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Abstract: Groundwater salinization poses a critical threat to sustainable development in arid and
semi-arid rurbanizing regions, exemplified by Kerman Province, Iran. This region experiences
groundwater ecosystem degradation as a result of the rapid conversion of rural agricultural land to
urban areas under chronic drought conditions. This study aims to enhance Groundwater Pollution
Risk (GwPR) mapping by integrating the DRASTIC index with machine learning (ML) models,
including Random Forest (RF), Boosted Regression Trees (BRT), Generalized Linear Model (GLM),
Support Vector Machine (SVM), and Multivariate Adaptive Regression Splines (MARS), alongside hy-
drogeochemical investigations, to promote sustainable water management in Kerman Province. The
RF model achieved the highest accuracy with an Area Under the Curve (AUC) of 0.995 in predicting
GwPR, outperforming BRT (0.988), SVM (0.977), MARS (0.951), and GLM (0.887). The RF-based map
identified new high-vulnerability zones in the northeast and northwest and showed an expanded
moderate vulnerability zone, covering 48.46% of the study area. Analysis revealed exceedances of
WHO standards for total hardness (TH), sodium, sulfates, chlorides, and electrical conductivity (EC)
in these high-vulnerability areas, indicating contamination from mineralized aquifers and unsustain-
able agricultural practices. The findings underscore the RF model’s effectiveness in groundwater
prediction and highlight the need for stricter monitoring and management, including regulating
groundwater extraction and improving water use efficiency in riverine aquifers.

Keywords: groundwater salinization; vulnerability; DRASTIC index; machine learning; riverine
aquifers; Iran

1. Introduction

Groundwater, constituting roughly half of the world’s potable and agricultural water
resources, is indispensable to global freshwater availability [1,2]. Groundwater resources
thus play a crucial role in the Earth’s biogeochemical cycles, especially in arid and semi-arid
regions [3,4]. As global populations expand, the imperative for water security intensifies,
prompting widespread efforts in developing nations to identify and assess critical ground-
water reserves [5–8]. Despite these efforts, groundwater resources remain vulnerable to
salinization, driven by population growth, increasing urban water consumption, and the
intensifying impacts of global climate change [9,10].
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Several studies have investigated the presence of chemical pollutants in groundwa-
ter [11], highlighting the substantial impact of human activities on water quality, partic-
ularly in rurbanizing landscapes [12]. Developing countries are increasingly confronted
with challenges related to illegal drilling, a consequence of rapid rurbanization [13,14].
Rurbanization refers to the process by which rural areas, especially in developing regions
across Asia, Africa, and Latin America, undergo profound economic and social transforma-
tions [15]. These changes often involve the introduction of urban infrastructure, services,
and amenities—such as improved transportation, healthcare, education, and communica-
tion networks—while retaining aspects of rural life and cultural traditions. Regrettably,
unplanned industrialization exacerbates pressure on water resources, thereby diminishing
sustainability considerations [16]. Additionally, population growth has driven unplanned
urbanization, posing significant risks to both the quantity and quality of groundwater,
particularly in arid and semi-arid regions where the impacts of climate change are un-
predictable [17,18]. These stressors pose serious concerns for the integrity of ecosystems,
striking a balance between current demands and preserving the resource for future genera-
tions [14,15]. This is particularly critical in water-scarce regions like Iran [12], balancing
current needs with the preservation of water resources for future generations [5,19]. Con-
sequently, ensuring a sustainable supply and efficient utilization of agricultural water
resources is vital for maintaining food security and achieving sustainable economic and
social development.

To this end, GwPR assessment is a key component of global water resource manage-
ment, mitigating the adverse effects of aquifer salinization [20,21]. However, accurately
assessing GwPR necessitates examining the complex interactions between natural geomor-
phological and hydrogeological factors, along with anthropogenic influences [22,23]. This
assessment can enhance not only human health but also economic growth, social progress,
and environmental conservation. Various methods have been employed globally to as-
sess groundwater pollution and vulnerability, including interpolation hydrogeochemical
analysis [8,23,24], index methods [25,26], and geophysical investigations [27]. Indeed, the
DRASTIC index (Depth to groundwater, net Recharge, Aquifer media, Soil media, Topog-
raphy, the Impact of the vadose zone, and the hydraulic Conductivity of the aquifer) has
become a widely adopted method for assessing groundwater vulnerability to various con-
taminations, particularly in urbanized riverine areas [28,29]. The seven key parameters are
usually assigned scores and weights through multi-criteria decision analysis (MCDA) based
on expert judgment to assess groundwater vulnerability, ultimately resulting in an overall
vulnerability index. Compared to traditional methods like geological surveys and drilling,
the DRASTIC-based MCDA index offers greater efficiency and provides valuable informa-
tion for regional water management strategies focused on sustainability [1,12]. However,
these approaches encounter challenges due to the extensive calculations required, as well
as their limitations in applicability, which can be subjective and time-consuming [30].

ML techniques have become a powerful asset in enhancing DRASTIC-based GwPR
prediction models, as they can effectively capture non-linear interactions between influenc-
ing determinants and susceptibility standards [30–32]. When integrated with optimization
ML algorithms, GwPR mapping significantly improves the precision of vulnerability as-
sessments, thereby advancing groundwater management strategies [33,34]. Models such
as RF, BRT, GLM, SVM, and MARS can effectively model complex information and gen-
erate valuable insights for decision-making [33,35], offering significant improvements in
vulnerability analysis, especially when combined with the DRASTIC index. Ultimately,
integrating the DRASTIC index with ML models offers the capability to effectively analyze
complex, multidimensional, and large-scale groundwater pollution datasets [31]. This
integration requires a more comprehensive analysis of the intrinsic characteristics of the
hydrological system [29,32,36]. In this regard, remote sensing provides detailed informa-
tion on land attributes (geology, rainfall, land use), enhancing management decisions for
resource preservation and utilization [37–39]. In recent years, Geographic Information
Systems (GIS) also facilitates the visualization and spatial analysis of groundwater data,



Water 2024, 16, 2748 3 of 25

enabling informed decision-making for sustainable water management [23–42]. These
advanced technologies not only empower sustainable resource utilization but also enable
more accurate prediction for effective protection and management [7,22].

Recently, ML techniques have been effectively employed to predict GwPR using
DRASTIC models across diverse environmental conditions [29–34,43–45]. Nonetheless,
their application in evaluating DRASTIC-based GwPR prediction models remains limited,
particularly in rapidly rurbanizing riverine environments, where a standardized framework
has yet to be developed. This study aims to address these gaps by proposing an integrated
DRASTIC-based ML framework to pinpoint areas vulnerable to groundwater contamina-
tion, enhancing geographical analyses within the fields of hydrogeology. By utilizing the
DRASTIC factors as inputs for different ML models, including RF, BRT, GLM, SVM, and
MARS, it is possible to simulate pollution patterns resulting from various human activities
and environmental changes affecting groundwater resources. This methodology offers a
valuable tool for water resource managers and researchers, facilitating the identification of
critical areas and contributing to achieving Sustainable Development Goals (SDGs) and
protecting the environment and human health in these stressful regions [16,25].

