of numerous
intricate vortex structures within the runner channel.

Expanding on these insights, this study further explores the unloaded state of the
pump turbine during the initial startup phase. It primarily examines the flow field dynamics
of the runner, guide vane, vaneless area, and draft tube, uncovering the linkage between
the evolution of the internal flow field and pressure pulsations.
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2. Research Object and Methodology
2.1. Research Object

In this study, our attention is directed towards the vertical shaft single-stage mixed-
flow reversible pump turbine model from the Weifang Pumped Storage Power Station in
Shandong, China. Our detailed three-dimensional simulation includes key flow elements
like the volute, stay vanes, guide vanes, runner, upper crown cavity, lower ring cavity, and
draft tube, as depicted in Figure 1. The fundamental parameters are presented in Table 1.
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Figure 1. A 3D model has been constructed, replicating the pump turbine from the Weifang Pumped
Storage Power Station.

Table 1. Key performance metrics for the vertical shaft single-stage mixed-flow reversible pump turbine.

Parameters Value

Rated discharge 105.8 m3/s
Rated head 326 m

Rated Speed 333.3 rpm
Rated output of turbine 306 MW

High pressure side diameter of runner 4.81 m
Installation elevation 196 m
Number of stay vanes 15

Number of guide vanes 16
Number of runner blades (long + short) 5 + 5

2.2. Mesh Subdivision

In this study, CFX software 2023 version was utilized to model the flow dynamics
within a pump turbine setup. The CFD analysis encompassed components such as the
volute, guide vanes, runner, draft tube, upper crown cavity, lower ring cavity, pressure
balance tube, and discharge cone. The fluid regions were meshed into a grid consisting of
tetrahedrons, pyramids, wedges, and hexahedrons, as shown in Figure 2.

In this study, numerical simulations of the internal flow field of a pump turbine were
conducted using CFX. The fluid domains of the volute, fixed guide vanes, adjustable guide
vanes, runner, draft tube, upper crown cavity, lower ring cavity, pressure balance pipe, and
discharge cone were meshed using tetrahedral, pyramidal, wedge, and hexahedral ele-
ments, as shown in Figure 2. The structured and unstructured grid numbers for the volute
and fixed guide vanes are approximately 2.21 million, including tetrahedral, pyramidal,
and wedge elements, with five boundary layer grids set for the fixed guide vanes. The
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structured and unstructured grid numbers for the adjustable guide vanes are approximately
570,000, including wedge and hexahedral elements, with five boundary layer grids set.
The runner used only unstructured grids, with a grid number of 2.59 million, including
pyramidal, tetrahedral, and wedge elements; the draft tube’s unstructured and structured
grid numbers are 1.159 million, including hexahedral and tetrahedral grids; additionally,
the upper crown and lower ring cavity grid numbers are 620,000, including hexahedral
and wedge grids, the pressure balance pipe grid number is 201,000, including pyrami-
dal, tetrahedral, hexahedral, and wedge elements, and the discharge cone grid number is
716,000, including pyramidal, tetrahedral, and wedge elements. The total grid number is
approximately 8.07 million.
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2.3. Turbulence Model and Control Equation

For this research, the Shear Stress Transport (SST) turbulence model was chosen. This
model blends the k-ε and k-ω models to handle various flow field regions effectively.
During the fluid flow simulation, both the mass conservation principle and the momentum
conservation principle are adhered to.

The SST k-ω model encapsulates the Reynolds stress as follows:

vt =
α1k

max(α1w, ΩF2)
(1)

∂k
∂t

+ Uj
∂k
∂xj

= Pk − β*ωk +
∂

∂xj

[
(v + σkµt)

∂k
∂y

]
(2)

∂ω

∂t
+ U .

J
∂w
∂x .