Iran’s reliance on groundwater for approximately 65% of its water consumption,
highlighting the urgent need for effective management of these resources. Addressing
water supply issues requires a focus on aquifer exploration and sustainable use in similar
countries [43]. However, managing groundwater resources poses a complex challenge due
to the interplay of social and ecological factors [35]. For instance, the northern provinces
demonstrated relatively lower salinity levels compared to the central and southern regions,
which exhibited the highest vulnerability [46]. This heightened susceptibility in the central
regions was primarily attributed to inadequate rainfall, excessive groundwater extraction,
and saltwater intrusion from Salt Lake, collectively contributing to significant groundwater
degradation. In Kerman Province, situated in southern Iran, rapid population growth and
urbanization, along with a heavy reliance on agriculture, create significant water demands
across various sectors [47]. This study aims to develop robust methodology for assessing
GwPR vulnerability, bridging the gap between urban planners and water management
organizations in Kerman Province.

This research evaluates ML algorithms against traditional DRASTIC methods for
assessing groundwater salinization and aims to enhance the accuracy of GwPR assessments
in rurbanizing riverine regions. It also investigates pollution levels in both urban and
rural groundwater sources to assess potential risks to human health, considering the
maximum allowable concentrations specified in groundwater quality standards. The
objectives are as follows: (1) modeling the basic DRASTIC vulnerability index in both
urban and rural areas of Kerman Province; (2) improving ML-based DRASTIC vulnerability
maps to establish a sustainable management framework through GwPR vulnerability maps;
and (3) mapping the spatial distribution of groundwater physico-chemical properties to
further evaluate the aquifer conditions, particularly in vulnerable regions identified by
the ML-based DRASTIC maps, providing valuable insights for promoting sustainable
agricultural practices. Ultimately, this approach can be adapted to other urbanized riverine
areas with similar hydrogeological and socio-economic conditions, making it a valuable
tool for enhancing the precision of groundwater vulnerability.

2. Materials and Methods
2.1. Study Area

Kerman Province, with an area of 182,726 square kilometers, constitutes over 11.15%
of Iran’s total area. It is located between latitudes 26.00◦ N and 31.00◦ N and longitudes
54.00◦ E and 59.00◦ E (Figure 1). Geomorphologically, the province is situated at the
convergence of the high Zagros and Central Mountain ranges with the low desert regions in
the southeast of Iran’s Great Central Desert. This unique confluence of diverse landscapes
results in environmental characteristics that are rare elsewhere on the Iranian plateau.
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Kerman Province is geographically divided into two main regions: desert and temperate
foothills, and its climate is classified as semi-arid desert [48].
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Figure 1. Location of the study region in Kerman Province highlighted by the red polygon in
southern Iran.

Kerman Province is characterized by arid and semi-arid climatic conditions [47]. The
region struggles with significant water scarcity, challenging agricultural conditions, and a
high dependence on subsistence farming, which leads to considerable social and economic
difficulties [46]. The area contends with ongoing issues such as decreased precipitation,
frequent droughts, and the overuse of groundwater resources. Falling groundwater levels
result in various negative effects, including reduced well water supply, deeper well drilling,
declining water quality, and increased pumping costs [49]. These issues collectively dimin-
ish overall water availability and negatively affect agricultural productivity. Given that the
regional economy is heavily dependent on agriculture, any decline in groundwater quality
or quantity directly impacts the livelihoods of local farmers [50].

2.2. Datasets

Various data were collected from multiple sources, including geomorphological maps,
geological maps, remote sensing images, and other infrastructure data. This data collection
process was crucial for identifying potential groundwater vulnerability zones and ensuring
the reliability and effectiveness of future analyses and decision-making processes. The Digi-
tal Elevation Model (DEM) was derived from Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) satellite images, chosen for their precision in groundwater
resource management and environmental modeling [38]. Archived soil maps provided
essential information on soil types influencing groundwater recharge and storage, while
hydrological data, including stream networks, drainage patterns, and precipitation, were
gathered to evaluate the hydrological system and water availability.

In this study, groundwater quality was assessed in Kerman Province. A total of
250 groundwater samples were collected from various locations across the counties of
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Kerman, Rafsanjan, Sirjan, Jiroft, and Bam. The sampling locations were selected in a way
that captured the geographical diversity and environmental conditions of the area (refer
to Figure 2), providing a comprehensive assessment of water quality across the province.
Sampling was carried out between September 2016 and February 2017 during the post-
monsoon season. This systematic approach allowed for both temporal and spatial analyses,
enhancing the strength and comprehensiveness of the dataset. To ensure accurate data
representation, sampling was particularly focused in areas with higher population density,
aiming to reflect the actual groundwater conditions in more densely populated regions.
Additionally, to avoid sampling stagnant water, the water samples were collected after 5 to
10 min of continuous pumping from drilled and tube wells. For sample preservation, high-
quality polyethylene bottles were used for sample storage, ensuring appropriate sample
size for representativeness. After filtration, the samples were stored at 3–5 ◦C to preserve
water quality and minimize microbial activity. The analysis included measurements of
cation concentrations (Mg2+, Ca2+, Na+), anion concentrations (SO4

2−, HCO3
−, Cl−), Total

Dissolved Solids (TDS), and TH. TDS, pH, and Electrical Conductivity (EC) were measured
using a portable multiparameter instrument. TH, representing the total concentration of
calcium and magnesium ions, was also included to assess water hardness.
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2.3. Methodology

This study highlights the importance of groundwater contamination assessment in
rural–urban development. The methodology, detailed in Figure 3, comprises several key
stages. First, an inverse distance weighting (IDW) method was employed to generate a
map of conditional factors influencing groundwater vulnerability within ArcGIS V10.8
software. The ASTER-DEM was employed to extract topographic features using ArcMap V
10.8 software. Next, groundwater quality analysis was conducted, considering parameters
such as TH. Subsequently, the DRASTIC model was implemented using GIS to create a
groundwater vulnerability map. This model integrates variables like depth to the water
table (D), net recharge (R), aquifer media (A), soil media (S), topography (T), vadose zone
impact (I), and hydraulic conductivity (C). To enhance the capabilities of the DRASTIC
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approach, various ML algorithms were utilized through the SDM package in R software
V 4.3.2. These algorithms included RF, BRT, GLM, SVM, and MARS. The effectiveness of
the GwPR models was evaluated using training and validation datasets based on TDS
measurements. Receiver Operating Characteristic (ROC) curves were employed to assess
model performance.
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2.3.1. Implementing the Basic DRASTIC Model

Index-based methods for assessing groundwater vulnerability, such as the DRASTIC
model, are effective tools due to their minimal data requirements and adaptable spatial
scales [28]. The DRASTIC index evaluates groundwater vulnerability by examining the
risks of surface pollution infiltration and subsequent aquifer contamination, incorporating
eight factors that encompass hydrological and geological parameters, each weighted ac-
cording to its significance. The DRASTIC parameters were rated on a scale of 1 to 10 based
on available literature [25–28], and weights from 1 to 5 were assigned to each parameter
(Table 1). Due to limitations in data availability regarding groundwater recharge sources,
this study employed slope, precipitation, and soil permeability as indirect indicators of
net recharge, representing the contribution of surface water infiltration. The slope was
also used to characterize topographic features. Depth to the water table, a critical parame-
ter in the DRASTIC model, signifies the distance a contaminant must travel through the
unsaturated zone to reach the aquifer. The IDW technique was employed to generate a
comprehensive depth-to-water table map, subsequently reclassified into vulnerability rank-
ings (1–9). Recharge, representing the annual volume of infiltrated water per unit area, was
assessed using interpolated rainfall data and other relevant factors. The recharge values
were then reclassified into vulnerability rankings (1–8). Aquifer media and soil media
parameters were derived from geological and soil maps, with rankings assigned based on
properties like porosity and permeability. The slope was used to represent topography and
its influence on infiltration. The vadose zone, the unsaturated zone between the ground
surface and the aquifer, was evaluated by analyzing geological formations. Hydraulic con-
ductivity, reflecting the ability of porous materials to transmit water, was categorized into
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vulnerability levels (1–9). These criteria were used to determine groundwater susceptibility
to contamination, with higher rankings indicating greater vulnerability (see Table 1). Finally,
the basic DRASTIC vulnerability index was calculated by multiplying each parameter’s
rating by its weight, as shown in Equation (1) and explained in the literature [32].

DRASTIC Index (DI) = DrDw + RrRw + ArAw + SrSw + TrTw + Ir Iw + CrCw (1)

The DRASTIC index (DI) equation is designed to assess groundwater vulnerability
using seven key hydrogeological parameters: Depth to groundwater (D), net Recharge
(R), Aquifer media (A), Soil media (S), Topography (T), Impact of the vadose zone (I), and
hydraulic Conductivity (C).

Table 1. DRASTIC: parameter classification, range, evaluation, and weighting based on Aller
et al. [28].

DRASTIC Parameter Range Rank Weights

Depth to water table (m)

0–20 9

5

20–30 7
30–40 5
40–50 3
50–60 2
>60 1

Net recharge (mm)

0–50 1

4
50–100 3

100–180 5
>180 8

Aquifer media

Gray thick-bedded to massive orbitolina limestone 2

3

Conglomerate and sandstone 9
Marl, shale, sandstone, and conglomerate 6

Shale, siltstone, sandstone, and thin sandy limestone with thin
coal seams 5

Red conglomerate and sandstone 9
Low-level piedmont fan and valley terrace deposits 4
High-level piedmont fan and valley terrace deposits 4

Polymictic conglomerate and sandstone, sand dunes, and sand
sheet 5

Clay flat 3
Andesitic volcanic tuff 1

Granite to diorite 4
Marl, sandstone, marl, limestone, calcareous sandstone, and

limestone 6

Black limestone, andesitic to basaltic volcanic, salt flat, and red
marl 8

Soil media

Silty loam 8

2

Loam 7
Sandy loam 6

Sandy clay loam 5
Sand 4

Loamy sand 6
Clay loam 3

Slope (%)

<2 10

1
2–6 9

6–12 5
12–18 3
>18 1
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Table 1. Cont.

DRASTIC Parameter Range Rank Weights

Impact of vadose zone

Silty loam 9

5
Loamy sand, loam 7

Clay loam 5
Sand, sandy loam, sandy clay loam 3

Hydraulic conductivity
(m/day)

0.04–4.1 1

3

4.1–7.3 2
7.3–10.6 3
10.6–12.2 5
12.2–15.4 7
15.4–28.5 9

In the DRASTIC method, w represents the specific parameter weight, while r denotes
the parameter’s rating. These values for specific parameters are detailed in Table 1, reflect-
ing their comparative importance through assigned ratings and weights. The DRASTIC
index is calculated by multiplying the rating and weight of each parameter and then
summing them. This index helps to identify and prioritize areas that are susceptible to
contamination, highlighting the influence of these hydrogeological factors on groundwater
vulnerability. The derived index was classified into five discrete categories, spanning from
very low to very high, employing the natural breaks method to visualize the fundamental
risk of contamination.

2.3.2. Implementation of Machine Learning-Based DRASTIC Models

This study explores the application of ML algorithms for groundwater vulnerability
assessment, offering an alternative approach to the traditional DRASTIC model. ML is a
subfield of artificial intelligence that focuses on building predictive models from data [51].
Five different ML algorithms—RF, BRT, GLM, SVM, and MARS—were employed to classify
groundwater pollution vulnerability.

The database for the ML step to predict DRASTIC-based GwPR includes the following:
a provision of 250 observation wells to record TDS levels and seven DRASTIC data layers
(Figure 3). The homogenization step has become a standard process to build both suitability
and susceptibility models [22]. Hence, all the input factors were converted to raster layers of
100 m spatial resolution, considering the extent of the study area. For instance, the A, S, and I
vector layers were converted to raster layers using the rasterize features function in ArcMap
software. According to the World Health Organization (WHO) guideline, which sets the
threshold for TDS at 1000 mg/L, water samples with TDS levels below this limit were
classified as non-vulnerable (0), indicating lower susceptibility to pollution. In contrast,
samples exceeding 1000 mg/L were categorized as highly vulnerable (1), signifying greater
susceptibility to contamination. The pixel values of predictor variables were extracted
against the 250 well locations of TDS measurements using ArcMap to serve as inventory
data for the ML models. The inventory data were partitioned into two subsets: a training
set consisting of 70% of the data and a test set comprising 30%. Data standardization is
urgently needed to avoid different scales of data types (i.e., nominal, interval, and ratio)
during the integration process [31]. For this reason, all parameters were normalized to a
common scale from 0 to 1. This step reduces bias and improves the performance of ML
models, ensuring that the impact of each factor on vulnerability assessment was correctly
weighted. Subsequently, the ML models were executed using the SDM package in RStudio.
The model’s performances were determined based on accuracy criteria of ROC using the
test dataset (30% of the inventory data).
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Finally, the ML-based GwPR maps were predicted using the resulting ML models
based on the DRASTIC layers for the whole study area. Therefore, all DRASTIC raster
layers were transformed into ASCII format in the ArcMap and subsequently imported into
R. These data were normalized and stacked using the relevant codes in RStudio. The final
DRASTIC-based GwPR vulnerability—ranging from 0 to 1 map—was categorized using
ArcMap into five distinct classes, ranging from very low to very high, utilizing the natural
breaks method. Here’s a brief overview of each algorithm:

Support Vector Machine (SVM): SVM excels at classification tasks with high-dimensional
data, making it suitable for environmental and social data analysis [52]. It identifies
complex, non-linear patterns by transforming data into a higher-dimensional space to find
a hyperplane that best separates the data points [53].

Random Forest (RF): RF is known for its stability and performance in prediction
tasks, particularly with environmental and social data. It utilizes multiple decision trees
to manage complex spatial data for both classification and regression while avoiding
overfitting [45]. The final model is an ensemble of these decision trees, leading to a robust
prediction. Optimizing parameters such as the number of trees, feature selection, and
kernel type is crucial for enhancing performance and prediction accuracy [54].