J

= aS2 − β*ω2 +
∂

∂xj

[
(v + σwvt)

∂ω

∂xj

]
+ 2(1 − F1)σω2

1
ω

∂k
∂xi

∂w
σxi

(3)

The parameter values in the model are as follows:

F2 = tanh

[max

(
2
√

k
β*ωy

,
500
y2

v
ω

)]2
 (4)
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Pk = min

(
τij

∂Ui

∂x .
J

, 10β*kw

)
(5)

F1 = tanh


{

min

[
max

( √
k

β*wy
,

500v
y2w

)
,

4σw2k
CDkwy2

]}4
 (6)

CDkω = max
(

2ρσω2
1
ω

∂k
∂xi

∂ω

∂xi
, 10−10

)
(7)

In the above formulas, ϕ = ϕ1F1 +ϕ2(1 − F1), α1 = 5
9 , α2 = 0.44, β1 = 3

40 , β2 = 0.0828,
B* = 9

100 , σk1 = 0.85, σk2 = 1, σω1 = 0.5, and σω2 = 0.856, where Ω represents vorticity
and y represents the distance from the wall.

The turbine’s hydraulic losses have a profound impact on the machinery’s perfor-
mance and efficiency. Gaining insights into the distribution of these losses is of practical
significance for enhancing mechanical efficiency. While the pressure difference method
assesses energy losses, it falls short in pinpointing the precise spatial distribution of such
losses. The entropy generation method offers a clear and intuitive approach to delineate the
distribution of energy losses along the fluid’s path, aiding in the precise identification of
loss sources and their subsequent optimization. The second law of thermodynamics under-
scores that entropy generation is an inherent outcome of energy transformation. Viscous
forces drive the conversion of the fluid’s kinetic and pressure energy into internal energy,
thereby augmenting entropy. In the operational phase of the turbine, the unstable flow
within regions characterized by high Reynolds numbers engenders both hydraulic losses
and an increase in entropy. Utilizing the entropy generation method enables a distinct
mapping of the areas where flow losses occur and facilitates the quantification of hydraulic
losses within the flow field.

The system’s local entropy production rate (LEPR) is a sum of two components: the
direct entropy production rate (EPDR), derived from the time-averaged velocities, and the
turbulent entropy production rate (EPTR), resulting from velocity fluctuations. The total
entropy generation within the system is the combination of the local entropy production
rate and the wall entropy production rate (EPWR), which is influenced by the presence
of boundaries: .

S
′′′

D =
.
S
′′′

D +
.
S
′′′

D′ +
.
S
′′′

W (8)

.
S
′′′

D =
2µeff

T
+

µeff
T

[(
∂µ2
∂x1

+
∂µ1
∂x2

)2
+

(
∂µ3
∂x1

+
∂µ1
∂x3

)2
+

(
∂µ2
∂x3

+
∂µ3
∂x2

)2
]

(9)

.
S
′′′

D′ =
2µeff

T
+

µeff
T

[(
∂µ′

2
∂x1

+
∂µ′

1
∂x2

)2

+

(
∂µ′

3
∂x1

+
∂µ′

1
∂x3

)2

+

(
∂µ′

2
∂x3

+
∂µ′

3
∂x2

)2
]

(10)

In the equation,
.
S
′′′

D denotes the direct entropy production rate per unit volume;
.
S
′′′

D′

signifies the turbulent entropy production rate per unit volume. The temperature, T, is
set at 298 K, which is consistent throughout the analysis. µi represents the time-averaged
velocity component, while µ′

i denotes the fluctuating velocity component due to tur-
bulence. The index i corresponds to the three axes of the Cartesian coordinate system
(I = 1, 2, 3). µe f f refers to the effective dynamic viscosity. Owing to the complexities in
measuring turbulent velocity components, direct computation of the turbulent entropy
production rate,

.
S
′′′

D′ , triggered by velocity fluctuations, is impractical. In alignment with
the principles of local entropy generation, the SST k-ω turbulence model provides a specific
formula to estimate this rate, which is delineated as follows:

.
S
′′′

D′ = β
ρωk

T
(11)
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Given the challenge of capturing turbulent velocity fluctuations, the direct compu-
tation of the turbulent entropy production rate,

.
S
′′′

D′ , is not feasible. In the context of
local entropy production theory, for the SST k-ω turbulence model, the calculation of the
turbulent entropy production rate is articulated by the formula presented below. Within
the formula, β denotes the empirical constant specific to the SST k-ω turbulence model,
with a value of 0.09; ρ signifies the fluid density; ω is indicative of the turbulent vorticity
frequency; and k corresponds to the turbulent kinetic energy. The vicinity of the wall
experiences a pronounced velocity gradient, creating a potent wall effect, and consequently,
a notable wall entropy production. To delve into the precise extent of this phenomenon,
the formula for calculating the wall entropy production rate per unit area is presented
as follows:

.
S
′′′

W =

→
τ ·→v

T
(12)

In the formula,
→
τ symbolizes the wall shear stress and

→
v represents the velocity of the

first grid layer adjacent to the wall.
By amalgamating the three distinct entropy production rates, one can ascertain their

individual contributions to entropy generation, with the aggregate of these three rates
constituting the overall entropy production:

Spro,D =
∫

V

.
S
′′′

DdV (13)

Spro,D′ =
∫

V

.
S
′′′

D′dV (14)

Spro,W =
∫

A

.
S
′′′

WdA (15)

Spro = Spro,D + Spro,D′ + Spro,W (16)

Within the formula, Spro,D denotes the direct entropy production; Spro,D′ signifies the
turbulent entropy production; Spro,W indicates the wall entropy production; and Spro em-
bodies the total entropy production of the system. The variable V represents the unit
volume for integrating the entropy production rate, while A denotes the unit area for the
same integration process.

2.4. Boundary Conditions, Monitoring Point Setting

In this study, the computational fluid dynamics (CFD) analysis is meticulously set
up as follows: The SST turbulence model is utilized for numerical simulations, with the
computational domain’s reference pressure set to 1 atmosphere. The turbine’s water flow
enters vertically from the volute’s inlet and exits the draft tube vertically [12]. The inlet
boundary condition is specified by Total Pressure, and the outlet is controlled by Average
Static Pressure. A no-slip condition is imposed on all wall boundaries. The unsteady
simulation is initialized from the steady-state results, with a time step equivalent to a
2-degree rotation of the turbine, and the simulation spans 11 full rotation cycles [13].
Thus, the total unsteady simulation time is established at t = 1.98 s, with a time step of
△t = 0.0010 s. The dynamic interactions at the interfaces among the runner, guide vane, and
draft tube are captured using the Transient Rotor Stator method, aiming for a convergence
residual accuracy of 10−4.

Figure 3 illustrates the strategic placement of monitoring points within the turbine.
To assess the impact of downstream components on pressure pulsations in the volute,
the study strategically places two monitoring points within the vaneless space, a pair
at the runner, and a set of four at the draft tube. This configuration aims to provide a
comprehensive assessment of the flow behavior and its interaction with the turbine’s
components [14].
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2.5. Grid Independence Verification

To mitigate the impact of grid density on numerical simulation outcomes, various
grid configurations were employed for both the rated and high-head turbine scenarios
at identical guide vane openings, as illustrated in Figure 4. Continuity curves were then
generated to analyze the data. The results indicate that the flow rate stabilizes as the grid
density increases. Balancing computational efficiency with simulation accuracy, the grid
arrangement previously outlined was ultimately chosen for its optimal performance.
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Model experiments substantiates the viability of numerical simulation techniques. As
demonstrated in Table 2, the discrepancies between the model test outcomes and numerical
simulation data under the rated head scenario are minimal: the flow rate deviation remains
below 5%, and the rotational speed variance is within 1%, aligning with the numerical
simulation projections.

Table 2. The outcomes from model experiments and numerical simulations, conducted under the
specified rated head scenario, are juxtaposed.