Generalized Linear Model (GLM): Implemented using the SDM package in R 4.2.2,
GLM extends linear regression to oversee both linear and non-linear relationships for
regression analysis. Despite its simplicity, GLM is widely used in environmental predic-
tion [55] and has shown superior performance compared to other techniques [19]. GLM
employs multivariate regression to model conditional factors as functions of contaminant
presence/absence. Unlike linear regression, GLM does not require the assumption of
normality for the data, making it a valuable tool for contamination risk assessment. Its
ability to identify relationships between variables makes it suitable for spatial modeling
and generating optimal regression models for various events.

Boosted Regression Trees (BRT): BRT combines decision trees with boosting techniques,
a data mining and ML approach for regression and classification problems [55]. By inte-
grating multiple fitting models, BRT aims to improve overall effectiveness and prediction
accuracy [56].

Table 2 provides a summary of the employed ML methods in this study, including
parameters, units, and resolutions. This table enhances clarity and reproducibility of results,
offering an overview of the settings and methods employed.

Table 2. Summary of Machine Learning Methods and Parameters.

Machine Learning Method Parameter Value/Unit Resolution

Random Forest (RF) Number of Trees 100 (default) 100 m
Support Vector Machine (SVM) Kernel Type Radial Basis Function 100 m
Gradient Boosting Trees (BRT) Number of Trees 100 (default) 100 m

Generalized Linear Model (GLM) Link Function Logit (default) 100 m
Multivariate Adaptive Regression Splines (MARS) Number of Basis Functions 10 (default) 100 m

2.3.3. Models Validation

Validation is one of the key steps in evaluating the quality and accuracy of model
prediction [30–33]. This study evaluated the performance of ML models for predicting
GwPR vulnerability using the ML-based DRASTIC models. The effectiveness of the classifi-
cation models was subsequently assessed using ROC curves and the AUC metric. The ROC
curve was prepared by overlaying the test dataset and the five maps obtained through R
software. ROC curves visualized the models’ ability to distinguish between contaminated
and uncontaminated sites, while AUC quantified their classification accuracy. The models
showed varying levels of success, with AUC values indicating potential for groundwater
vulnerability prediction. The models were validated to ensure a more robust performance
evaluation. The area under the ROC (AUROC) curve serves as a summary statistic that
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allows for a straightforward comparison of model performance, with higher AUC values
reflecting better discriminative power. Previous studies [53–56] indicate that AUC values
range from 0.5 to 1, with values approaching 1 signifying greater model accuracy. AUC
values are classified into categories based on their range: 0.5 to 0.6 is considered poor,
0.6 to 0.7 is moderate, 0.7 to 0.8 is good, 0.8 to 0.9 is very good, and 0.9 to 1 is excellent,
representing varying levels of predictive capability.

2.3.4. Mapping Spatial Variations of Groundwater Physico-Chemical Properties

Hydrogeochemical investigation is paramount for classifying groundwater quality,
using specific measurements such as sulfate (SO4

2−), bicarbonate (HCO3
−), and chloride

(Cl−), cations like sodium (Na+), calcium (Ca2+), and magnesium (Mg2+), along with pH,
TH, TDS, and EC. These specific parameters were selected due to their well-established
impact on groundwater contamination [8]. Analyzing groundwater hydrochemical param-
eters offers valuable insights into hydrogeological conditions, particularly in vulnerable
regions, helping decision-makers formulate effective solutions and mitigation strategies
for various applications [23]. The hydrogeochemical data collected were compiled into a
geodatabase within ArcGIS software. Sample locations were georeferenced and converted
into shapefiles. Key stages in this process included mapping and spatial data analysis. To
comprehensively understand the spatial variation in groundwater hydrochemistry and
quality, spatial distribution maps for each parameter were created using the IDW tech-
nique. This method estimates values at unsampled locations by applying a weighted
linear combination of known points, where weights are inversely related to the distance
between points. Understanding the spatial distribution of these parameters is essential
for evaluating groundwater quality and pinpointing potential pollution sources within
the study area. This approach is effective for generating distribution maps and analyzing
spatial data, particularly for estimating values at locations with no direct data by utilizing
sampled data.

Consequently, the physicochemical properties of groundwater samples (detailed in
Table 3) were compared to the WHO drinking water quality standards [57]. These steps
aid in a comprehensive and precise analysis of groundwater quality, identifying influen-
tial factors, and enhancing the accuracy and effectiveness of models for water resource
management. Results interpretation includes pattern analysis, comparison with water
quality standards, and providing management recommendations and suggestions for fu-
ture research. For instance, certain parameters, including TH, EC, Na+, Cl−, TDS, and pH,
exceeded the recommended WHO thresholds, raising concerns about the potability of the
water. TH values from 250 groundwater wells exhibited a uniform spatial distribution and
were visualized using the IDW function in ArcGIS software. Conversely, all other measured
parameters fell within acceptable limits.

Table 3. Characteristics of groundwater samples in terms of physicochemical parameters in Kerman
Province: comparison with WHO standards [57].

Chemical Parameter Unit Min Max WHO [57]

Ca2+ mg/L 0 39.98 200
TDS mg/L 0 10,704.3 1000
Cl− mg/L 0 264.93 250

HCO3
− mg/L 0 32.48 250

SO4
2− mg/L 0 61.98 100

Na+ mg/L 0 360 200
Mg2+ mg/L 0 34.99 200

EC µS/cm 145.12 24,394.7 1000
TH mg/L 0 3498.4 100
pH - 0 9.09 7
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3. Results
3.1. Basic DRASTIC Vulnerability Index

This study employed the basic DRASTIC model within ArcGIS software to generate
a baseline groundwater vulnerability map. Seven thematic layers for each DRASTIC
parameter were scored and weighted, which will be subsequently described.

The D factor plays a crucial role in groundwater pollution [28]. Groundwater depth
shows values ranging from 0 to over 60 m. The highest depths are found predominantly
in the central region (Figure 4a). To account for these spatial variations, the A factor
was classified into six distinct categories, with ratings of 1 and 9 assigned accordingly.
The N factor represents the volume of surface water, originating from both rainfall and
artificial sources, per unit area of the study area [28]. The recharge rate varied from 0 to
180 mm/day, as shown in Figure 4b. This layer was categorized into four classes, which
is consistent with the DRASTIC rating regulation (31–32). The aquifer media parameter
characterizes the properties of aquifer materials that influence pollutant attenuation [27].
The region is mainly composed of sandy desert, though the middle area contains clay,
saline, and mudflat regions (Figure 4c). The aquifer media was classified into thirteen
categories and ranked from 1 to 9. Sandstone and conglomerate received higher rankings
due to their very coarse, porous nature, which offers superior drainage and transmission
characteristics [22]. Soil acts as the surface layer where weathering occurs and regulates
water infiltration as well as the vertical movement of pollutants into the vadose zone.
Silty loam soils (Figure 4d), characterized by their excellent drainage properties, allow
substantial water flow and consequently are highly rated in terms of pollutant transfer.
In contrast, clay soils hinder water flow and are less likely to contribute to groundwater
contamination [25], resulting in a lower rating for these soils. The T factor plays a crucial
role in assessing the infiltration of surface pollutants into groundwater resources. A lower
slope facilitates increased infiltration in the southern and northwestern regions, leading
to a higher potential for pollutants to migrate into the aquifer (Figure 4e). Guided by
geological and soil maps, the vadose zone was identified as the subsurface region between
the Earth’s surface and the aquifer, encompassing unsaturated material above the water
table [28]. A scoring system ranging from 3 to 9 was applied to each hydrogeological unit
(Figure 4f). Aquifer media with high hydraulic conductivity (>15.4 m/day) are classified as
more susceptible to groundwater pollution, receiving a rating of 9 (Figure 4g).