Flow Rate Rotational Speed

Simulation 15.09 m3/s 332 rpm
Experiment 14.62 m3/s 330.64 rpm
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3. Results and Analysis
3.1. Hydraulic Loss of Unit

Under minimal load conditions with small openings, the hydraulic losses of the
internal components of the pump turbine are crucial to the equipment’s performance and
stability. In such scenarios, the pump turbine’s operating conditions diverge markedly
from those under typical loaded conditions, resulting in altered internal flow dynamics
and shifts in energy conversion efficiency. The vaneless region may experience high-speed
circulation and backflow, phenomena that could substantially elevate local hydraulic losses
and potentially obstruct the flow path.

In these circumstances, critical turbine components like runners, guide vanes, and
draft tubes encounter unique hydraulic challenges, including flow separation, vortex
formation, pressure pulsations, and the risk of cavitation. To profoundly comprehend
the performance of these components under no-load and minimal opening conditions, a
detailed analysis of the hydraulic losses of each key component is warranted. Employing
the concept of entropy generation as previously outlined, the method of entropy generation
analysis becomes a critical metric for evaluating hydraulic losses. This approach primarily
includes the assessment of direct, turbulent, and wall entropy generation, providing a
holistic framework for gauging the efficiency and stability of the pump turbine during light
load operations.

Entropy generation often coincides with the development of substantial velocity
gradients, which may trigger unstable flow phenomena like flow separation, reverse flow,
and vortex formation. Such events can result in a spectrum of hydraulic losses. To delve
into the impact of different entropy production types on the total entropy, Figure 5 presents
the output values and proportions of these distinct entropy categories. It is clear that the
entropy generation within the system is primarily influenced by turbulent velocities and
wall effects, with turbulent entropy generation being the most substantial contributor in
both the guide vane and the runner’s draft tube. In combination, the contributions of
turbulent and wall entropy generations exceed 99% of the total entropy production. Direct
entropy generation, being minimal at less than 1%, is negligible and thus not depicted in
Figure 4 for the sake of clarity.
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Figure 5. Different types of entropy output value and its proportion.

The guide vanes, runners, and draft tubes are pivotal in the pump turbine’s entropy
generation process, with the hydraulic losses they induce significantly impacting the
overall performance of the turbine unit. As depicted in Figure 4, the entropy production
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in these three components constitutes an overwhelming majority of the total entropy
output. Consequently, a thorough analysis of entropy production for the guide vanes,
runners, and draft tubes will be conducted in the subsequent sections to further elucidate
their contributions to the system’s hydraulic efficiency and identify potential areas
for optimization.

3.2. Hydraulic Loss and Internal Flow Characteristics of Guide Vane and Runner Parts

Guide vanes and runners represent the most critical hydraulic components within
the turbine unit, with their operational status being directly linked to the efficiency of
energy transformation. To pinpoint the principal zones of energy dissipation, an entropy
generation analysis is initially conducted on the wall surfaces. Subsequently, this analysis is
expanded to scrutinize the conditions within the flow channels, ensuring a comprehensive
evaluation of the areas contributing most significantly to hydraulic losses.

Figure 6 illustrates the distribution of wall entropy production (WEPR) across
the guide vane and runner regions. The visualization reveals an increasing trend of
entropy generation in areas from the vaneless space towards the fixed guide vane’s flow
path. Particularly, high concentrations of WEPR are observed in the vaneless region
between the guide vane and the runner, and along the trailing edge of the movable guide
vane. Correlation with the velocity field imagery indicates that the significant velocity
gradients due to the high-velocity flow in the vaneless area are the main contributors to
the elevated WEPR.
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The entropy generation analysis within the flow channel is conducted subsequent
to the extraction of three runner surfaces, each oriented at different spanwise positions,
through a blade-to-blade approach. The surfaces, labeled as Span 0.1, Span 0.5, and Span
0.9, are progressively documented from the upper crown to the lower ring of the runner, as
shown in Figure 7. The analysis indicates a rising trend in entropy production along the
runner channel, with the Local Entropy Production Rate (LEPR) being significantly higher
near the upper crown flow surface than it is near the lower ring flow surface.

Notable LEPR is primarily detected at the leading and trailing edges of the runner
blades. This phenomenon is largely due to the misalignment between the angle of the
incoming flow at the runner’s inlet and the designed inlet angle of the blades. The misalign-
ment causes the incoming flow to exert a substantial impact on the leading edge, leading
to local backflow and consequently a pronounced level of hydraulic loss. Additionally,
the trailing edge of the blade experiences varying degrees of flow separation, creating a
significant velocity gradient and resulting in energy dissipation.
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This nuanced analysis underscores the importance of blade design and the need to
consider the interaction between the flow angle and blade geometry to minimize energy
losses and optimize turbine performance. In conclusion, the regions experiencing significant
energy loss within the guide vane and runner areas have been identified, setting the stage
for a more detailed analysis of the flow dynamics within the runner area. Figure 8 depicts
the streamline distribution within the guide vane and runner area at four critical torque
instances during a cycle. The streamline pattern reveals the non-uniformity within the
runner, particularly at the inlet where the swift water flow creates a high-velocity ring
in the vaneless space, encircled by numerous vortices. This occurrence is partly due to
the dynamic and static interferences—namely, the uneven flow velocities and directional
changes at the guide vane outlet exert a periodic influence on the runner’s inlet boundary
conditions. Such periodic fluctuations induce instability within the runner’s internal flow,
leading to the formation of vortices and flow separation. Sustaining this unstable flow
condition results in substantial energy dissipation and an increase in hydraulic losses
within the runner.

Figure 9, which presents the distribution of turbulent kinetic energy, allows for a
deeper comprehension of how flow instability contributes to hydraulic losses. The higher
values of turbulent kinetic energy, as depicted, are predominantly found in the vaneless area
and at the interface between the guide vane channel and the runner channel, aligning with
the high-velocity water ring and vortex phenomena observed. Furthermore, a localized
peak in turbulent kinetic energy is evident near the inlet on the pressure side of the runner
blade, suggesting that flow separation occurs in this region. This separation is a direct
contributor to local hydraulic losses.

To delve deeper into the impact of dynamic and static interferences on hydraulic losses
within the runner area, Figure 10 examines the local velocity vectors of both the runner and
the guide vane.
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It is noted that the water flow at the runner’s inlet possesses a notably high circumfer-
ential velocity. Upon entering the runner, this flow exerts a strong impact on the leading
edge of the blade’s suction surface, leading to flow separation. A portion of the water flow
is deflected towards the pressure surface side, where its velocity is markedly decreased.
Driven by a substantial centrifugal force, this segment of the flow is ejected towards the
inlet direction, interacting with the incoming flow on the suction surface side and creating
a large-scale vortex that obstructs the flow channel. Along the flow direction, the flow
separation and backflow phenomena are filled in each spanwise surface, resulting in further
deterioration of the flow pattern. Such occurrences are direct outcomes of rotor–stator
interactions, as the non-uniform velocity distribution at the guide vane outlet leads to
intricate flow patterns within the runner, characterized by flow separation and reverse flow.
An analysis of the runner blade’s velocity triangle reveals that the absolute velocity V2
direction at the runner outlet aligns with the direction of the traction velocity U2. Con-
sequently, the water flow at the draft tube inlet will form a helical vortex belt under the
influence of positive velocity circulation.

To delve deeper into the vortex structures within the runner and guide vane, Figure 11
presents a vorticity distribution map of the runner throughout a cycle.
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Figure 11. The vorticity distribution diagram of the runner in one cycle.

Most vortices are found near the intake of the runner blade’s suction surface. Also,
a vortex region is detected at the outlet’s trailing edge on the pressure side of the ex-
tended blade. The water flow’s influence on the suction side of the extended blade at
the inlet results in lateral or reverse flow, thus generating a passage vortex. A distinctive
horseshoe-shaped vortex is observed along the inner wall of the runner. High-velocity
water circulation passing through the inner side of the guide vane carries away numerous
smaller streamwise vortices from the upper and lower end walls. These vortices coa-
lesce with the existing streamwise vortices at the runner’s inlet, evolving into larger-scale
vortices, the positioning of which correlates with the runner blade’s orientation.