Figure 5 presents a groundwater vulnerability map categorized based on DRASTIC
index values. As shown in Table 4, the DRASTIC model feature values range from 0 to
170, reflecting the varying degrees of vulnerability within the study area. These values,
expressed on a Likert scale, range from very low to very high vulnerability. The DRASTIC
index exhibited approximately 8.03%, 27.18%, 31.92%, 22.48%, and 10.36% of the area
that are categorized as very low, low, moderate, high, and very high vulnerability zones
to pollution risks, respectively (Figure 5 and Table 4). The map reveals areas of high
vulnerability concentrated in the central, southern, and eastern regions of the study area.
Conversely, the northwestern region exhibits low vulnerability.

Table 4. Classification of vulnerability levels for the DRASTIC method.

Vulnerability Class Attributes Min

Very low
Index range 0–82
Area (km2) 14,371

Area (%) 8.03

Low
Index range 82–95
Area (km2) 48,610

Area (%) 27.18

Moderate
Index range 95–107
Area (km2) 57,079

Area (%) 31.92
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Table 4. Cont.

Vulnerability Class Attributes Min

High
Index range 107–121
Area (km2) 40,205

Area (%) 22.48

Very high
Index range 121–170
Area (km2) 18,533

Area (%) 10.36
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Figure 4. The spatial arrangement of parameters indicating groundwater vulnerability and the cre-
ation of maps illustrating the factors influencing groundwater vulnerability: (a) depth to water table, 
(b) net recharge, (c) aquifer media, (d) slope, (e) soil media, (f) impact of vadose zone, and (g) hy-
draulic conductivity. 

Figure 4. The spatial arrangement of parameters indicating groundwater vulnerability and the
creation of maps illustrating the factors influencing groundwater vulnerability: (a) depth to water
table, (b) net recharge, (c) aquifer media, (d) slope, (e) soil media, (f) impact of vadose zone, and
(g) hydraulic conductivity.
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3.2. GwPR Vulnerability Assessment Using ML-Based DRASTIC Models

This study utilized ML-based models to address the limitations of the traditional
DRASTIC framework and to predict the vulnerability of the Kerman aquifer, supporting
sustainable groundwater management practices across both urban and rural areas of the
province. The approach integrates ML-enhanced DRASTIC models with spatial data
and components of groundwater sustainability management strategies (GSMS). Various
ML algorithms, including RF, BRT, GLM, SVM, and MARS, were employed alongside
spatial data, hydrogeological, and geoenvironmental control factors. The implemented ML
models utilized seven conditioning parameters and TDS for calibration and validation. The
GwPR maps produced by the models were categorized into five classes according to the
probability ranges: very low, low, medium, high, and very high. Lower values represent
lower vulnerability, while higher values indicate greater vulnerability (Figure 6).

Table 5 presents a comparison between five machine learning models (RF, MARS,
SVM, GLM, and BRT) based on different vulnerability classes. For each class (very low,
low, moderate, high, and very high), the index range and areas in square kilometers and
percentage of the total area are specified. According to this table, each machine learning
model provides different results in the distribution of groundwater vulnerability. The
spatial distribution of the most vulnerable zones in the standalone ML-based DRASTIC
maps generally corresponds reasonably; differences are observed in the distribution of low
and very low vulnerability classes in the GwPR-based SVM map.

Table 5. Classification of vulnerability levels for the RF model.

Vulnerability
Class Attributes

Attribute Values

(RF) (MARS) (SVM) (GLM) (BRT)

Very low
Index range 0–82 0–24 0–90 0–17 0–59
Area (km2) 1687 680 770 530 14,412

Area (%) 0.94 0.38 0.43 0.29 8.06

Low
Index range 82–95 24–39 90–95 17–35 59–69
Area (km2) 11,002 15,764 93,301 13,302 3426

Area (%) 6.15 8.81 52.18 7.44 1.92



Water 2024, 16, 2748 14 of 25

Table 5. Cont.

Vulnerability
Class Attributes

Attribute Values

(RF) (MARS) (SVM) (GLM) (BRT)

Moderate
Index range 95–107 39–74 95–106 35–50 69–91
Area (km2) 79,446 105,459 51,599 11,311 79,682

Area (%) 44.43 58.98 28.86 6.32 44.56

High
Index range 107–121 74–125 106–124 50–111 91–116
Area (km2) 51,684 34,110 6597 82,227 42,502

Area (%) 28.9 19.08 3.69 45.99 23.77

Very high
Index range 121–170 125–184 124–141 111–138 116–143
Area (km2) 34,978 22,786 26,532 71,429 38,777

Area (%) 19.56 12.74 14.84 39.95 21.69
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Accordingly, it is paramount to assess the precision of these modeling predictions. As
shown in Figure 7, model accuracy was assessed using the AUROC. The GwPR-based RF
model emerged as the most effective technique for predicting groundwater levels based
on its AUROC curve value of 0.995 (Figure 7). This performance surpassed other models,
including BRT (0.988), SVM (0.977), MARS (0.951), and GLM (0.887). The ML models
significantly enhance the overall predictability of the data, making them justifiable for use.
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The resulting RF map shows that about 19.56%, 28.90%, 44.43%, 6.15%, and 0.94% of
the study areas are under very high, high, moderate, low, and very low susceptible zones,
respectively (Figure 6a and Table 5).

The resulting MARS map indicates that approximately 12.74%, 19.08%, 58.98%, 8.81%,
and 0.38% of the study area fall under very high, high, medium, low, and very low
sensitivity zones, respectively (Figure 6b and Table 5). The MARS index based on GwPR
(Figure 6b) shows that very high vulnerability areas are mainly found in the southern and
western regions. The MARS model has the largest area for medium vulnerabilities.

The resulting SVM map shows that approximately 14.84%, 3.69%, 28.86%, 52.18%, and
0.43% of the study area fell under very high, high, medium, low, and very low sensitivity
zones, respectively (Figure 6c and Table 5). The SVM model provides a large area for the
“low” class. The SVM index based on GwPR (Figure 6c) shows that the largest area for low
vulnerabilities is in the central part of the study area.
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The resulting GLM map shows that approximately 39.95%, 45.99%, 6.32%, 7.44%, and
0.29% of the study area fall under very high, high, medium, low, and very low sensitivity
zones, respectively (Figure 6d and Table 5). The GLM provides a large area for the “high”
class. The GLM index based on GwPR (Figure 6d) shows that the largest area for high
vulnerabilities is mainly in the eastern and southern parts of the study area.