Drawing from the analysis presented in Figures 9 and 10, it is evident that the rotor-
stator interaction exerts influence over not only the velocity vectors and flow separation
within the runner area but also directly contributes to the emergence of intricate vortex
structures within the runner and guide vane. The presence of these vortex formations
further amplifies hydraulic losses, thereby impacting the pump turbine’s efficiency and
operational stability. The periodic flow separation and the genesis of vortex structures,
instigated by dynamic and static interference, induce pressure fluctuations along the flow
channel. Consequently, the pressure pulsations within the runner section will be examined
in the subsequent analysis. To convey the nature of pressure pulsations more vividly,
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this study introduces the dimensionless pressure pulsation coefficient Cp to denote the
magnitude of pressure oscillations. The precise formula is presented below:

Cp=
P − P
1
2 ρu2

2
(17)

In the formula: P signifies the instantaneous pressure at the monitoring point; P de-
notes the time-averaged pressure at the monitoring point over a specified period; ρ is the
water density; u2 is the linear velocity at the turbine runner’s inlet.

Initially, pressure readings from various monitoring points are collected and subse-
quently transformed into pressure fluctuation coefficients Cp to create time-domain signals.
Subsequently, these time-domain signals are translated into the frequency domain using
Fast Fourier Transform (FFT), yielding both time-domain and frequency-domain plots for
each monitoring location, as depicted in Figure 12.
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The time-domain pattern of pressure pulsations in the vaneless area displays a clear
periodicity, in contrast to the less distinct pattern observed at the runner. Examination
of the frequency domain indicates that the main frequency of pressure pulsation in the
vaneless area is at 15 fn (with fn being the shaft frequency), aligning with the passing
frequency of the stay vane and classified as a high-frequency pressure pulsation element.
These pressure pulsations at this frequency are largely attributed to the dynamic and
static interactions between the movable guide vane and the runner. In the frequency
domain diagram, alongside the primary frequency of 15 fn, another notable frequency is
the shaft frequency multiplication. At the runner, the principal frequency of pressure
fluctuation is 1.5 fn, with a concurrent surge in frequency at 25 fn, indicating a significant
impact from dynamic and static interference. These observations underscore the complex
interactions within the turbine that contribute to pressure pulsations and their influence
on the system’s hydraulic.

In the frequency domain analysis, in addition to the primary frequency at 15 fn,
another significant frequency is the multiplication of the shaft frequency. At the runner,
the predominant frequency of pressure fluctuation is 1.5 fn, with a notable increase at
25 fn, suggesting a substantial effect from dynamic and static interference. These findings
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highlight the intricate interactions within the turbine that are responsible for pressure
pulsations and their consequential effects on the system’s hydraulic performance.

3.3. Hydraulic Loss and Internal Flow Characteristics of Draft Tube

As an essential element of the pump turbine, the draft tube’s internal flow dynamics
substantially influence the overall performance of the system. The subsequent section
presents an entropy generation analysis focusing on the hydraulic losses within the
draft tube.

Figure 13 illustrates the distribution of wall entropy generation and direct entropy
generation within the draft tube.
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Figure 13. Distribution of wall entropy generation and direct entropy generation of draft tube.

Observations indicate that the area of elevated entropy generation extends downward
from the straight conical section of the draft tube, with fluid velocities exhibiting a gradual
increase from the core to the periphery. This trend could be associated with the fluid’s
viscous behavior and the evolution of the turbulent boundary layer adjacent to the wall.
As the fluid progresses through the straight conical section, the velocity gradient inten-
sifies near the wall, leading to heightened wall shear stress. Within the central region of
the straight conical segment, a pronounced acceleration of fluid velocity along the wall
is noticeable. The majority of the high wall entropy production rate (WEPR) is concen-
trated in this straight conical section, with the primary hydraulic losses in the draft tube
attributable to vortex band formation and flow complexity. Vortices are a principal driver
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of hydraulic vibrations in pump turbines. During no-load operation, these vortices can
induce substantial pressure fluctuations and consequent whole-unit vibrations within the
draft tube.

To delve deeper into the origins of elevated entropy production within the draft tube,
Figure 14 presents a cross-sectional cloud diagram of velocity and turbulent kinetic energy
from the straight cone section to the draft tube’s outlet.
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Observations reveal a similar pattern in the distribution of entropy production, with
fluid velocities and turbulent kinetic energy exhibiting a gradual increase moving from the
center towards the wall. The progression of flow velocity aligns closely with the escalation
of turbulent kinetic energy. This is because high turbulent kinetic energy means that there
are more velocity fluctuations in the fluid, which may lead to more effective momentum
and energy transfer, thus affecting fluid diffusion and heat transfer characteristics.

In conclusion, the flow conditions at the draft tube inlet seem to be less than ideal,
likely a consequence of static and dynamic interference. The flow behavior within the
draft tube is shaped by the interplay between the stationary wall and the fluid in motion,
potentially leading to flow separation, vortex formation, and increased turbulence. To gain
further insights into the draft tube’s internal flow characteristics, Figure 15 depicts the
internal vortex and streamline configurations:
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Sections A, B, and C are situated in the vicinity of the draft tube inlet within the
straight cone section, section D is located in the elbow region, and section E is within
the horizontal diffuser section. It is apparent that during no-load operations, the flow
becomes notably more chaotic, with helical vortex bands developing in both the straight
cone and elbow sections of the draft tube, and isolated, scattered vortices appearing in the
horizontal diffusion section. The arrangement of streamlines and vortices suggests that the
flow within the draft tube is markedly unstable under such circumstances, contributing to
significant hydraulic losses.

The periodic flow separation and vortex structure formation, instigated by dynamic
and static interference, induce pressure fluctuations within the flow channel. The pressure
pulsations in the draft tube will be examined next. Employing the same research methodol-
ogy as for the runner, the time-domain and frequency-domain plots for each monitoring
point are derived, as illustrated in Figure 16.

The time-domain distribution of pressure pulsations at the draft tube inlet’s straight
cone section exhibits clear periodicity, whereas the pressure pulsations in the elbow
section display a less pronounced pattern. Notably, the elbow section shows six peaks
across three rotation cycles. The pressure pulsation components within the draft tube
are intricate, with internal flow anomalies generating a potent stochastic pressure signal.
In addition to frequencies associated with dynamic and static interference, the pressure
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pulsation spectra at each measurement point also encompass numerous low-frequency,
high-amplitude components.
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Figure 16. The time-domain and frequency-domain plots for the monitoring points located within
the draft tube.

4. Conclusions

In this research, numerical simulations were conducted on the pump turbine at
Weifang Pumped Storage Power Station with the guide vanes set to a constant opening
under no-load conditions. The key findings are as follows:

(1) Under no-load conditions, the system’s entropy generation is predominantly driven
by turbulent fluctuations and wall effects. Turbulent and wall entropy generations
collectively constitute the majority of the total entropy production, surpassing 99%,
with direct entropy generation contributing less than 1%. The predominant hydraulic
losses are identified in the regions of the guide vane, runner, and draft tube.

(2) The runner’s internal flow is characterized by non-uniformity and disorder across
flow channels, with numerous vortices obstructing the flow path. High-velocity
flow regions, predominantly in the vaneless space, stem from the dynamic and static
interactions between the runner and stationary elements. The draft tube experiences
considerable flow instability, characterized by the formation of spiral vortex bands in
the straight cone and elbow sections, and the emergence of discrete vortices in the
horizontal diffusion section, which contribute to substantial hydraulic losses.

(3) The primary frequencies of pressure pulsation within the runner and vaneless area
are fundamentally 25 and 15 times the shaft frequency, indicating that dynamic and
static interference is a major factor in pressure pulsation. The bladeless region exhibits
the greatest amplitude of main frequency, where dynamic and static interference is
most pronounced. The pressure pulsation components in the draft tube are intricate,
reflecting the complex interplay of forces within the system and underscoring the
need for detailed analysis and optimization to enhance performance and stability.
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