The resulting BRT map shows that approximately 21.69%, 23.77%, 44.56%, 1.92%, and
8.06% of the study area fall under very high, high, medium, low, and very low sensitivity
zones, respectively (Figure 6e and Table 5). The BRT index based on GwPR (Figure 6e)
shows that the BRT model predicts the largest area for the “medium” class, which is mainly
in the central part of the study area.

Clearly, the RF model provides extensive predictions for moderate and high vulnerabil-
ity classes, and it particularly shows the largest area in the “Moderate” class compared to the
other models. This model has a greater focus on moderate and high vulnerabilities, which
can be beneficial for management and policy analysis of groundwater resources. Undoubt-
edly, the RF model based on GwPR is considered the most accurate and comprehensive
for assessing pollution risks in rural riverine areas. The GwPR-based RF index (Figure 6a)
exhibited that the very high-vulnerability zone is mostly observed in the southern and
eastern regions, with localized occurrences in the middle part. The high vulnerability zone
is prominently evident in the northeastern and northwestern regions, contrasting with the
basic DRASTIC.

Differences between the models arise from algorithmic and predictive method vari-
ations. In policy and resource management analyses, attention to these differences can
improve decision-making and optimal resource allocation. The RF model is recognized
for its good balance in predicting various vulnerabilities, including medium and high
vulnerabilities. Other models, such as SVM and MARS, have their own strengths and
weaknesses, especially in predicting low (SVM) and medium (MARS) vulnerabilities. GLM
and BRT models focus on high (GLM) and medium (BRT) vulnerabilities, respectively.

Future research is recommended to systematically use the ordered weighted aver-
age (OWA) method for combining results from different models and employing various
scenarios [58] to enhance the accuracy and comprehensiveness of analyses in natural
resource management, especially water resources. This method provides a precise and
comprehensive risk assessment by combining results from different models, and using
various scenarios increases analysis accuracy and improves management. Employing this
approach helps decision-makers weigh different models based on management needs and
risk tolerance and select the best option. For example, in an optimistic scenario, BRT and
SVM models predict the largest areas in the very low and low classes. These models are
suitable for managing low-risk resources. In a pessimistic scenario, GLM and BRT models
show significant areas in the “high” class. These models are more suitable for identifying
high-risk areas that require more intensive management. Ultimately, the RF model, with
its balanced distribution across different classes, could be selected as an optimal option in
situations requiring combined risk management.

Consistent with previous research by [49], areas characterized by high drainage density,
low slopes, and dominant urban or agricultural land use are expected to exhibit the highest
vulnerability to pollution. The ML models demonstrated exceptional predictive accuracy,
consequently improving groundwater resource management. These models offer valuable
tools for groundwater resource assessment and management for the first time in this study
for Kerman Province. The evaluation of ML model precision underscores the potential
advantages of integrating these models with groundwater sustainability management
strategies. This integration can optimize groundwater allocation and conservation practices,
ultimately leading to environmental protection.

3.3. Groundwater Physicochemical Characteristics

This section focuses on evaluating the quality and appropriateness of groundwater
for agricultural purposes, as well as the impact of the specified chemical parameters on
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human health. Analysis of groundwater quality parameters in the designated region
revealed concerning deviations from WHO standards [57], indicating potential water
quality degradation. Key factors influencing agricultural water quality include EC, Na+,
magnesium hardness (MH), and potential salinity. Figure 8 visually depicts the spatial
variations in water sample concentrations across the study area.
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TDS refers to the aggregate of dissolved substances in water, and elevated levels can
adversely impact water quality, resulting in complications for both agricultural and potable
water uses (Figure 8a). TDS and EC are critical parameters that influence human health, as
they reflect the concentration of dissolved ions present in water. The average EC was ap-
proximately 398.5 µS/cm, which is below the WHO standard of 500 µS/cm. High EC values
point towards the presence of dissolved ions like chlorine and sodium, possibly originating
from agricultural wastewater infiltration [6], particularly in the northern, northeastern,
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and western parts (Figure 8b). This observation reflects the concentration of dissolved
solutes in water, especially in the highly vulnerable zones identified in the GwPR-based RF
map, which can lead to complications for both plants and drinking water [57]. TDS also
exceeded drinking water standards, signifying a high concentration of soluble chemical
compounds. These findings highlight the critical need for robust groundwater quality
monitoring and management strategies in the region. TH ranged from 0 to 3498.4 mg/L
with an average of 308.63 mg/L, exceeding recommended levels. Groundwater in Kerman
Province is thus classified as hard due to an average TH greater than 100 mg/L (Figure 8c).
Chloride concentrations range from 0 to 264.93 mg/L, and sulfate concentrations range
from 0 to 61.98 mg/L. Unforgettably, SO42− and Cl− were detected as potential pollutants,
particularly in the northeastern and western parts of highly vulnerable zones on the GwPR-
based RF map (Figures 6a and 8d,e). HCO3

− plays a role in pH regulation and enhances
soil structure, proving beneficial in agriculture; however, imbalances in its concentration
can hinder plant growth [16]. HCO3

− presence suggests an interaction between rainwater
and limestone aquifers in the middle parts (Figure 8f). Measured pH values ranged from 0
to 9.09, indicating alkaline conditions, particularly in the southern parts (Figure 8g). Mg2+

is a crucial element for chlorophyll synthesis and the overall growth of plants, making
it valuable in agricultural practices. While Ca2+ is vital for both plant development and
human health, contributing to agricultural productivity by enhancing soil structure and
facilitating mineral absorption. Calcium and magnesium concentrations range from 0 to
39.98 mg/L and from 0 to 34.99 mg/L, respectively, indicating significant levels of these
ions, which can impact water quality in northern and western parts (Figure 8h,i). Moreover,
excessive intake of Ca2+ poses significant risks, particularly for individuals with kidney
issues. In industrial settings, the equilibrium between Ca2+ and Mg2+ ions is generally
preserved in the majority of water sources; however, an overabundance of Mg2+ can nega-
tively impact soil structure, especially in environments characterized by high sodium levels
and salinity. Studies indicate that elevated concentrations of Ca2+ and Mg2+ in water may
heighten the risk of cardiovascular diseases [34]. Therefore, effective water management
practices are critical to mitigate human impacts and safeguard freshwater resources in
rurbanizing riverine environments, particularly in areas classified as highly or very highly
vulnerable [50,51]. Conversely, areas with low vulnerability present opportunities for
implementing sustainable water resource management strategies.

TDS refers to the aggregate of dissolved substances in water, and elevated levels can
adversely impact water quality, resulting in complications for both agricultural and potable
water uses (Figure 8a). TDS and EC are critical parameters that influence human health, as
they reflect the concentration of dissolved ions present in water. The average EC was ap-
proximately 398.5 µS/cm, which is below the WHO standard of 500 µS/cm. High EC values
point towards the presence of dissolved ions like chlorine and sodium, possibly originating
from agricultural wastewater infiltration [6], particularly in the northern, northeastern,
and western parts (Figure 8b). This observation reflects the concentration of dissolved
solutes in water, especially in the highly vulnerable zones identified in the GwPR-based RF
map, which can lead to complications for both plants and drinking water [57]. TDS also
exceeded drinking water standards, signifying a high concentration of soluble chemical
compounds. These findings highlight the critical need for robust groundwater quality
monitoring and management strategies in the region. TH ranged from 0 to 3498.4 mg/L
with an average of 308.63 mg/L, exceeding recommended levels. Groundwater in Kerman
Province is thus classified as hard due to an average TH greater than 100 mg/L (Figure 8c).
Chloride concentrations range from 0 to 264.93 mg/L, and sulfate concentrations range
from 0 to 61.98 mg/L. Unforgettably, SO42− and Cl− were detected as potential pollutants,
particularly in the northeastern and western parts of highly vulnerable zones on the GwPR-
based RF map (Figures 6a and 8d,e). HCO3

− plays a role in pH regulation and enhances
soil structure, proving beneficial in agriculture; however, imbalances in its concentration
can hinder plant growth [16]. HCO3

− presence suggests an interaction between rainwater
and limestone aquifers in the middle parts (Figure 8f). Measured pH values ranged from 0
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to 9.09, indicating alkaline conditions, particularly in the southern parts (Figure 8g). Mg2+

is a crucial element for chlorophyll synthesis and the overall growth of plants, making
it valuable in agricultural practices. While Ca2+ is vital for both plant development and
human health, contributing to agricultural productivity by enhancing soil structure and
facilitating mineral absorption. Calcium and magnesium concentrations range from 0 to
39.98 mg/L and from 0 to 34.99 mg/L, respectively, indicating significant levels of these
ions, which can impact water quality in northern and western parts (Figure 8h,i). Moreover,
excessive intake of Ca2+ poses significant risks, particularly for individuals with kidney
issues. In industrial settings, the equilibrium between Ca2+ and Mg2+ ions is generally
preserved in the majority of water sources; however, an overabundance of Mg2+ can nega-
tively impact soil structure, especially in environments characterized by high sodium levels
and salinity. Studies indicate that elevated concentrations of Ca2+ and Mg2+ in water may
heighten the risk of cardiovascular diseases [34]. Therefore, effective water management
practices are critical to mitigate human impacts and safeguard freshwater resources in
rurbanizing riverine environments, particularly in areas classified as highly or very highly
vulnerable [50,51]. Conversely, areas with low vulnerability present opportunities for
implementing sustainable water resource management strategies.

4. Discussion

Groundwater salinization emerges as the most significant negative impact of rapid
rurbanization on rural areas, accompanied by challenges such as soil contamination, natural
resource depletion, and land degradation [1,21,59–64]. With growing population and
industrialization, the demand for fresh water has surged, making it a critical resource
for both human and industrial progress [65]. In Kerman Province, groundwater quality
has been compromised primarily due to human and industrial activities, posing serious
environmental and health risks. Contaminated water is linked to infectious diseases such
as cholera, diarrhea, hepatitis A, typhoid, and polio. Furthermore, the lack of access to
clean water and sanitation exacerbates these preventable health threats [66]. This study
underscores the issue of poor groundwater quality resulting from excessive agricultural
exploitation and urban sewage infiltration, advocating for initiative-taking measures such
as annual groundwater quality monitoring and regulated extraction practices.

A notable research gap exists in rurbanizing riverine regions, specifically concerning
the assessment of groundwater vulnerability for irrigation purposes. While considerable
attention is given to water quality for drinking and sanitation [49,50], research focused
on DRASTIC-based GwPR prediction models remains limited, particularly in rapidly
rurbanizing riverine. Cross-validation metrics, including ROC curves and AUC values,
confirm the model’s accuracy for effective groundwater management to ensure long-term
freshwater availability. Results indicated that the RF model outperforms other methods in
groundwater pollution modeling, offering high precision, low bias, and strong variance
stability. This aligns with the findings of Sajedi-Hosseini et al. [30], Motlagh et al. [32],
and Khan et al. [33], who highlight the superior accuracy of ML models in groundwater
modeling. For example, Gharechaee et al. [67] utilized statistical techniques combined with
ML, including the RF model and Fuzzy Analytic Hierarchy Process (FAHP), to improve
groundwater salinity hazard mapping in the Bakhtegan basin. Despite these advances,
the application of these methods in the current study area is novel, making this research a
pioneering effort in enhancing accurate groundwater predictions. It is important to note the
total distribution of the estimated GwPR reveals that between-model variance significantly
impacts the spatial distribution of the overall variance. Future research should endeavor to
quantify the inherent uncertainty within the DRASTIC method by utilizing the Bayesian
model averaging (BMA) approach, as suggested in the framework proposed by [58].

Regarding hydrochemical investigation, human activities, especially mining, play a
major role in groundwater pollution in Kerman Province. Hydrogeochemical processes
revealed that calcium and magnesium are the predominant cations, while bicarbonates,
chlorides, and sulfates are the primary anions. These findings are consistent with the results
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of the Kerman Province land use planning studies [59], which indicate that groundwater
quality in many areas of Kerman Province is poor. In particular, in the western parts of the
province, a decrease in pH has led to the dissolution of heavy metals and contamination of
water, while in other areas, an increase in pH and salinity has been observed. The rise in
chloride and sodium ions has also caused issues such as soil salinization and hardening.
TDS and EC, which are associated with increased salinity and pollution, have risen in many
plains of the province, posing a serious threat to water quality, soil health, and agriculture.
TDS (0–1074 mg/L) is typically high in Kerman, reflecting significant levels of salts and
minerals in groundwater, which can affect water quality and its use in agriculture and
industry. Consumption of water with high TDS and EC levels poses risks, particularly
for individuals with kidney and cardiovascular conditions [34]. Overall, these parameters
indicate substantial mineral content in Kerman’s groundwater, impacting water quality
and its applications. This situation requires urgent attention to water and soil resource
management. The chemical quality of groundwater can reflect its origin, history, and the
materials it has been in contact with. This quality is influenced by geological processes and
chemical reactions below the surface and plays a crucial role in determining the suitability of
water for consumption [49]. Reasons for the discrepancy between water quality parameters
in Kerman Province (especially TDS, which is an important indicator for water quality
assessment) and the limits defined by the WHO include:

• Geographical, Geological, and Climatic Characteristics: The unique geographical and
climatic conditions of Kerman Province, such as water scarcity and the dispersion
of water sources, can significantly impact water quality. Additionally, groundwater
quality variations in Kerman Province are heavily influenced by geological conditions.
Numerous factors, including surface water levels, soil properties, topography, hydro-
geomorphology, drainage patterns, land use, and climate conditions, determine the
composition and quality of groundwater [50].

• Human and Industrial Activities: Human activities such as agriculture, industry,
power generation, use of chemicals, urban solid waste production, and the use of
pesticides and insecticides in the region may increase TDS levels and other chemical
parameters that do not conform to WHO standards, leading to groundwater quality
deterioration and contamination. These concentrations are influenced by environ-
mental conditions such as temperature, turbidity, pH, and EC. The increase in these
toxic metals, without noticeable changes in the color, taste, and smell of the water, can
degrade water quality and pose a threat to the environment and consumers.

• Water Resource Management: Managerial challenges and limitations in providing and
controlling water quality in Kerman Province may cause deviations from international
standards. Water resource management in this region, due to the arid and semi-arid
climate, excessive groundwater extraction, particularly in agriculture, low rainfall, and
declining groundwater levels, faces serious challenges in the development of modern
water treatment technologies. Moreover, climate change and population growth have
placed additional pressure on water resources. Addressing these challenges requires
raising public awareness, appropriate policymaking, the use of modern technologies,
and sustainable groundwater management strategies [11,17].

In Kerman, the rurbanization process, characterized by the integration of urban and
rural areas, has fostered economic development in rural regions. However, this trans-
formation presents significant environmental challenges primarily stemming from socio-
economic–ecological conflicts and the emergence of complex land use patterns. These
factors contribute to various environmental problems, with water pollution being a major
concern. Similar findings were reported by Sadeghi-Jahani et al. [35], who developed
process-based methods to evaluate groundwater sustainability and analyze sustainable
development interactions within Iran’s Tashk–Bakhtegan–Maharlo basin from 2003 to
2018. Their research demonstrated that persistent droughts, increased irrigation, uneven
development across sub-watersheds, and excessive groundwater extraction have led to
unsustainable conditions. The results of this study demonstrated that groundwater quality
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in Kerman Province has deteriorated, primarily due to agricultural activities, rock–water
interactions, and natural processes. The situation is further exacerbated by industrial and
agricultural activities, highlighting the urgent need for immediate interventions to manage
and improve the quality of rural ecosystems. It is crucial to implement rigorous regulations
and management strategies to sustain optimal water quality for both agricultural use and
human health, thereby mitigating potential health and environmental issues [24]. Con-
sequently, there is an urgent need for strategies that support sustainable development in
rural areas while addressing the challenges associated with rapid urban expansion. Sus-
tainable groundwater management strategies encompass several key approaches essential
for effective decision-making and the preservation of groundwater resources [62]. Yang
et al. [60] recommend the GSMS strategy, which employs AI algorithms like decision trees
and support vector machines to enhance groundwater management and protection. These
strategies include vulnerability assessment, responsible extraction practices, precise pollu-
tant control measures, stringent disposal regulations, and centralized extraction planning.
Implementing these strategies is crucial for mitigating the impacts of declining groundwa-
ter levels and ensuring continued access to high-quality groundwater. These actions can
prevent environmental degradation, promote equitable access to water resources, enhance
local economies, and reduce social and economic disparities.

Research exploring the correlation between groundwater resources and poverty reduc-
tion in semi-arid and rural areas, such as the study by [61], demonstrates that improving
agricultural productivity in these regions can significantly advance socio-economic con-
ditions and support sustainable development. Effective groundwater resource planning
and management are imperative in addressing the challenges posed by climate change and
human activities. For the effective management of water resources in Kerman Province, in-
tegrated approaches are essential. These approaches include modifying water consumption
patterns, managing groundwater resources, protecting arid environments, and controlling
water pollution. Furthermore, collaboration among stakeholders, including local communi-
ties and policymakers, is crucial for preventing water crises and ensuring water security.
These challenges necessitate more effective actions from managers and policymakers in
water resource management, considering both environmental conditions and human fac-
tors. Vulnerability maps of groundwater resources, created using the aforementioned
methods and accounting for the impacts of urbanization, provide valuable information
for evidence-based decision-making in water resource management. These maps identify
areas most vulnerable to pollutants, highlighting regions that require focused pollution
management and control efforts.

Finally, this study emphasizes the importance of combining remote sensing, geospatial
data [66,68], and ML models [69,70] to identify and map groundwater potential in rurbaniz-
ing riverine areas. These techniques provide crucial insights for sustainable water manage-
ment and poverty alleviation strategies in rural regions. For instance, spatial geological and
hydrogeological data obtained from this analysis can be effectively utilized for long-term
monitoring and planning, improving urban development and safeguarding water resources
in Kerman’s urban areas. The findings can guide officials and decision-makers in focusing
on the preservation and management of these resources and in developing more effective
management plans. Future research could benefit from incorporating advanced techniques
such as fuzzy logic, multi-criteria decision-making (MCDM), and socio-economic data
alongside ML and GIS analysis. Employing methods like DRASTIC-L could further refine
the identification of vulnerable areas and enhance management strategies for groundwater
preservation. Research by Jesiya and Gopinath [71] has highlighted the vadose zone as
a critical factor in pollutant protection, suggesting that incorporating this aspect could
improve groundwater quality assessments and optimize water management strategies.
Additionally, examining the impact of land use [72] on GwPR through the DRASTIC-based
ML algorithms is highly recommended.
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5. Conclusions

Groundwater salinization poses a significant challenge to sustainable rurban devel-
opment in arid and semi-arid riverine regions. Accurate mapping of GwPR is crucial for
effective water management in areas experiencing severe groundwater degradation due
to rapid urbanization and chronic drought, such as Kerman Province (Iran). This study
addresses this issue by integrating the DRASTIC index with five ML models—RF, BRT,
GLM, SVM, and MARS—alongside hydrogeochemical analysis. Initially, eight DRASTIC
factors were combined to produce a baseline vulnerability assessment. This preliminary
index categorized approximately 8.03%, 27.18%, 31.92%, 22.48%, and 10.36% of the area
into very low, low, moderate, high, and very high vulnerability zones, respectively. Among
the ML models, the RF model achieved the highest prediction accuracy at 99.5%, followed
by BRT at 98.8% and SVM at 97.7%. The RF-based map indicated that approximately
19.56%, 28.90%, 44.43%, 6.15%, and 0.94% of the study area fell into very high, high,
moderate, low, and very low susceptibility zones, respectively. The RF model identified
new high-vulnerability areas in the northeast and northwest and expanded the moderate
vulnerability zone. Notably, parameters such as TH, EC, sodium (Na+), chloride (Cl−),
TDS, and pH exceeded WHO thresholds in high-vulnerability zones, raising concerns
about water potability and necessitating immediate action to mitigate health risks from
contaminated water. Effective groundwater management in Kerman requires coordinated
efforts to regulate extraction, improve water use efficiency, and restore resource balance.
Sustainable resource management should involve precise planning that integrates envi-
ronmental factors, climatic constraints, and land use practices. Future research should
explore advanced hybrid ML methods for higher accuracy and consistency and integrate
modeling methods with system dynamics approaches to provide comprehensive insights
for sustainable groundwater management. These findings contribute a valuable ML-based
DRASTIC index to address salinization issues in stressed aquifers within the Middle East
and North Africa (MENA) region, highlighting the urgent need to address groundwater
contamination in rapidly urbanizing and rurbanizing areas.
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